
Constraint Based Planning with Composable Substate
Graphs

Peter Gregory and Derek Long and Maria Fox
University of Strathclyde

Glasgow, UK
firstname.lastname@cis.strath.ac.uk

Abstract.

Constraint satisfaction techniques provide powerful inference al-
gorithms that can prune choices during search. Constraint-based ap-
proaches provide a useful complement to heuristic search optimal
planners. We develop a constraint-based model for cost-optimal plan-
ning that uses global constraints to improve the inference in planning.

The key novelty in our approach is in a transformation of the
SAS+ input that adds a form of macro-action to fully connect chains
of composable operators. This translation leads to the development
of a natural dominance constraint on the new problem which we add
to our constraint model.

We provide empirical results to show that our planner, Constance,
solves more instances than the current best constraint-based planners.
We also demonstrate the power of our new dominance constraints in
this representation.

1 INTRODUCTION

Planning is a combinatorial optimisation problem. Hooker [16] has
observed that solutions to such problems combine search, inference
and relaxation. In cost optimal planning, search and relaxation tech-
niques have dominated, with traditional A� search, and variants of
it, using informed but admissible heuristics proving to be most ef-
fective [14]. In general, inference has played a less significant role:
reachability analysis is used to infer action choice constraints, mutex
reasoning has been exploited to support some propagation between
action choices and there has been some work on symmetry reduc-
tion [9]. In contrast, in the constraint reasoning community inference
plays a central role, with constraint propagation techniques typically
far outweighing the use of relaxation in solving finite-domain con-
straint satisfaction problems (CSPs).

There have been several attempts to exploit CSP technology in
planning. CPT [21], GP-CSP [6] and SeP [1] are examples of cost
optimal constraint-based planners. The key to successful use of CSP
in planning is in developing planning models that exploit the infer-
ence mechanisms CSP offers. CPT, in particular, demonstrates that
with a carefully crafted model it is possible to solve a significant
proportion of planning benchmarks without any search at all, purely
by exploiting propagation of constraints.

In this paper, we further develop this line of domain-independent
planning research, exploring the use of a CSP encoding of planning
problems that is based on the SAS+ [4] representation, but incor-
porating a new extension using automatically derived macros and
exploiting a collection of constraints that these must satisfy. These

constraints support further inference and, as we demonstrate using
Constance, our implemented solver, offer performance enhancement
for CSP-based cost-optimal planning.

Throughout this paper, we make use of a simple running example.
This is shown in Figure 1 and is an example instance of the Driver-
log domain. The driver in this example can walk along dotted lines
(footpaths), but not along solid lines (roads). The truck in the exam-
ple can only drive along solid lines. Drive actions require the driver
to be aboard the truck.

A B C

D E

A B C

D E

Driver {A,B,C,D,E,Truck}

Truck {A.B.C}

TruckOcc {True,False}

{<Driver,A>,<Truck,C>,<TruckOcc,False>}

{<Driver,B>,<Truck,B>}

Variables Initial State and Goal

Action: (BOARD A)

Prevail: {<Driver,A>,<Truck,A>}

Action: (DRIVE A B)

Prevail: {(road A B), <TruckOcc,True>}

Action: (WALK A D)

Prevail: {(path A D)}

Pre/Post: {<Truck,A> <Truck,B>}

Pre/Post: {<Driver,A> <Driver,Truck>, <TruckOcc,False> <TruckOcc,True>}

Pre/Post: {<Driver,A> <Driver,D>}

Figure 1. A simple planning problem, and the corresponding SAS+

representation, used as a running example. The initial state is shown to the
top-left and the goal state to the top-right.

2 BACKGROUND

The widely adopted planning domain language, PDDL [8], is a
propositional language. This makes its translation into Planning-as-
Satisfiability encodings straightforward, but it is less effective as a
basis for CSP encodings. SAS+ [4] encodings have become of in-
creasing interest and Helmert has shown that it is possible to auto-
matically translate from PDDL into SAS+ for a large fragment of
PDDL [13]. This encoding is well-suited to CSP encodings, since
it relies on variables with multi-valued domains, rather than purely
boolean domains, offering opportunities for the propagation tech-
niques used in CSP solvers to demonstrate their power and also lead-
ing to a compact representation of planning problems compared with

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-453

453

the grounded propositional form. Part of the SAS+ encoding of our
running example is shown in Figure 1.

Representing planning problems in SAS+ also leads to the identi-
fication of domain transition graphs [12] (DTGs), which capture the
legal transitions that are possible between assignments to the same
variable at successive time points as labelled directed graphs. The
arcs of each of these graphs are labelled with the actions and the ver-
tices with the values of one of the variables. Figure 2 shows the DTG
for the driver variable in our example.

BA C

ED

Truck

D
IS

E
M

B
A

R
K

 B

B
O

A
R

D
 B

W
ALK A D

W
ALK D

 A

BO
A

RD
 A

D
ISEM

BA
RK

 A

D
ISEM

BA
RK

 C

BO
A

RD
 C

W
A

LK
 C E

W
A

LK
 E

 C

WALK B D

WALK D B WALK B E

WALK E B

Figure 2. A domain transition graph for the driver variable from the
example in Figure 1.

2.1 Cost-Optimal Planning

The optimal planning track in the 6th International Planning Compe-
tition focussed on sequential-optimality, with action costs. This track
used a small extension to PDDL, in which one specific numeric flu-
ent records accumulated action costs, with each action adjusting this
fluent as it executes. Using this fluent and actions with fixed and pos-
itive costs, it is possible to unambiguously define the cost-optimal
plans for a planning problem as the plans whose total action cost is
least across all plans for the problem. In a classical STRIPS problem,
each action is taken to have a unit-cost, and so the optimal plan is the
plan with the fewest actions.

In the most recent International Planning Competition the baseline
planner (A� search with a zero-valued heuristic) performed better
than many of the optimal planners.

2.2 Constraint Satisfaction Problems

In a CSP, finite-domain variables are constrained in the values that
they can legally take simultaneously. A solution to a CSP is a full
assignment to the variables such that no constraints are violated.

Constraint Programming solvers rely on powerful propagation al-
gorithms during search in order to filter inconsistent values from the
domains of the variables during search. Constraint Programming can
be particularly effective when global constraints can be used. Global
constraints act over many variables at the same time. For example, a
set of variables that need to have distinct values can be constrained
by the all-different constraint. Another example is the table con-
straint [10], in which the valid combinations of values for a set of
variables are specified explicitly. This type of constraint is useful
when the number of valid combinations of assignments are small
with respect to the total number of valid assignments.

It is important to recognise that global constraints are not simply
a syntactic convenience. Specialised propagators can dramatically
prune the search space at low computational cost.

3 CONSTRAINT BASED PLANNING

Two CSP-based planners have been developed in recent work:
CPT [21] and SeP [1]. CPT is a cost-optimal, temporal, partial-order

planner. CPT uses the PDDL planning formalism. In the CPT con-
straint model, variables represent facts to be achieved. The domains
of each of these variables correspond to the actions that can achieve
the fact. CPT uses admissible heuristics to impose a lower-bound
on the plan length during its search. It also uses landmark informa-
tion [15] to provide clues on ordering actions. Standard finite-domain
CSPs do not have sufficient expressiveness to capture planning prob-
lems directly. Instead, they are used to represent a succession of
bounded problems, iteratively increasing the bound until a solution is
found. In CPT, the bound is placed on the number of distinct copies
of any single action within the plan. Initial analysis can place a lower
bound on this number, but subsequent search must iteratively explore
increasing values for these bounds until a plan is found (it is possible
to place an upper bound, too, but this is exponential in the size of the
problem in general, so of little practical interest).

SeP follows a more common representation in which the bound
is placed on the plan length and variables are used to represent
the choice of action at each step in the plan up to this bound.
This approach is also used in GP-CSP [6] and in Planning-as-
Satisfiability [18]. SeP is a sequential optimal (non-temporal) plan-
ner for uniform action costs, effectively minimising the number of
actions.

SeP uses a model (Figure 3) in which CSP variables at a given
time-point correspond to the SAS+ variables at that time-point.
Given a SAS+ task, P = 〈V,O, v0, v�〉, and a specified plan length,
T , a SeP constraint model contains T +1 state variables correspond-
ing to each variable in V ∈ V , recording the value of V at each
time-point in the plan, and a set of T variables that represent the
actions that occurs at each point between successive states.

In general, the variables that represent sequences, either of SAS+
variable assignments or of actions, can be thought of as timelines de-
scribing the behaviours of each of the variables throughout the plan.
It is in terms of timelines that we define the general SeP instance,
T = 〈Act,Var〉, where Act is the action timeline and Var is the
set of variable timelines. We refer to Actt to mean the action at time
t. We refer to Varv,i as the value of variable V at time t.

SeP uses table constraints to ensure that the effects of action tran-
sitions, prevail conditions and frame axioms are correctly enforced
between layers. These table constraints are a generalisation of the
simpler trajectory constraints used in CSP-Plan [19]. A table TabV

is constructed for each V ∈ V such that for all actions, a:

• If 〈V, v〉 is part of the prevail conditions of a:
The row 〈a, v, v〉 is one of the allowed tuples in TabV

• If 〈V, p, e〉 is part of the pre/postconditions of a:
The row 〈a, p, e〉 is one of the allowed tuples in TabV

• If V is neither part of the prevail conditions nor the
pre/postconditions of a:
For all values v ∈ Dom(V), the row 〈a, v, v〉 is contained in
TabV

Then, for all pairs of successive time-points, 〈ti, ti+1〉, the ta-
ble TabV is used to constrain the possible assignments to variables
Actt, VarV,t and VarV,t+1. Describing action transitions in this
way allows more inference to be performed at each search node.

These table constraints are sufficient to allow search and infer-
ence to arrive at a plan. However, to improve performance of CSP
solvers the trick is to find additional constraints that can be added
to the model that will allow more direct pruning of the search space
and propagation of inferences through the model. SeP therefore sup-
plements these basic model constraints with dominance constraints
to reduce the search-space further. These constraints depend on the

P. Gregory et al. / Constraint Based Planning with Composable Substate Graphs454

Action

Driver

Truck

TruckOcc X

C

A

B

B

Figure 3. A timeline representation of the example planning problem. The
first action cell is not used because there is one more state than actions.

well-known concept of interfering actions: two actions are said to in-
terfere if they have competing needs (delete the same precondition)
or competing effects (achieve different effects for the same variable).
This definition is the same as in Graphplan [2] generalised to SAS+
variables.

If two non-interfering actions occur in successive time-points in
the plan, then the order in which they appear does not alter the out-
come of the plan. Therefore, they can be ordered arbitrarily. For all
non-interfering actions, a1 and a2, an ordering is selected arbitrarily
(say a1 ≤ a2) and a constraint is added to the model that, for all pairs
of successive time-points t and t + 1, Actt = a1 → Actt+1 �= a2.
This constraint can be represented as a negative table constraint (in
which the disallowed tuples are specified explicitly). It is worth not-
ing that this constraint is a form of symmetry reduction, eliminating
plan permutation symmetries that arise when different orderings of
actions achieve the same outcome.

SeP searches in a forwards direction, using no lower bounding
information: it begins by searching for a plan of length 1 and incre-
ments the plan length as it proves a level infeasible.

4 IMPROVING THE CONSTRAINT MODEL

The model used by SeP forms the starting point for our own work:
we begin by using an automatic translation of a PDDL model into
a SAS+ encoding, using Helmert’s translator [13], then construct a
CSP model based on the timelines for the SAS+ variables and for
actions. However, we perform a further step of analysis on the model
to extract a collection of macros that can be safely added to the CSP
model, together with the constraints required to manage their use
while retaining correct cost-optimal plans. The macros allow us to
exploit a further set of dominance constraints and lead to stronger
pruning in the CSP models.

4.1 Connected Substate Groups

Macro-actions have been recognised as a useful tool in planning for
some time [3, 5, 17]. The essential idea is that some actions natu-
rally work together in recurring patterns that can be most efficiently
constructed just once and then reused, rather than reconstructed re-
peatedly from the primitive action components. A variety of tech-
niques have been used to identify candidate patterns and then to ex-
ploit them. In general, exploitation is hard because it is usually nec-
essary to leave the primitive action choices available in the search
space in order not to prevent the planner from finding solutions,
but at the same time it is important to encourage the planner to use
macros where possible. It turns out that we can achieve both objec-
tives straightforwardly within the CSP models we construct.

In our work macros are constructed by identifying sequences of
actions that compose with one another under common prevail condi-
tions. A simple case for our running example is shown in Figure 4.
The condition for two actions to compose is as follows:

Definition 1 (Action Composition) Actions a and b compose if the
union of the postcondition and prevail conditions of a, a+, and the
precondition of b, b−, satisfy a+ = b−. The composition of a and
b is a new action c with precondition a− and postcondition b+, and
cost equal to the sum of the costs of a and b.

DRIVE−TRUCK A B

Pre/Post: {<Truck,A,B>}

Prevail: {<TruckOcc,True>}

Cost: 1

DRIVE−TRUCK B C

Pre/Post: {<Truck,B,C>}

Prevail: {<TruckOcc,True>}

Cost: 1

Pre/Post: {<Truck,A,C>}

Prevail: {<TruckOcc,True>}

Cost: 2

[DRIVE−TRUCK A B; DRIVE−TRUCK B C]

Figure 4. An example of a composing action macro. Two cost 1 drive
actions compose into a cost 2 drive macro-action.

In order to discover and make use of composable action macros,
we create a structure that we call a substate graph. This is a graph
between preconditions and effects of operators.

Definition 2 (Substate Graph) Given a SAS+ task P =
〈V,O, s0, s�〉, a substate graph Gsub(P) = (V, E) is a weighted,
labelled, directed graph such that V comprises O− and O+ for all
O ∈ O. For all operators O ∈ O, an edge exist between the two
nodes O− and O+. The weight placed on the edge is the cost of O,
and the edge is labelled O.

By finding the strongly connected components of this graph, we
reveal all of the composable action macros in the problem. If two
unconnected nodes belong to the same connected component, then
the shortest path between them defines the least-cost composable ac-
tion macro between substates. These macro actions are added to the
model.

Definition 3 (Connected Substate Group) Given a substate
graph, G = (V, E), let the strongly connected components of G be
labelled c1, ..., cn.

The connected substate function maps each operator O to the label
of the connected component containing the edge labelled O.

An important observation is that once any substate in this graph
is achieved then an arbitrary length sequence of composable actions
can be performed within the connected component that contains that
substate. This is because we know that there is a path between all
substates in the connected component. As long as only actions from
the same component are performed, there remains a path to all other
substates in that component. Once a prevail condition is achieved,
any sequence of actions that rely on that prevail can be performed.
For example, once a driver has boarded a truck then any number of
drive actions can be sequenced. In our running example, the substate
groups are formed for the driver (who can walk between any pairs of
locations as a single macro action), for the truck (which can drive be-
tween any pair of locations as a single macro action, once the driver
is on board) and for the driver-truck pair at each location (where the
driver can board or disembark the truck).

4.2 Substate Groups and Optimal Planning

Connected substate groups can also be used to improve constraint
propagation in optimal planning. Each action in an optimal plan must
contribute to the achievement of a goal in some way. In other words,
at least one of the effects of an action must be either a precondition
or prevail condition of a later action or a final goal.

P. Gregory et al. / Constraint Based Planning with Composable Substate Graphs 455

Definition 4 (Dependent Action) Action a2 is dependent on action
a1 if at least one of the effects of a1 is a precondition of a2.

Theorem 1 Given a cost-optimal plan of shortest length, p =
a1, ...an, containing two actions ai and aj (i < j) from the same
substate group, c, there must exist an action ad in the sequence
ai+1, ..., aj−1 such that ad is dependent on ai.

Proof: Assume that there are no actions dependent on ai between
ai and aj . Actions ai and aj compose, since they are from the same
substate group. If no actions between ai and aj depend on ai, then
ai can be replaced by the composition of ai and aj , and aj can be
removed from the plan. Since this plan has fewer actions than p, p
cannot be an optimal plan with the fewest actions.

4.3 The Constance Constraint Model

The analysis we have now described can help form constraints that
lead to greatly improved pruning of the search tree in a sequential-
optimal constraint based planner. Theorem 1 leads us to the rule that
after a transition has been made, then no transition in the same sub-
state group can be made until one of the values in the effects of the
transition has been used.

We construct a timeline constraint model similar to that used
within SeP, extended to handle action costs and substate groups. In
addition to the action timeline and variable timelines, cost and sub-
state group timelines are added. In order to bind the actions, groups
and costs, we create a table constraint with each row representing a
triple, 〈a, ga, ca〉, where a is the action, ga represents the substate
group for action a and ca representing the cost of action a.

Driver

Truck

TruckOcc X

C

A

B

B

Action

Cost

Group

Figure 5. Constance timelines, including costs and substate groups.

We provide the same constraints as SeP, to handle the action ef-
fects and frame axioms, including the dominance constraints defined
in SeP. We also provide another powerful dominance constraint set,
which exploits Theorem 1. It is apparent from that result that a con-
straint on optimal plans is that no action from the same group as an
action already appearing earlier in the timeline can be applied with-
out an intervening action that depends on the first action. There are
various ways this constraint can be imposed. Following careful ex-
perimentation, we approximate the constraint by preventing actions
from the same substate group from being performed in two succes-
sive action steps. This is a weaker constraint than the theorem im-
plies, but we found it to be a good tradeoff between propagation costs
and pruning impact.

5 THE CONSTANCE PLANNER

The Constance planner uses two alternative search strategies: for-
wards and backwards. The forward search strategy uses an initial
lower bound of length one, and then increments the plan length by
one each time a level is proven inconsistent. Once a solution is found
(with cost c), it is not guaranteed optimal (since action costs need

not be unit), so the horizon is increased to c divided by the minimum
action cost and optimised, using c as an upper bound.

Our backward strategy, similar to that used in the Meta-CSP SAT
planner [11], uses the sub-optimal planner, LAMA [20], to find an
upper-bound, u, on the optimal plan length. We then search back-
wards from a horizon set using u divided by the minimum action
cost. We add a noop action, which has zero cost and does not alter
the state, with constraints preventing this action from being followed
by any non-noop action. This allows the planner to find the optimal
plan without constructing and searching multiple models, by padding
the end of the plan with noop actions. A problem arises when the
minimum (non-noop) action cost in the domain is zero. In this case,
which occurs for example in Sokoban from the Sixth IPC, we can-
not guarantee optimality. We can, of course, still provide either step
optimality, or cost optimality for a given horizon.

The Constance planning system implements the following proce-
dure:

1. Translate the PDDL planning model to produce the SAS+ vari-
ables and operators [13].

2. Construct substate graphs from the SAS+ structures.
3. Find strongly-connected components of substates graphs.
4. Extract the composing action macros.
5. If searching backwards, then run LAMA on the original SAS+

problem to find an upper-bound.
6. Construct and solve the constraint model.
7. If no solution is found and searching forwards, then increment the

horizon and return to the previous step.

6 EMPIRICAL EVALUATION

All experiments are performed on a desktop PC with a Intel 3.16GHz
CPU, a 2GB memory limit and a 30 minute time cutoff. We use
SICSTus Prolog 4.0.8 to generate the SeP results. Constance is im-
plemented in Java, using the Choco Constraint Programming library
(version 2.0.0.3). We use the Sun 1.6 (version 16) Java Virtual Ma-
chine to generate the Constance results. We compare our forwards
and backwards search strategies against CPT and SeP. All timings,
for SeP and Constance include translation time from PDDL.

SeP uses an intermediary Prolog input format. We have imple-
mented a translator from SAS+ to this intermediary representation
in order to form useful comparisons.

6.1 Results

Table 1 shows the number of instances solved for the first ten in-
stances of IPC benchmark domain sets. We restrict attention to this
set because none of the planners solve problems above this cut off,
with the exception of Blocksworld, which we examine further below.
We total the number of instances solved by each planner at the bot-
tom of the table. We also show the number of domains for which each
planner solves most instances. The two Constance variants solve at
least equal greatest number of instances in 15 of the 18 domains,
and are outright winners in ZenoTravel, TPP, Pipesworld NoTank-
age, Pipesworld NoTankage, FreeCell and DriverLog. SeP dominates
in Airport, Openstacks and Pathways.

Figure 6 shows the time performance in three of the domains. For
these domains, we extend the analysis to all of the instances from the
domains. We selected the domains Blocksworld, Airport and Pipes-
NoTankage as all three planners solve a reasonable number of in-
stances from these domains. Another reason we select these domains
in that each planner dominates in one of the domains.

P. Gregory et al. / Constraint Based Planning with Composable Substate Graphs456

Blocksworld seems particularly suited to the CPT model rather
than the timeline based planners. Another interesting domain is
Openstacks, in which SeP is the only planner to solve any instances.
Solving five instances brings SeP’s performance close to the best
heuristic A� planners [14] on this domain.

In all domains, the results show little difference between the for-
ward and backward search approaches.

Domain CPT SeP Conf Conb

Airport 6 8 6 7
Blocks 10 10 10 10

Depot 2 2 2 2

Driverlog 3 3 6 6

FreeCell 0 3 4 4

Grid 1 2 2 1
Gripper 2 2 1 2

Logistics 2000 5 6 6 6

Logistics 1998 0 0 0 0

Miconic STRIPS 10 10 10 10

Openstacks 0 5 0 0
Pathways 3 4 3 3
Pipesworld NoTankage 4 6 9 9

Pipesworld Tankage 2 2 7 7

PSR-Small 10 10 10 10

Rovers 4 4 4 4

TPP 4 4 5 5

ZenoTravel 4 5 8 8

Total (instances) 70 86 92 93

Total (domains) 7 12 14 14

Table 1. Performance of constraint based planners, showing numbers of
instances solved amongst the first ten instances in each domain. Conf and

Conb refer to Constance in forward and backward modes.

7 ANALYSIS

The results show that in domains with large substate groups (Driver-
log, ZenoTravel, Pipesworld, TPP) Constance markedly improves
the performance of constraint based planners. These domains tend
to be transportation-type domains, where the underlying maps pro-
vide the large composable substate graphs. The Freecell results show
that the approach is not simply beneficial to transportation domains.

We expect SeP to perform better than Constance in domains with
few composable action groups given that computation of the groups
imposes an overhead before search begins and managing the group
variables imposes additional cost during constraint solving.

Table 2 shows that the relative benefits we obtain from using
macros and from the dominance constraints they support varies
across domains. In some domains, such as TPP, the macros them-
selves do not help, but the dominance constraints they support lead to
significant benefits. In other domains, such as Driverlog, the macros
already account for much of the performance improvement. In all
cases, the dominance constraints enhance the use of macros.

The one domain in which CPT performs much better than ei-
ther SeP or the Constance variants, BlocksWorld, is interesting. CPT
solves more of these instances than the current state of the art optimal
planners [14], while SeP and Constance cannot solve many of them
in 30 minutes. In these instances, CPT makes only a small number
of choices over which actions are needed to support open precondi-
tions. This is probably because CPT constructs its plans as partially
ordered structures, which allows it to interleave the block reordering

No Macros Macros Banned Groups
Instance time nodes time nodes time nodes

tpp01 0.68 1 0.60 1 0.69 1
tpp02 1.10 19 1.11 19 1.10 15
tpp03 2.02 256 2.06 256 1.98 133
tpp04 4.07 5507 4.09 5507 3.00 1406
tpp05 749.53 1100520 – – 505.29 676972

zeno01 1.25 1 1.64 1 1.44 1
zeno02 1.98 12 2.71 11 2.39 11
zeno03 3.37 33 4.40 61 4.65 44
zeno04 3.98 234 5.08 39 5.32 37
zeno05 13.80 4176 25.72 3874 25.22 3014
zeno06 47.23 19105 79.50 16165 56.78 9529
zeno07 – – 181.52 37828 121.20 19306
zeno08 104.14 9694 168.34 6164 157.66 4491

driverlog01 2.12 6 1.95 5 2.22 5
driverlog02 – – 252.73 252250 147.28 138122
driverlog03 8.39 7531 4.64 1487 4.28 1267
driverlog04 509.17 476407 60.81 40773 50.38 38260
driverlog05 – – – – – –
driverlog06 26.92 12290 5.78 629 5.56 442
driverlog07 387.36 153362 100.50 33861 68.32 21123
driverlog08 – – – – – –

Table 2. Performance comparisons for Constance without macros, with
macros and with both macros and substate group dominance constraints.

actions as the plan develops. The timeline approach forces commit-
ment to the timing of actions as they are added to the plan and this
choice is hard to get right without landmark information in Blocks
problems.

We hypothesise that a model combining a timeline and a partially
ordered model, connected by channelling constraints, could lead to a
planner that benefits from the advantages of both models.

Domain CPT SeP Conf Conb hC G

Airport (50) 7 11 10 10 38 11
Blocks (35) 34 10 13 13 28 30
PipesNT (50) 4 6 9 9 17 11

Table 3. Comparison with heuristic state-space planners: planners CPT,
SeP, Constance Forwards, Constance Backwards, Landmark Cut Heuristic
and Gamer; cells showing the number of instances solved with a 30 minute

cut-off.

We provide a comparison with the current best optimal planners
[14] in Table 3. The Landmark Cut and Gamer [7] results are taken
from [14]. Performance of constraint-based planners is still below
that of heuristic planners.

8 FUTURE WORK

There are improvements that can be made to our model. The first of
these is to use bounding information provided by admissible heuris-
tics to provide good lower bounds to Constance. This can clearly
aid forwards search by preventing many redundant layers being
searched. It can also help in backwards search by lower-bounding
the metric function.

One of the most interesting features of the CSP based approach
to planning is the opportunity to extend the model with increasingly
powerful constraints, pruning more of the search space rather than

P. Gregory et al. / Constraint Based Planning with Composable Substate Graphs 457

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35

T
im

e
(s

ec
.)

IPC Instance Number

CPT
SeP

Constance Forwards
Constance Backwards

(a) Blocksworld: A domain in which CPT
dominates

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
.)

IPC Instance Number

CPT
SeP

Constance Forwards
Constance Backwards

(b) PipesNoTankage: A domain in which
Constance dominates

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
.)

IPC Instance Number

CPT
SeP

Constance Forwards
Constance Backwards

(c) Airport: A domain in which SeP domi-
nates

Figure 6. Time Performance. We show the time taken to solve instances from three domains. Each domain shows strong results for different planners.

leaving it to be explored. There remain many opportunities for exten-
sions of our current model and we are currently investigating the idea
of linking the CPT model, with its constraints, to ours, using chan-
nelling constraints to allow communication between the two models.

9 CONCLUSIONS

We have presented Constance, a constraint-based planner that uses
analysis of substate graphs to discover and exploit composable ac-
tion macros. Once discovered, these macros lead to the opportunity to
exploit powerful dominance constraints. This opportunity makes the
exploitation of these macros much more effective in this setting than
has been the case for other work on macros. This is because other
macro-based planners have typically faced a significant problem in
controlling the explosion in branching factors caused by adding the
macros alongside primitive actions, while also encouraging the plan-
ner to prefer macros where possible, often leading to poor quality
plans. Constance achieves the successful exploitation of macros for
cost-optimal planning. Constance improves on the performance of
the current best constraint planners in many IPC domains.

Integrating ideas from heuristic search into constraint-based plan-
ners, and vice versa, provides many opportunities for future research.
We also believe that integrating different constraint approaches can
provide similar benefits.

Acknowledgements

We would like to thank Roman Bartak and Daniel Toropila for al-
lowing us to use their planner SeP in our evaluation.

REFERENCES

[1] Roman Barták and Daniel Toropila, ‘Revisiting constraint models for
planning problems’, in Proc. 18th Int. Symp. on Foundations of Int.
Systems, pp. 582–591, (2009).

[2] Avrim Blum and Merrick L. Furst, ‘Fast planning through planning
graph analysis’, Artif. Intell., 90(1-2), 281–300, (1997).

[3] Adi Botea, Markus Enzenberger, Martin Müller 0003, and Jonathan
Schaeffer, ‘Macro-ff: Improving ai planning with automatically learned
macro-operators’, J. Artif. Intell. Res. (JAIR), 24, 581–621, (2005).

[4] Christer Bäckström and Bernhard Nebel, ‘Complexity Results for
SAS+ Planning’, Computational Intelligence, 11, 625–656, (1995).

[5] Andrew Coles, Maria Fox, and Amanda Smith, ‘Online identification of
useful macro-actions for planning’, in Proc. 17th Int. Conf. Automated
Planning and Scheduling, pp. 97–104, (2007).

[6] Minh Binh Do and Subbarao Kambhampati, ‘Planning as constraint sat-
isfaction: Solving the planning graph by compiling it into CSP’, Artif.
Intell., 132(2), 151–182, (2001).

[7] Stefan Edelkamp and Peter Kissmann, ‘Optimal symbolic planning
with action costs and preferences’, in Proc. 21st Int. Joint Conf. on AI,
pp. 1690–1695, (2009).

[8] M. Fox and D. Long, ‘PDDL2.1: An extension of PDDL for express-
ing temporal planning domains’, Journal of AI Research, 20, 61–124,
(2003).

[9] Maria Fox and Derek Long, ‘Extending the exploitation of symmetries
in planning’, in Proc. 6th Int. Conf. on AI Planning and Scheduling, pp.
83–91, (2002).

[10] Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale,
‘Data structures for generalised arc consistency for extensional con-
straints’, in Proc. 22nd Conf. AAAI, pp. 191–197, (2007).

[11] Peter Gregory, Derek Long, and Maria Fox, ‘A Meta-CSP Model for
Optimal Planning’, in Proc. 7th Int. Symp. on Abstraction, Reformula-
tion and Approximation, pp. 200–214, (2007).

[12] Malte Helmert, ‘The fast downward planning system’, J. Artif. Intell.
Res. (JAIR), 26, 191–246, (2006).

[13] Malte Helmert, ‘Concise finite-domain representations for PDDL plan-
ning tasks’, Artif. Intell., 173(5-6), 503–535, (2009).

[14] Malte Helmert and Carmel Domshlak, ‘Landmarks, critical paths and
abstractions: What’s the difference anyway?’, in Proc. 19th Int. Conf.
Aut. Planning and Scheduling, (2009).

[15] Jörg Hoffmann, Julie Porteous, and Laura Sebastia, ‘Ordered landmarks
in planning’, J. Artif. Intell. Res. (JAIR), 22, 215–278, (2004).

[16] John N. Hooker, ‘A search-infer-and-relax framework for integrating
solution methods’, in Proc. CP-AI-OR, volume 3524 of Lecture Notes
in Computer Science, pp. 243–257. Springer, (2005).

[17] Anders Jonsson, ‘The role of macros in tractable planning over causal
graphs’, in Proc. 20th Int. Joint Cont. AI, pp. 1936–1941, (2007).

[18] Henry A. Kautz and Bart Selman, ‘Planning as satisfiability’, in Proc.
European Conf. AI, pp. 359–363, (1992).

[19] Adriana Lopez and Fahiem Bacchus, ‘Generalizing GraphPlan by For-
mulating Planning as a CSP’, in Proc. 18th Int. Joint Cont. on AI, pp.
954–960, (2003).

[20] Silvia Richter, Malte Helmert, and Matthias Westphal, ‘Landmarks re-
visited’, in Proc. 23rd Int. Conf. AAAI, pp. 975–982, (2008).

[21] Vincent Vidal and Hector Geffner, ‘Branching and pruning: An opti-
mal temporal POCL planner based on constraint programming’, Artif.
Intell., 170(3), 298–335, (2006).

P. Gregory et al. / Constraint Based Planning with Composable Substate Graphs458

