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Abstract. Knowledge compilation [6, 5, 14, 8]. consists in
transforming a problem offline into a form which is tractable
online. In this paper, we introduce new structures, based on
the notion of interval automaton (IA), adapted to the com-
pilation of problems involving both discrete and continuous
variables, and especially of decision policies and transition ta-
bles, in the purpose of controlling autonomous systems.

Interval automata can be seen as a generalization of binary
decision diagrams (BDDs) insofar as they are rooted DAGs
with variable-labelled nodes, with the differences that interval
automata are non-deterministic structures whose edges are
labelled with closed intervals and whose nodes can have a
multiplicity greater than two.

This paper studies the complexity of the queries and trans-
formations classically considered when examining a new com-
pilation language. We show that a particular subset of interval
automata, the focusing ones (FIAs), have theoretical capabil-
ities very close to those of DNNFs; they notably support in
polytime the main operations needed to handle decision poli-
cies online. Experimental results are presented in order to
support these claims.

1 INTRODUCTION

Autonomous systems are required to make decisions auto-
matically, depending on the current observations and goals.
Performing the decision-making tasks completely online, with
the embedded computational capabilities only, can compro-
mise the reactivity of the system. On the other hand, the
limited size of embedded memory does not allow to record
the potentially huge set of different alternatives (all decisions
to be made in every possible situation).

A possible way of solving this contradiction is to use knowl-
edge compilation, which consists in transforming offline a
problem, thanks to some target compilation language, in such
a way that its online resolution becomes tractable. In our con-
text of autonomous system control, the offline transformation
can be, for example, to directly express the transition relation
of the problem in a target language, as well as to solve the
problem entirely, retrieve a decision policy, and then express
it in a target language. In all cases, the compiled form must
be both as compact as possible, so that embedded memory
constraints are respected, and as tractable as possible, so that
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relevant operations (depending on what we need to do) can
be quickly processed online.

Efficient target compilation languages were proposed for
planning domains involving variables with Boolean or enu-
merated domains (e.g. OBDDs [4], finite-state automata [16],
DNNFs [7], etc.). However, in many cases, controlling an au-
tonomous system involves variables with continuous or large
enumerated domains, such as time or energy; it would be in-
teresting to represent them without having to discretize them.

All in all, the goal of this paper is to define new target
compilation languages, namely the interval automata family,
suited to this particular application; that is to say, they must
be applicable to mixed problems (involving both continuous
and discrete features) and support all operations needed. We
will focus on the representation and online exploitation of
decision policies and transition relations.

We first formally define interval automata in Section 2. We
then study several operations in Section 3. The way interval
automata can be built is presented in Section 4. Last, exper-
imental results are provided in Section 5.

Most of the proofs are omitted for the sake of brevity.
An extended version including the proofs can be found at
ftp://ftp.irit.fr/IRIT/RPDMP/PapersFargier/ECAI10-NFPV.pdf.

2 INTERVAL AUTOMATA

2.1 Structure and Semantics

Definition 1 (Interval automaton). An interval automaton
(IA) is a couple φ = 〈X,Γ〉, with
• X (denoted Var(φ)) a finite and totally ordered set of real

variables, whose domains are representable by the union of
a finite number of closed intervals from R;

• Γ a directed acyclic graph with at most one root and at most
one leaf (the sink), whose non-leaf nodes are labelled by a
variable of X or by the disjunctive symbol � (that we shall
treat as a peculiar variable), and whose edges are labelled
by a closed interval from R. Edges going out of �-labelled
nodes can only be labelled by either R or ∅.
This definition allows an interval automaton3 to be empty

(no node at all) or to contain only one node (together root
and sink), and ensures that every edge belongs to at least one
path from the root to the sink. Figure 1 gives an example of
interval automaton.

3 Note that our interval automata have no relationship with the
single-clock timed automata that go by the same name.
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Figure 1. An example of interval automaton. Its model set (see
Definition 2), represented as a union of boxes, is

[−10, 10]× [0, 10.6] ∪ [−10, 10]× [24.4, 32] ∪ [−10, 10]× [41, 59] ∪
[8, 67.5]× [0, 10.6] ∪ [8, 67.5]× [24.4, 32] ∪ [8, 67.5]× [41, 59] ∪
[90, 92]× [0, 10.6] ∪ [90, 92]× [24.4, 32] ∪ [90, 92]× [41, 59].

For x ∈ X, Dom(x) ⊆ R denotes the domain of x,
which can either be enumerated (Dom(x) = {1, 3, 56, 4.87})
or continuous (Dom(x) = [1, 7] ∪ [23.4, 28]). By convention,
Dom(�) = R. We call “box” a cartesian product of intervals.
For Y = {y1, . . . , yk} ⊆ X, such that the yi are sorted in as-
cending order, Dom(Y ) denotes Dom(y1) × · · · × Dom(yk),
and �y denotes a Y -assignment of variables from Y , i.e.
�y ∈ Dom(Y ). When Y ∩X = ∅, �x . �y is the concatenation of
�x and �y. Last, �y(yi) denotes the value assigned to yi in �y.

Let φ = 〈X,Γ〉 be an interval automaton, N a node and E
an edge in Γ. We can then define the following elements:

• Root(φ) the root of Γ and Sink(φ) its sink;
• |φ| the size of φ, i.e. the number of edges of Γ plus the

number of intervals needed to represent the domains of the
variables;

• Outφ(N) (resp. Inφ(N)) the set of outgoing (resp. incom-
ing) edges of N ;

• Varφ(N) the variable labelling N (by convention
Varφ(Sink(φ)) = �);

• Srcφ(E) the node from which E comes and Dest(E) the
node to which E points;

• Itvφ(E) the interval labelling E;
• Varφ(E) = Varφ(Src(E)) the variable associated with E.

When there is no ambiguity, we forget to use the φ subscript.
An IA can be seen as a compact representation of a Boolean

function over discrete or continuous variables. This function
is the interpretation function of the interval automaton:

Definition 2 (Semantics of an interval automaton). An in-
terval automaton φ on X ( i.e. we denote X = Var(φ)) rep-
resents a function from Dom(X) to {	,⊥}. This function,
called its interpretation function I(φ), is defined as follows:
for every X-assignment �x, I(φ)(�x) = 	 if and only if there
exists a path p from the root to the sink of φ such that for
each edge E along p, either Var(E) = � and Itv(E) �= ∅, or
�x(Var(E)) ∈ Itv(E).

We say that �x is a model of φ whenever I(φ)(�x) = 	.
Mod(φ) denotes the set of models of φ.

φ is said to be equivalent to another IA ψ (denoted φ ≡ ψ)
iff Mod(φ) = Mod(ψ).

Note that the interpretation function of the empty automa-
ton always returns ⊥, since an empty IA contains no path
from the root to the sink. Conversely, the interpretation func-
tion of the one-node automaton always returns 	, since in the
one-node IA, the only path from the root to the sink contains
no edge. We can now introduce useful definitions:

Definition 3 (Consistency, validity, context). Let φ be an
interval automaton on X.

φ is said to be consistent (resp. valid) if and only if
Mod(φ) �= ∅ (resp. Mod(φ) = Dom(X)).

A value ω ∈ R is said to be consistent for a variable y ∈ X
in φ if and only if there exists an X-assignment �x in Mod(φ)
such that �x(y) = ω.

The set of all consistent values for y in φ is called the con-
text of y in φ and denoted Ctxtφ(y).

We will see in the following that deciding whether an IA
is consistent is not tractable. One of the reasons is that the
intervals along a path do not have a nested structure: on a
given path, the intervals related to the same variable can en-
large after having shrunk, and conversely. They can even be
conflicting, hence the intractability of the consistency request.
We will therefore consider focusing IAs, i.e. IAs in which in-
tervals can only shrink from the root to the sink.

Definition 4 (Focusing interval automata). A focusing edge
in an interval automaton φ is an edge E such that all edges
E′ on a path from the root of φ to Src(E) such that Var(E) =
Var(E′) verify Itv(E) ⊆ Itv(E′).

A focusing interval automaton (FIA) is an IA containing
only focusing edges.

An example of FIA can be found on Fig. 2.
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Figure 2. An example of focusing interval automaton. Variable
domains are as follows: Dom(x) = [0, 100], Dom(y) = [0, 100] and

Dom(z) = {0, 3, 7, 10}.

As suggested by Fig. 1, the size of the automaton can be
exponentially lower than the size of its extended model set
(described as an union of boxes). This is notably due to the
fact that IAs can be reduced by suppressing redundancies, in
the manner of BDDs and NNFs. Before detailing this reduc-
tion operation, let us enlighten the relationships between IAs
and these kinds of structures.

2.2 Relationships with BDDs and other
target languages

Introduced by Bryant in [4], Binary Decision Diagrams
(BDDs) are rooted directed acyclic graphs that represent
Boolean functions of Boolean variables. They have exactly two
leaves, respectively labelled 	 and ⊥; their non-leaf nodes are
labelled by a Boolean variable and have exactly two outgoing
edges, also respectively labelled 	 and ⊥ (or equivalently 1
and 0). A free BDD (FBDD) is a BDD that satisfies the read-
once property (each path contains at most one occurrence
of each variable). Whenever a same order is imposed on the
variables along every path, we get an ordered BDD (OBDD).

Interval automata can be understood as a generalization of
BDDs. The interpretation function of BDDs is indeed similar
to the one of IAs: for a given assignment of the variables, the
function’s value is 	 if and only if there exists a path from
the root to the 	-labelled leaf such that the given assignment
is coherent with each edge along the path.
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We see that, when interpreting a BDD, it is possible to
ignore the ⊥-labelled leaf. Now, if we remove this leaf, a BDD
is an IA the intervals of which are [0, 0] or [1, 1]:

Proposition 5 (Correspondence between IAs and BDDs).
Any BDD can be expressed in the form of an equivalent IA,
in time linear in the BDD’s size.

This linear translatability will help prove further proposi-
tions. It can also be used to translate any FBDD or OBDD
in the FIA framework:

Proposition 6 (Correspondence between FIAs and FBDDs).
Any FBDD (and thus any OBDD) can be expressed in the
form of an equivalent FIA, in time linear in the FBDD’s size.

The main difference between the IA family and the BDD
family (including ADDs) is that IAs are not required to be
deterministic (the same solution can be checked over sev-
eral paths of the automaton, which potentially allows gain
in space), and obviously that IAs are not limited to Boolean
variables. Vempaty’s automata [16, 1], SLDDs [19] and signed
logic [2] also support non Boolean domains, but are restricted
to finite domains. Vempaty’s automata are moreover ordered
structures, just like OBDDs or interval diagrams [15].

To compile Boolean functions over continuous variables, one
could use the spatial access method “R*-tree” [3], which is a
tree (not a graph) whose nodes are labelled by boxes. How-
ever, since it has not been introduced as a target compilation
language, the feasibility of useful operations (conditioning,
forgetting. . . ) have not been studied yet.

Interestingly, FIA are not decomposable structures in the
sense of DNNFs [7], but keep the essence of the decompos-
ability property: they are linkless [11] — in a FIA, a variable
restriction can be repeated on a path (in terms of NNFs, on
the two sides of an AND node), but the restrictions cannot
conflict (with the noticeable exception of ∅-marked edges, that
are typically removed when reducing the automaton).

2.3 Reduction

Like a BDD, an interval automaton can be reduced in size
without changing its semantics by merging some nodes or
edges. The reduction operations introduced thereafter are
based on the notions of isomorphic, stammering and unde-
cisive nodes, and of contiguous and unreachable edges. Some
of these notions are straightforward generalizations of defini-
tions introduced in the context of BDDs [4], while others are
specific to interval automata.

Definition 7 (Isomorphic nodes). Two non-leaf nodes N1,
N2 of an IA φ are isomorphic if and only if

• Var(N1) = Var(N2);
• there exists a bijection σ from Out(N1) onto Out(N2), such

that ∀E ∈ Out(N1), Itv(E) = Itv(σ(E)) and Dest(E) =
Dest(σ(E)).

Isomorphic nodes are redundant, as they represent the same
function; only one of them is necessary (see Figure 3).
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Figure 3. Merging of isomorphic nodes.

Definition 8 (Stammering node). A non-root node N of an
IA φ is stammering if and only if all parent nodes of N are
labelled by Var(N), and either |Out(N)| = 1 or | In(N)| = 1.

Stammering nodes are useless, since the information they
bring could harmlessly be deported to their parents (see Fig-
ure 4).
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Figure 4. Merging of stammering nodes.

Definition 9 (Undecisive node). A node N of an IA φ is
undecisive if and only if |Out(N)| = 1 and E ∈ Out(N) is
such that Dom(Var(E)) ⊆ Itv(E).

An undecisive node does not restrict the solutions corre-
sponding to the paths it is in; it is “automatically” crossed
(see Figure 5).

x
|R ⇒

Figure 5. Elimination of undecisive nodes.

Definition 10 (Contiguous edges). Two edges E1, E2 of an
IA φ are contiguous if and only if

• Src(E1) = Src(E2);
• Dest(E1) = Dest(E2);
• there exists an interval I ⊆ R such that I∩Dom(Var(E1)) =

(Itv(E1) ∪ Itv(E2)) ∩Dom(Var(E1)).

Contiguous edges both come from the same node, both
point to the same node and are not disjoint (modulo the do-
main of their variable): they could be replaced by a single edge
(see Figure 6). For example, in the case of an integer-valued
variable, a couple of edges labelled [0, 3] and [4, 8] respectively
is equivalent to a single edge labelled [0, 8].

x
[−159, 0]

[0, 74]
⇒ x

[−159, 74]

Figure 6. Merging of contiguous edges.

Definition 11 (Unreachable edge). An edge E of an IA φ is
unreachable if and only if Itv(E) ∩Dom(Var(E)) = ∅.
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An unreachable edge will never be crossed, as no value in
its label is coherent with the variable domain (see Figure 7).

x
[−10, −2.5] ⇒ ∅

Figure 7. Elimination of unreachable edges (here
Dom(x) = R+).

Definition 12 (Reduced interval automaton). An interval
automaton φ is said to be reduced if and only if

• no node of φ is isomorphic to another, stammering, or un-
decisive;

• no edge of φ is contiguous to another or unreachable.

In the following, we can consider only reduced IAs since
reduction can be done in time polynomial in the size of the
structure.

Proposition 13 (Reduction of an IA). There exists a poly-
time algorithm that transforms any IA φ into an equivalent
reduced IA φ′ such that |φ′| ≤ |φ|.

The first result we get on FIAs is that they are not harder
to reduce than IAs: our reduction algorithm maintains the
focusing property when applied on a FIA.

Proposition 14 (Reduction of a FIA). There exists a poly-
time algorithm that transforms any FIA φ into an equivalent
reduced FIA φ′ such that |φ′| ≤ |φ|.

3 REQUESTS ON INTERVAL
AUTOMATA

As previously said, an interval automaton represents a func-
tion from some set of variables to {⊥,	}. This section formal-
izes the main queries and transformations that could be useful
in a planning context. For the sake of exhaustivity, we also in-
troduce requests that are classically studied when evaluating
the facilities of a compilation language [7].

3.1 Useful Operations for Planning

Compilation of decision policies In a planning context,
we first want to represent by an interval automaton a decision
policy δ produced by some planning algorithm. In this case,
δ is a function which holds on two sets of variables, the set S
of state variables and the set D of decision variables. For any
S-assignment �s and any D-assignment �d, δ(�s . �d) = 	 if and

only if �d is a suitable decision in state �s.
In order to exploit a decision policy δ online, two basic oper-

ations are required. First, each time a new state instantiation
�s is observed, we need to determine the set of decisions suiting
�s according to δ. This operation corresponds to conditioning δ
by �s. One of the suitable decisions must then be extracted, to
be executed. This operation corresponds to model extraction.
Both operations will be defined formally in the sequel.

Concerning the elaboration of a decision policy, consider
that it is built incrementally by some planning algorithm,
until it covers the whole set of reachable states. In this case,
incrementally building δ means adding in δ new pairs (�s, �d)

such that decision �d covers state �s. To do so, if δ is represented

at each step by an interval automaton, we need to perform
operations of the form δ := δ ∨ (�s . �d), that is disjunctions.

It is worth noticing that in the final policy, all the possible
decisions for a given state are of equal interest (relative plau-
sibilities are not expressed in IA), even if the original problem
is stochastic. This does not prevent to build such a policy from
a stochastic problem. Once a decision policy has been built,
be the initial problem stochastic or not, fully observable or
not, it can be compiled into an IA.

Compilation of transition relations IAs can also be
used to represent the basic data involved in a planning do-
main: the set of possible initial states, of goal states, and the
transition relation defining the possible transitions of a given
system. Let us consider the example of a non-stochastic4 tran-
sition relation T . Such a relation holds on three sets of vari-
ables: the set S of variables representing the current state, the
set D of variables representing a decision made, and the set
S′ of variables representing the state after the decision is ap-
plied. For any S∪D∪S′-assignment �s . �d . �s′, δ(�s . �d . �s′) = 	
means that �s′ is a possible successor state when decision �d is
applied in state �s.

Several operations may be needed to efficiently manipu-
late transition relations compiled as IAs. Notably, in forward
approaches of planning, it may be useful to efficiently com-
pute, for a current state �s and a decision �d, the set S′ of
possible successors of �s, that is S′-instantiations �s′ such that
T (�s, �d, �s′) = 	. This requires the operations of conditioning,

to assign �s and �d in T , and of model enumeration, to get all
possible successors �s′. When actions have a deterministic ef-
fect, the transition relation T becomes a transition function
and model extraction suffices to get the only possible succes-
sor state �s′. Manipulation of deterministic transition functions
cover practical deterministic planning problems, in which the
objective is to build offline a controller able to face any possi-
ble initial situation (an alternative to the planning/replanning
approach).

All operations interesting in a planning context, as well as
other standard requests, are formally defined in the following.

3.2 Operations on Interval Automata

Let us detail the operations5 we will focus on, and check
whether they can be performed efficiently on the compiled
form. We first introduce the queries, that is, the operations
which return information about an IA.

Definition 15 (Queries). Let L denote a subset of the IA

language.

• L satisfies6 CO (resp. VA) iff there exists a polytime al-
gorithm that maps every automaton φ from L to 1 if φ is

4 IAs do not express plausibilities. Yet, using IAs for compiling
stochastic transition relations (and policies) is a natural exten-
sion of our work. This extension can be achieved by adding prob-
abilities on the edges, thus making valued IAs, closer to SLDDs.

5 CO stands for “COnsistency”, VA for “VAlidity”, EQ for
“EQuivalence”, MC for “Model Checking”, MX for “Model eX-
traction”, ME for “Model Enumeration”, CX for “Context Ex-
traction”, CD for “ConDitioning”, FO for “FOrgetting”, EN for
“ENsuring”, SCD, SFO, SEN for “Single CD, FO, EN”, ∧C,
∨C for “∧, ∨-Closure”, ∧BC, ∨BC for “∧, ∨-Binary Closure”,
and ∧tC for “Closure under conjunction with a term”.

6 One can also use “supports”.
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consistent (resp. valid), and to 0 otherwise.
• L satisfies EQ iff there exists a polytime algorithm that

maps every pair of automata (φ, φ′) from L to 1 if φ ≡ φ′

and to 0 otherwise.
• L satisfies MC iff there exists a polytime algorithm

that maps every automaton φ from L and any Var(φ)-
assignment �x to 1 if �x is a model of φ and to 0 otherwise.

• L satisfies MX iff there exists a polytime algorithm that
maps every automaton φ in L to one model of φ if there is
one, and stops without returning anything otherwise.

• L satisfies ME iff there exists a polynomial p(; ) and an
algorithm that outputs, for any automaton φ from L, a set
B of non-empty boxes whose union is equal to Mod(φ) in
time p(|φ|; |B|).

• L satisfies CX iff there exists a polytime algorithm that out-
puts, for any φ in L and any y ∈ Var(φ), Ctxtφ(y).

We will now define a number of transformations on IAs,
(i.e. operations that return a modified IA); we first present
the semantic operations on which they are based.

Definition 16. Let I, J be the interpretation functions on
Var(I),Var(J) of some automata.

• The conjunction (resp. disjunction) of I and J is the func-
tion I∧ J (resp. I∨ J) on the variables in X = Var(I) ∪
Var(J) defined by (I∧ J)(�x) = I(�x)∧J(�x) (resp. (I∨ J)(�x) =
I(�x) ∨ J(�x)).

• The existential projection of I on Y ⊆ Var(I) is the func-
tion I↓Y on the variables of Y defined by: I↓Y (�y) = 	 iff
there exist a Z-assignment �z (with Z = Var(I) \ Y ) s.t.
I(�z . �y) = 	. The “forgetting” operation is the dual one:
forget(I, Y ) = I↓Var(I)\Y .

• The universal projection of I on Y ⊆ Var(I) is the function
I⇓Y on the variables of Y defined by: I⇓Y (�y) = 	 iff for
any Z-assignment �z (with Z = Var(I) \ Y ), I(�z . �y) = 	.
The “ensuring” operation is the dual one: ensure(I, Y ) =
I⇓Var(I)\Y .

• Given an assignment �y of some set of variables Y ⊆ Var(I),
the conditioning of I by �y is the function I|�y on the variables
in Z = Var(I) \ Y defined by: I|�y(�z) = I(�y . �z).

And now for the knowledge compilation-oriented transfor-
mations:

Definition 17 (Transformations). Let L denote a subset of
the IA language.

• L satisfies CD iff there exists a polytime algorithm that
maps every automaton φ in L and every assigment �y of
Y ⊆ Var(φ) to an automaton φ′ in L such that I(φ′) =
I(φ)|�y.

• L satisfies FO (resp. EN) iff there exists a polytime al-
gorithm that maps every automaton φ from L and every
Y ⊆ Var(φ) to an automaton φ′ in L such that I(φ′) =
forget(I(φ), Y ) (resp. I(φ′) = ensure(I(φ), Y )).

• L satisfies SCD (resp. SFO, resp. SEN) iff it satisfies CD

(resp. FO, resp. EN) when limited to a single variable ( i.e.
Card(Y ) = 1).

• L satisfies ∧C (resp. ∨C) iff there exists a polytime al-
gorithm that maps every finite set of automata Φ =
{φ1, . . . , φk} from L to an automaton φ in L such that
I(φ) = I(φ1) ∧ · · · ∧ I(φk) (resp. I(φ) = I(φ1) ∨ · · · ∨ I(φk)).

• L satisfies ∧BC (resp. ∨BC) iff it satisfies ∧C (resp. ∨C)
when limited to a pair of automata ( i.e. Card(Φ) = 2)

• L satisfies ∧tC iff there exists a polytime algorithm that
maps every automaton φ from L, any set of variables
{y1, . . . , yk} ⊆ Var(φ) and any sequence (A1, . . . , Ak) of
closed intervals, to an automaton φ′ in L such that I(φ′) =
I(φ)∧fy1,A1∧· · ·∧fyk,Ak , where fx,A is the function defined
on Y = {x} by fx,A(�y) = 	 ⇔ �y(x) ∈ A.

3.3 Complexity Results
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C
D

∧t
C

F
O

S
F
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E
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S
E
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∧C ∧B
C

∨C ∨B
C

IA ◦ ◦ ◦ √ ◦ ◦ ◦ √ √ √ ◦ √ ◦ √ √ √ √ √
FIA

√ ◦ ◦ √ √ √ √ √ √ √ √ √ ◦ ◦ ◦ ◦ √ √

Table 1. Results about queries and transformations.
√

means
“satisfies”, ◦ means “does not support, unless P = NP”.

Proposition 18. The results of Table 1 hold.

It appears that performance of interval automata is weak
with respect to most of the queries, and in particular with re-
spect to CO, MX and VA, which is not surprising since BDDs
are IAs. Imposing the restrictive focusing property makes
most of the queries tractable, including CO and MX. The
main reason is that every path from the root to the sink of a
reduced FIA is coherent, since no edge along it conflicts with
any other (similarly to FBDDs).

This is also why (added to the fact that we allow �-nodes)
FIAs support CD and FO : it is roughly sufficient to replace
all concerned nodes by �-nodes and their edges’ labels by R

or ∅.
Proposition 18 shows that FIAs are suitable for compilation

of decision policies, as well as transition relations to be used
in a forward approach.

It also proves that neither IAs’ nor FIAs’ reduced form is
canonical (if it were, EQ would be polytime), and that IAs
are of course not polynomially translatable into FIAs (FIA
supports operations not supported by IA).

4 BUILDING INTERVAL AUTOMATA

We have shown that FIA allows in polytime operations that
are useful for planning. Let us briefly cite two possible algo-
rithmic approaches for their construction.

Union of Boxes It is straightforward to convert a union
of boxes into a FIA. This can be done in polytime, thanks
to ∨C. We can then easily compile into FIA any policy or
transition table that is given in this form: either a discrete
one, obtained for example by an algorithm returning DNFs,
or a continuous one, obtained for example by an interval-based
constraint solver.

Trace of RealPaver We can also adopt a process similar
to [10], using the trace of a search algorithm as a convenient
way to transform a CSP into an FIA [12]. This process con-
sists in creating new nodes and edges as soon as a solution is
found by the search algorithm, and in fusioning them with the
current FIA recording the solutions found so far. Here, we will
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use this method on the interval-based solver RealPaver [9] to
create an interval automaton representing an approximation
of the solution set of a constraint network.

5 RESULTS

problem
red time size % edges/ % edges/ CD MX
(ms) (edges) input OBDD (ms) (ms)

obsmem2 1102 100 74 66 1 5
obsmem3 2168 197 75 69 4 11
obsmem4 4729 342 75 70 4 11
obsmem5 5657 546 76 70 7 19
obsmem6 9433 820 76 76 11 35
porobot 4035 56 97 36 0 1
forobot 52767 60 99 31 0 3
ring7 92 13 75 71 0 1
ring8 185 13 78 75 0 1
ring9 92 13 80 75 0 1
ring10 82 13 81 75 0 2
drone10 46732 453 95 47 11 23
drone20 947174 763 97 44 30 61
drone30 2850715 944 98 43 21 48
drone40 5721059 944 98 45 15 29

drone10 104373 16820 35 × 7143 110
drone20 418885 38076 35 × 16970 193
drone30 1850326 53917 36 × 23597 612

Table 2. Application results.

Table 2 presents a few results of our first implementation
for a number of discrete and continuous problems, consist-
ing in policies or transition tables. The obsmem problem man-
ages connections between the observation device and the mass
memory of a satellite. The robot problem deals with a robot
exploring an area, and the ring domain is a standard bench-
mark for planning with non-determinism. In the drone prob-
lem, a drone must achieve different goals on a number of zones
in limited time; this latter problem is used in a discrete and
a hybrid version, in which the continuous variable is the re-
maining time. See the extended version for more details.

In Table 2, the last three instances are transition tables
involving a continuous variable (thus not comparable with
OBDDs), obtained by following the trace of RealPaver. All
the others are discrete decision policies, obtained by compil-
ing disjunctions of boxes given by the algorithm described in
[13]. For each instance, we state the time needed for reducing
the compiled FIA, the size of the reduced FIA, the reduction
rate (0% meaning no reduction) w.r.t. the input (number of
boxes × number of variables), the reduction rate w.r.t. the
equivalent OBDD (obtained by converting enumerated vari-
ables into Boolean by log encoding [18]), and the mean time
taken by a single conditioning or model extraction operation
on a standard laptop7.

Those results show that FIAs can be favourably compared
to OBDDs concerning the size of the graph, and that our
implementation of the requests is worth being improved.

6 CONCLUSION

In this paper, we introduced interval automata, a new knowl-
edge compilation language dealing with Boolean functions
holding on enumerated or continuous variables. We identified

7 Mobile Turion 64 X2 TL-56, 1.80 GHz, 2 Go RAM.

a subclass of interval automata, the focusing ones, for which
several requests useful in a planning context were proven to be
tractable. We showed the significant gains obtained regarding
the size of the compiled structure compared to OBDDs, IAs
being moreover able to model continuous domains without re-
quiring discretization. In the future, we plan to compare FIAs
to other enumerated domains target languages (Vempaty’s
automata, SLDDs. . . ), to study other interesting fragments
of IAs, to extend the IA language with valuations (thus al-
lowing to represent stochastic policies, and to use approximate
compilation [17]), and to define other compilation languages
suited to the management of planning domains.
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