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Abstract. In classical revealed preference analysis we are given a
sequence of linear prices (i.e., additive over goods) and an agent’s
demand at each of the prices. The problem is to determine whether
the observed demands are consistent with utility-maximizing behav-
ior, and if so, recover a representation of the agent’s utility function.
In this work, we consider a setting where an agent responds to non-
linear prices and also allow for incomplete price information over the
consumption set. We develop two different kernel methods to fit lin-
ear and concave utilities to such observations. The methods allow one
to incorporate prior information about the utility function into the es-
timation procedure, and represent semi-parametric alternatives to the
classical non-parametric approach. An empirical evaluation exhibits
the relative merits of the two methods in terms of generalization abil-
ity, solution sparsity, and runtime performance.

1 INTRODUCTION

The economic theory of demand supposes that an agent, facing
prices, will choose to consume the bundle of goods that it most
prefers among all bundles that it can afford, according to some well-
defined (ordinal) utility function. The basic question of revealed pref-
erence analysis is to what extent this behavioral hypothesis can be
validated or refuted given observed demand data. If the observations
are consistent with utility maximization then the question becomes
that of recovering an actual utility function explaining the behav-
ior, perhaps with some useful structure such as concavity, in order to
make welfare judgments or forecast future demands [21].

Current revealed preference techniques apply under a model where
the agent responds to linear prices (i.e., additive over goods). Since
linear prices can be succinctly described, it is also implicitly assumed
that price information is complete: at each demand observation, the
entire price vector is recorded. In this work, we consider a setting
where an agent responds to possibly nonlinear prices. Since it can
be costly to completely record such prices, we also allow for incom-
plete price information, meaning that the prices of certain bundles
may simply be unavailable. Instances of nonlinear pricing abound at
both the individual and firm levels, ranging from advertising rates
and electricity tariffs to mailing rates, telephone tariffs and airline
ticket prices, to name just a few [22].

To extend the applicability of revealed preference analysis to such
instances, it is necessary to develop methods that can incorporate
incomplete, nonlinear price data to fit a utility function that success-
fully generalizes. In this work we propose two different kernel meth-
ods for this purpose. Following the usual approach in kernel meth-
ods we first recode the bundles in terms of a set of features implicitly
specified through a kernel function. Our two methods fit linear and
concave utility functions, respectively, to the observations mapped
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into the feature space; in the original bundle space, the resulting util-
ities can be highly nonlinear and non-concave. We will see that the
flexibility afforded by the choice of kernel function can bring sub-
stantial improvements in generalization ability, as is the case with
more standard applications of kernel ideas in classification and re-
gression.

Another advantage of kernel methods is that they provide
well-understood ways to incorporate prior information on utilities
through the introduction of regularization terms (among other tech-
niques) [17]. The current nonparametric approaches in the economic
literature only introduce priors on the error structure [8, 20]. In fact,
we will see that a regularized kernel method trained on incomplete
price data can outperform these nonparametric approaches, which
draw on complete price data.

The rest of the paper is organized as follows. In the remainder of
this section we survey the literature on revealed preference and re-
lated work on machine learning methods to fit utilities and ranking
data. In Section 2 we provide formal background on revealed prefer-
ence analysis, and explain why a straightforward adaptation of cur-
rent nonparametric techniques in economics to nonlinear prices has
the potential to generalize poorly. Section 3 describes our two meth-
ods and their properties. In Section 4 we report on experiments that
evaluate the relative merits of the two methods and compare them to
the nonparametric approach in the economics literature.

Related work. In a sequence of papers beginning with Samuel-
son [16], economists have examined the question of testing whether
observed demand data is rationalizable, meaning that there exists
a utility function that explains the demand behavior. This culmi-
nated in the generalized axiom of revealed preference, which pro-
vides a necessary and sufficient condition for data to be rationaliz-
able [10, 15, 19]. Much has been made of this generalized axiom,
because it can be checked in polynomial time using combinatorial al-
gorithms (essentially special cases of network flow algorithms), thus
providing a convenient test of rationalizability. However, we will not
go into its specification here because we will not make use of it—see
Varian [21], who also provides a survey of past and recent research
on revealed preference. It is now understood that the equivalence be-
tween rationalizability and the generalized axiom can be seen as an
instance of linear programming duality [7].

Independently, Afriat [1] provided a cyclical consistency condition
which is equivalent to the generalized axiom. More importantly for
our work, he formulated a system of inequalities which has a positive
solution if and only if the demand data is rationalizable. A solution
to the system, if feasible, also immediately defines a utility function
rationalizing the data. Afriat’s inequalities form the basis of both our
kernel method formulations.

Beigman and Vohra [2] consider the problem of rationalizability
from the viewpoint of statistical learning theory. They show that
without any other assumptions on utility besides monotonicity and
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concavity, the sample complexity of learning (in the probably ap-
proximately correct sense [12]) a demand and hence utility function
is infinite. This provides a formal justification for introducing regu-
larization terms in our methods, because without them the methods
could not generalize given a finite amount of data.

The application of kernel methods to recover utility informa-
tion can be found sporadically in the machine learning literature.
Chapelle and Harchaoui [3] and Evgeniou et al. [6] apply support
vector machines (SVMs) to conjoint analysis, where the task is to
estimate a utility function given choice data (which bundles were
chosen when a restricted subset is offered). Their ideas are related
to SVMs for ranking [4, 9]. Domshlak and Joachims [5] develop an
SVM approach to fit utilities given more intricate, qualitative choice
data. Conjoint analysis is a different setting than ours, because in
revealed preference analysis the prevailing prices when a bundle is
chosen imply a substantial amount about the underlying utilities.

2 BACKGROUND

Consider an agent endowed with a utility function u : X → R
that encodes its preferences over bundles in its consumption set X
(i.e., those bundles it can feasibly consume). Throughout we will take
X = Rm

+ , where m is the number of goods. At prices p : X → R,
the agent will choose to consume a bundle in its demand set

D(p) = arg max
x∈X

{u(x) : p(x) ≤ b},

where b is the agent’s budget. The classical theory of demand deals
with linear prices, meaning that p ∈ Rm and the price of a bundle x
is evaluated according to the usual scalar product 〈p, x〉. In this work
we will allow for general price functions over the consumption set.

A utility function u is strictly monotone if u(x′) > u(x) for
bundles x′ > x. If utility and prices are both strictly monotone,
x ∈ D(p) implies that p(x) = b, meaning an agent always exhausts
its budget when choosing a bundle. Throughout we will assume that
utilities and prices are strictly monotone; this is a standard assump-
tion in the theory of demand. Note that any strictly monotone trans-
formation of a utility function leaves the underlying preferences un-
changed, in the sense that D(p) and hence the behavior of the agent
are unaffected. In particular, we can translate utilities by a constant
and scale them by a positive factor, and the preferences remain the
same.

In revealed preference analysis we are given a sequence of obser-
vations {(xi, pi)}i∈N for N = {1, 2, . . . , n}, where xi is the bundle
chosen by the agent when the prevailing prices are pi. The question is
whether there is a utility function u that rationalizes the observations,
meaning that xi ∈ D(pi) for all i ∈ N ; by our arguments above, we
can take the budget bi at observation i to be pi(xi). To verify this
condition one needs full knowledge of the prices pi at each observa-
tion. We adapt the condition to partial price information as follows.
We say that a utility function u is consistent with a sequence of de-
mand observations if for each xi and bundle x whose price pi(x) was
recorded at observation i, we have u(xi) ≥ u(x) if pi(x) ≤ pi(xi).
We will also make use of the notion of approximate consistency to
within an error δ, which simply means that u(xi) + δ ≥ u(x) must
hold instead for some δ > 0.

Let cij = pi(xj) be the cost of bundle j at observation i, when
xi was chosen. In order to obtain utilities that rationalize a given
set of observations, Afriat [1] introduced the following system of
inequalities with variables vi, λi for i ∈ N :

vi − λicii ≥ vj − λicij (i, j ∈ N) (1)

with the added constraint that λi > 0 for all i ∈ N . To mo-
tivate how these inequalities arise, suppose that the agent’s util-
ity is concave. Then a necessary condition for xi ∈ D(pi) is
that there exist a Lagrange multiplier λi ≥ 0 such that xi ∈
arg maxx∈X {u(x) − λi[pi(x) − bi]}; it should now be clear that
vi is meant to correspond to u(xi). Furthermore, if utility is strictly
monotone, we will have λi > 0 because the budget constraint will
bind. Thus the inequalities describe observable constraints on the
utilities of the demanded bundles together with the associated La-
grange multipliers (assuming utility is concave); the multipliers have
an intuitive interpretation as the marginal utility of wealth at each
observation [21].

It turns out that a positive solution to these inequalities is a neces-
sary and sufficient condition not just for rationalization by a concave
utility function, but by any strictly monotone utility function. The
following was proved by Afriat [1].

Theorem 1 The observations can be rationalized by a strictly mono-
tone utility function if and only if the system of inequalities (1) has a
positive solution. If (v, λ) is such a solution then the utility function

v(x) = min
i∈N

{vi + λi[pi(x) − pi(xi)]} (2)

rationalizes the observations.

Note that the condition that the solution be positive only constrains
the variables λi, because we can always add a constant to the vi to
make them all positive and maintain feasibility. It is easy to see that
if the prices p are strictly monotone and linear, then (2) defines a
strictly monotone, concave utility function [7]. Thus one interpreta-
tion of Afriat’s theorem is that violations of monotonicity and con-
cavity cannot be detected with a finite amount of demand data under
linear prices [19].

The problem at hand from here on is that of finding a utility func-
tion consistent with observations when price information is nonlin-
ear and possibly incomplete. Now, Afriat’s Theorem holds even if
prices are nonlinear; the assumption of linear prices is needed only
to establish that (2) is concave. Also, inequalities (1) can be formu-
lated and solved even with partial price information; we simply dis-
card those where the prices are not available. Thus if all we care
for is to check whether the observations are consistent with utility
maximization, nonlinearity poses no problem. However, recovering
a utility function is a different matter. With full price information,
we could still construct (2) to forecast the utilities of other bundles
even if prices are nonlinear; we will henceforth refer to this as the
full-information method. This method in fact has the potential to gen-
eralize very poorly. To see why, consider Figure 1 (following page).

In the figure both the utility u and prices pi are nonlinear; recall
that λi is the Lagrange multiplier at observation i. The chosen bundle
at prices pi is xi because it maximizes u−λipi. Now assume that for
x the minimum in (2) is attained at i ∈ N . Then the forecasted utility
for bundle x will be v(x), which here could be arbitrarily far off from
the real utility u(x) due to the nonlinearity of pi. In general, the flaw
with the approach is that with nonlinear prices, the structure of prices
may bear no connection with the structure of the utility function; for
instance, the price structure may be much more complex than the
utility structure, so it is not sensible to formulate utility in terms of
the observed prices as in (2). A better approach would be to first
identify linear prices p′

i ≤ pi as in the figure and use those in (2)
instead of pi to forecast utilities.2

2 Incidentally, Figure 1 also gives the simple intuition behind the fact that
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Figure 1. Utility recovery example.

If price information is incomplete, then it may not even be possible
to evaluate (2) at a given bundle x. A naive approach would be to first
fit a price function to the available price data using an appropriate
machine learning method, and then evaluate (2). Again, this is not a
sensible approach for the same reason as just mentioned: prices can
be more complicated and bear no relation to the utility function, so
fitting the price data may amount to solving a much more difficult
problem than that of recovering the utilities.

In the remainder we will assume that the available information
consists only of the demanded bundles xi for i ∈ N as well as the
matrix consisting of costs cij = pi(xj) for all i, j ∈ N . We will
not have available the prices of any non-demanded bundles. In fact,
it will be clear that our methods can be applied with whatever partial
price information is available (i.e., prices of some demanded bundles
may be missing and prices of some non-demanded bundles may be
present). We assume that we have exactly the cost matrix c only to
simplify the exposition.

3 KERNEL METHODS

The idea behind kernel methods in machine learning is the “kernel
trick”: training examples are recoded in terms of a set of features and
then linear classification or regression algorithms are applied to the
examples in this new encoding. The choice of an encoding amounts
to the choice of a function class from which to fit a classifier or re-
gressor [17].

Here our examples are bundles x ∈ X . We map the bundles into
a feature space Y = RM via a mapping φ : X → Y . Typically
we will have M � m; in fact M may be infinite. Consequently,
to develop a workable kernel method with respect to a mapping φ,
one must find a way to fit a utility function without ever explicitly
working with bundle representations in Y . The trick is to instead for-
mulate the problem purely in terms of scalar products 〈φ(x), φ(x′)〉.
What make this practical is that, for many useful mappings, the scalar
products can be evaluated in time that does not depend on M .

A kernel function κ computes the scalar product of the images of
two bundles in feature space: κ(x, x′) = 〈φ(x), φ(x′)〉. A feature
space can be equivalently specified either through a mapping φ or a

only concave functions can be recovered when prices are linear. With linear
prices, bundles in between x and xi can never be demanded, because the
prices can never be tangent at those bundles. Thus the most that could be
recovered is the upper envelope of u and p′i. With nonlinear prices, it may
be possible to recover the utility function between x and xi.

kernel function κ. In our experiments we will focus on the polyno-
mial kernel, defined by κ(x, x′) = (〈x, x′〉 + 1)d, where d is a pa-
rameter. The corresponding mapping φ maps bundles into a feature
space that has a dimension for every monomial xi1

1 xi2
2 · · ·xim

m of de-
gree at most d—see [17] or any other standard textbook on kernel
methods for a treatment of the polynomial kernel. With d = 1, we
essentially recover the linear kernel corresponding to the mapping
φ(x) = x; we would use this kernel to try to fit linear or concave
functions in the original bundle space.

We propose two different kernel methods to recover a utility func-
tion from demand data. The inequalities (1) form the basis of both.
The first method attempts to fit a linear utility function in feature
space to the demand data. The second attempts to fit a concave func-
tion in feature space. Note that in the original bundle space X this
yields functions that can be highly nonlinear or non-concave.

3.1 Linear utility

The first method directly ascribes some structure to the utility func-
tion and then leverages that structure to generalize across the con-
sumption set. This is of course a standard approach in econometrics,
where the usual assumption is that utilities are linear in the goods
(e.g., in discrete choice analysis [18]). The utility function will be
represented as a vector v ∈ Y in feature space; the utility of a bundle
x therefore becomes 〈v, φ(x)〉.

The problem of fitting the utility function to the data is formulated
as the following quadratic program (PL).

min
v,λ,ε

μ

2
‖ε‖2 +

1

2
‖v‖2

s.t. 〈v, φ(xi)〉 − λicii + εij ≥ 〈v, φ(xj)〉 − λicij (i, j ∈ N)

λi ≥ 1 (i ∈ N)

We see that the constraints are completely analogous to inequali-
ties (1) together with the constraint that λ be positive.3 We have
introduced slack variables ε to ensure feasibility. Accordingly, we
introduce a penalty term μ

2
‖ε‖2 on slack in the objective; if this term

is zero, the resulting utility function will be exactly consistent with
the data. The role of the 1

2
‖v‖2 term will become clear shortly.

In the program ε is a vector of dimension n2 whereas v is a vector
of dimension M in feature space. Thus we cannot solve the program
directly and instead work with the dual (DL), which is as follows.

max
α≥0,s≥0

∑

i∈N

si − ν

2
‖α‖2

−1

2

∥∥∥∥∥
∑

i,j∈N

αij [φ(xi) − φ(xj)]

∥∥∥∥∥

2

(3)

si =
∑

j∈N

αij(cii − cij) (i ∈ N)

We have ν = 1/μ. Here α is a vector of dimension n2 and s is a
vector of dimension n. The squared norm in (3) evaluates to α′Kα
where K is an n2 × n2 matrix with rows and columns indexed by
pairs (i, j) for i, j ∈ N . The entry corresponding to row (i, j) and
column (k, l) is

κ(xi, xk) − κ(xj , xk) − κ(xi, xl) + κ(xj , xl).

3 We cannot simply write λ > 0 because the feasible set of a quadratic
program must be closed to ensure a solution exists. But note that if inequal-
ities (1) have a positive solution, then we can obtain a solution with λ ≥
by rescaling all the variables v and λ by a positive constant.

S. Lahaie / Kernel Methods for Revealed Preference Analysis 441



Thus the dual can be solved in time independent of M . Nonetheless,
the fact that K has on the order of n4 nonzero entries means that
large-scale optimization techniques such as delayed column genera-
tion would be needed in the presence of large numbers of observa-
tions [11].

The properties of the method’s solution are captured in the fol-
lowing result. Its proof consists of a straightforward appeal to strong
duality and the Karush-Kuhn-Tucker (KKT) conditions.

Theorem 2 For sufficiently large μ (small ν), there is a linear utility
function v over Y consistent with the data to within an error of δ if
and only if (DL) has an optimal solution (α, s) with maxi,j∈N αij <
μδ. In this case v can be evaluated as

v(x) =
∑

i,j∈N

αij [κ(xi, x) − κ(xj , x)]. (4)

(In the above μ depends on δ.) The theorem only guarantees ap-
proximate consistency with the data rather than rationalization as
in Afriat’s Theorem, because we are dealing with partial price in-
formation. However, even with full price information available, our
empirical evaluation will demonstrate that this method can general-
ize better than the full-information method. The theorem also does
not guarantee monotonicity across the consumption set, but it is easy
to show that if xi, xj are two bundles in the data such that xi > xj ,
then v(xi)+ δ > v(xj) assuming the prices were strictly monotone.
Thus we do achieve approximate monotonicity over the data.

The first reason for introducing 1
2
‖v‖2 into the primal objective

is practicality. Without it the term (3) in the dual would appear as
a set of M hard constraints rather than a penalty term, which must
be avoided. The second reason is more principled. It is well-known
that a regularization term on the fitted function can be interpreted as
a prior over the function [17]. Suppose that our prior states that the
utility function is drawn according to a zero-mean Gaussian in fea-
ture space, meaning that Prob(v) ∝ e−‖v‖2

, while the error (slack)
terms are also drawn independently according to a zero mean Gaus-
sian, so that Prob(ε) ∝ e−‖ε‖2

. Then − log Prob(v, ε) is the objec-
tive in (PL) for some μ, and the program computes the maximum a
posteriori estimate given the prior and the data. If a mean of zero util-
ities seems odd, recall that only relative utilities matter. Zero utilities
simply mean that the agent is indifferent across all bundles. In the
absence of any other information, this seems like a natural prior.

3.2 Concave utility

The second method fits a concave utility function to the data in fea-
ture space Y , in analogy to the full-information method (2), which
constructs a concave function in the original bundle space X . The
problem of fitting the concave function to the data is formulated as
the following quadratic program (PC).

min
v,λ,p,ε,ε̄

μ

2
‖ε‖2 +

μ

2
‖ε̄‖2 +

1

2

∑

i∈N

‖pi‖2

s.t. vi − 〈pi, φ(xi)〉 + εij ≥ vj − 〈pi, φ(xj)〉 (i, j ∈ N)

〈pi, φ(xi)〉 − λicii + ε̄ij ≥ 〈pi, φ(xj)〉 − λicij (i, j ∈ N)

λi ≥ 1 (i ∈ N)

Note that if the first and second constraints for i, j ∈ N are added
together, we recover the constraints (1). The motivation for this for-
mulation follows the intuition in Figure 1: rather than using the orig-
inal prices to forecast the utility of bundles, we first lower bound the
prices with vectors drawn from the feature space Y .

In the program v and λ are vectors of dimension n, ε is a vector of
slack variables of dimension n2, and each pi is a vector of dimension
M in feature space. As before, the slack variables ensure feasibility.
If the penalty terms on ‖ε‖2 and ‖ε̄‖2 in the objective are zero, the
program will have identified a function that is exactly consistent with
the data.

Since the primal is explicitly formulated in terms of vectors in Y ,
we must again work with the dual (DC), which is as follows.

max
α≥0,ᾱ≥0,s≥0

∑

i∈N

si − ν

2
‖α‖2 − ν

2
‖ᾱ‖2

−1

2

∑

i∈N

∥∥∥∥∥
∑

j∈N

(ᾱij − αij)[φ(xi) − φ(xj)]

∥∥∥∥∥

2

(5)

s.t. si =
∑

j∈N

ᾱij(cii − cij) (i ∈ N)

∑

j∈N

αij =
∑

j∈N

αji (i ∈ N)

We have ν = 1/μ. Here α and ᾱ are vectors of dimension n2, while
s is of dimension n. The squared norm in (5) for each i ∈ N can be
written as (ᾱi −αi)

′Ki(ᾱi −αi) where Ki is an n×n matrix with
the entry corresponding to j, k ∈ N being

κ(xi, xi) − κ(xi, xj) − κ(xi, xk) + κ(xj , xk).

Thus the Hessian in this program has on the order of n3 nonzero
entries, which compares favorably to the linear utility method.

The properties of the concave method’s solution are captured in
the following result. Again, its proof consists of a straightforward
appeal to strong duality and the KKT conditions.

Theorem 3 For sufficiently large μ (small ν), there is a concave
utility function v over Y consistent with the data to within an er-
ror of δ if and only if (DC) has an optimal solution (α, ᾱ, s) with
maxi,j∈N (αij + ᾱij) < μδ. In this case v can be evaluated as

v(x) = min
i∈N

{vi + pi(x) − pi(xi)} (6)

where, for each i ∈ N ,

pi(x) =
∑

j∈N

(ᾱij − αij)[κ(xi, x) − κ(xj , x)]. (7)

(Again, μ depends on δ.) According to the theorem, the pi can be
evaluated given the α and ᾱ from the dual solution. However, we
also need to back out the vi’s from the primal. The KKT conditions
imply that if αij > 0 then the corresponding constraint binds:

vi − 〈pi, φ(xi)〉 + εij = vj − 〈pi, φ(xj)〉. (8)

The KKT conditions also imply that εij = ναij . Therefore, with
the dual solution at hand, we can formulate the system of equalities
corresponding to (8) for each αij > 0 and solve it to obtain the vi’s
from the primal solution.

As with the linear utility method, this method guarantees approxi-
mate consistency with the data, but not rationalization. Our empirical
evaluation will show that this is not a drawback. It is easy to show
that the derived utility function is approximately monotone over the
observed data, assuming the prices were originally strictly monotone.

Again, there are practical and principled reasons to introduce the
penalty terms ‖pi‖2 in the primal objective. First, they ensure that
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Figure 2. Generalization ability of the linear and concave utility methods under the regions and scheduling distributions. The horizontal lines depict the
testing correlation of the full-information method. All data points are averaged over 50 instances.

the dual is formulated in terms of scalar products between bundles,
so that we obtain a kernel method. Second, as each pi can be in-
terpreted as the gradient (or more precisely, a supergradient) to the
utility function at xi, the penalty terms can be construed as prior in-
formation on the gradient of the concave function at each bundle in
the data. Specifically, we have a zero-mean Gaussian prior for each
gradient; this amounts to the belief that utilities do not change, mean-
ing that the agent is indifferent among all bundles. Thus our prior
here is analogous to the prior used for the linear utility method.4

4 EMPIRICAL EVALUATION

In this section we report on experiments run to evaluate the perfor-
mance of our two kernel methods in terms of their ability to general-
ize, the sparsity of their solutions, and their scalability. We used the
CATS suite of distributions to generate utility functions [13]. CATS
represents utility functions in the XOR language [14]. We denote
an XOR instance by a pair (u′, Z) where Z ⊆ X is a finite sub-
set of bundles and u′ : Z → R is a utility function defined over
this restricted set. The utility function u corresponding to the XOR
instance is given by u(x) = max{z≤x:z∈Z} u′(z). The original pur-
pose of CATS was to generate valuation functions to test winner-
determination algorithms for combinatorial auctions, so the magni-
tudes of the utilities are supposed to be meaningful; for our purposes,
we treat them simply as ordinal utilities. Also, the goods in CATS are
indivisible, while in our model so far goods have been divisible; our
methods are perfectly applicable to observations of demanded bun-
dles with indivisible goods only so this is not an issue.

The obtain demand observations given an XOR instance, prices
were generated as follows. We first fix a γ ∈ [0, 1] that con-
trols the degree to which the prices should be nonlinear. We then
draw a linear price vector uniformly at random from the price sim-
plex {p ∈ Rm

+ : p′1 = 1}. Finally, we construct the XOR instance
(Z, u′′) where u′′(z) = βzp(z) for βz draw uniformly at random
from [1 − γ, 1 + γ]. Our final prices are the function represented by
this XOR instance. Note that with γ = 0 we obtain linear prices,
while with γ = 1 the linear prices are highly perturbed; note also
that under XOR semantics utilities and prices are always monotone.

4 Many other interesting priors could be incorporated. For instance, we could
introduce a term wij ‖pi − pj‖2 in the objective to specify correlation be-
tween the two gradients pi and pj . If we believe the utility function to be
continuously differentiable, then it is natural to take wij inversely propor-
tional to ‖φ(xi) − φ(xj)‖2. The latter can be evaluated using the kernel
function κ. We leave a deeper investigation of these approaches to future
work.

We considered four different distributions provided by the CATS
suite: arbitrary, paths, regions, and scheduling. To create a problem
instance, we first generate a utility function with one of these distri-
butions; throughout all our experiments the XOR instances were of
size |Z| = 200 using 20 goods. We then repeatedly generate prices
pi as described above (using a fixed γ). For each draw of pi we pick a
bundle zi ∈ Z uniformly at random, and set the budget for this obser-
vation to bi = pi(zi). Finally, we record the demanded bundle under
prices pi and budget bi. (It is not necessarily the case that this bundle
is zi; however, with an XOR instance, it is necessarily the case that a
demanded bundle is drawn from Z.) Once we have collected n = 50
demanded bundles, we record the cost matrix cij = pi(xj) for each
i, j in our set of observations N and disregard any other price infor-
mation from there on. The observations do not typically consist of 50
distinct demanded bundles; in our experiments the number of unique
bundles observed was on average 28 with a standard deviation of 5.6.

In our experiments we restrict our attention to the polynomial ker-
nel previously introduced, varying the complexity parameter d. The
kernel methods were implemented in Python 2.5, and the quadratic
programs were solved using the cvxopt module.5 We used ν = 1.0
throughout so that each method is evaluated on the same footing. The
experiments were run on a 2.13 GHz, Intel Core 2, 2GB machine run-
ning Linux.

Generalization. To assess the generalization ability of our ker-
nel methods we consider the Spearman rank correlation between the
fitted utility function v and actual utility function u over the bun-
dles in Z. Rank correlation is the correct measure of agreement here
because utility is ordinal. Specifically, let Z′ ⊆ Z be the bundles
that have been observed (i.e., demanded at some observation), and
let Z′′ = Z\Z′ be the unobserved bundles—the prices of the latter
were not input into our methods. We define the training correlation
to be the rank correlation between the vectors (u(z) : z ∈ Z′) and
(v(z) : z ∈ Z′). The testing correlation is analogously defined with
Z′′ replacing Z′.

Figure 2 exhibits the testing correlation of the linear and concave
utility methods for the regions and scheduling distributions, vary-
ing d and γ, as well as the full-information method as a benchmark.
We see that the testing correlation usually improves with increased
d, confirming that flexibility in the choice of kernel function can
bring significant advantages. With γ = 0, increasing d does not
make much difference, but this is expected because with linear prices
d = 1 should suffice. Of course, it is possible for the methods to be-
gin to overfit, as we observe in Figures 2(b) and 2(c) for γ = 1.

5 http://abel.ee.ucla.edu/cvxopt/
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In general, the linear utility method generalizes better at lower
d but the best generalization is achieved by the concave method at
higher d. Significantly, both methods universally outperform the full-
information method when d ≥ 5, with the exception of the concave
method at γ = 1 in Figure 2(c). The full-information method’s per-
formance degrades as γ increases. This bears out our original intu-
ition that incorporating the price structure into the estimated utility
can be detrimental, even though it leads to a utility function that tech-
nically rationalizes the data. Table 1 provides an alternate view of the
training and testing correlation of both methods.

training testing sparsity

distribution d lin. con. lin. con. lin. con.

arbitrary
1 .92 .83 .81 .75 .17 .55

5 .93 .94 .91 .91 .18 .60

9 .92 .92 .90 .91 .13 .18

paths
1 .78 .64 .11 .11 .27 .65

5 .81 .80 .24 .33 .26 .62

9 .81 .81 .26 .38 .26 .72

regions
1 .93 .85 .83 .78 .18 .60

5 .93 .94 .89 .89 .19 .58

9 .93 .93 .88 .89 .15 .20

scheduling
1 .84 .75 .48 .41 .22 .61

5 .84 .86 .63 .67 .22 .63

9 .83 .86 .63 .69 .19 .28

Table 1. Training correlation, testing correlation, and utility function
sparsity for the linear and concave utility methods under γ = 0.75. All data

points are averaged over 50 instances.

Sparsity. The sparsity of a utility function derived by the linear
utility method is defined as the number of nonzero αij coefficients
in (4) over n2. Similarly, the sparsity of a utility function derived
by the concave utility method is defined as the number of nonzero
(ᾱij − αij) coefficients in (7), summed over all i, over n2. Sparse
solutions are desirable because they are faster to evaluate, and cap-
ture the utility function succinctly. Table 1 provides some sample
sparsities when γ = 0.75 (sparsities were comparable for other γ).
We see that the linear utility method consistently generates the spars-
est utility functions across all d and distributions. The concave util-
ity method usually generates sparser solutions as d is increased. The
reasons for this remain unclear, as we had initially expected smaller
d (which reflect simpler structure in the fitted gradients) to lead to
sparser solutions. Nevertheless, this is a welcome finding because
the concave method generalizes better at higher d in the range con-
sidered.

Runtime. Given that the generalization abilities of both methods
are comparable, one could conclude that the linear utility method is
slightly preferred since it generates sparser solutions and is conceptu-
ally simpler. However, as mentioned earlier, the size of the quadratic
program is on the order of n4 for the linear method whereas it is on
the order of n3 for the concave method. This translates into a signif-
icant difference in runtime performance, as Table 2 shows. We find
an order of magnitude difference between the runtimes of the two
methods. Essentially, the linear method as implemented cannot scale
to even a moderate number of observations such as 100, whereas the
concave method can readily handle such problem sizes. It should be

observations 10 20 30 40 50

linear 0.4 2.7 14 64 221
concave 0.5 2.2 5.6 12 22

Table 2. Runtime performance of the linear and concave utility functions,
in seconds, scaling the number of observations; regions distribution,
γ = 0.75, d = 5. All data points are averaged over 50 instances.

possible to draw on techniques from large-scale optimization such
as delayed column generation to improve the runtime of the linear
method [11]. We leave this to future work, although the concave
method already offers a satisfactory alternative.
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