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Abstract. Hybrid random fields are a recently proposed graphical

model for pseudo-likelihood estimation in discrete domains. In this

paper, we develop a continuous version of the model for nonpara-

metric density estimation. To this aim, Nadaraya-Watson kernel es-

timators are used to model the local conditional densities within hy-

brid random fields. First, we introduce a heuristic algorithm for tun-

ing the kernel bandwidhts in the conditional density estimators. Sec-

ond, we propose a novel method for initializing the structure learn-

ing algorithm originally employed for hybrid random fields, which

was meant instead for discrete variables. In order to test the accu-

racy of the proposed technique, we use a number of synthetic pat-

tern classification benchmarks, generated from random distributions

featuring nonlinear correlations between the variables. As compared

to state-of-the-art nonparametric and semiparametric learning tech-

niques for probabilistic graphical models, kernel-based hybrid ran-

dom fields regularly outperform each considered alternative in terms

of recognition accuracy, while preserving the scalability properties

(with respect to the number of variables) that originally motivated

their introduction.

1 INTRODUCTION

In continuous domains, learning probabilistic graphical models from

data is much more challenging than in discrete domains. While the

multinomial distribution is a generally adequate choice for estimating

conditional probabilities in discrete event spaces, choosing a suitable

kind of estimator for (continuous) conditional density functions re-

quires to make a decision as to whether to assume that the form of

the modeled density is known (e.g. normal), which leads to paramet-

ric techniques, or to relax the parametric assumption, which leads

to nonparametric techniques [4]. The parametric assumption is often

limiting, because in real-world applications the true form of the den-

sity function is rarely known a priori. On the other hand, nonpara-

metric techniques only make a much weaker assumption concerning

the smoothness of the density function.

While a lot of research has been devoted to parametric graphical

models in the machine learning community [19, 3], only a few ef-

forts have been devoted to nonparametric (or semiparametric) mod-

els [11, 12, 1, 17, 16]. We introduce a nonparametric version of

hybrid random fields (HRFs), which have been recently proposed

for scalable pseudo-likelihood estimation in discrete domains [6, 7].

The model developed in this paper exploits kernel-based conditional

density estimators. In Sec. 2 we review the basic concepts related

to HRFs. Parameter and structure learning are addressed in Sec. 3
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and Sec. 4 respectively, while Sec. 5 relates our work to some re-

cent proposals. In Sec. 6, we provide an experimental evaluation of

the prediction accuracy and computation time of kernel-based HRFs

(KHRFs) on a number of pattern classification tasks, comparing our

learning technique to other nonparametric, semiparametric, and para-

metric learning methods for graphical models. Finally, in Sec. 7 we

summarize the main results of the presented work and we outline

some directions for future research.

2 HYBRID RANDOM FIELDS

HRFs are defined as follows [6, 7]:

Definition 1. Let X be a set of random variables X1, . . . , Xd. A

hybrid random field for X1, . . . , Xd is a set of Bayesian networks

BN1, . . . , BNd (with graphs G1, . . . ,Gd) such that:

i. Each BNi contains Xi plus a subset R(Xi) of X \ {Xi};

ii. For each Xi, p(Xi|X \ {Xi}) = p(Xi|MBi(Xi)), where

MBi(Xi) is the set containing the parents, the children, and the

parents of the children of Xi in Gi.

The set MBi(Xi) is a Markov blanket (MB) of Xi within BNi

[21]. The elements of R(Xi) (i.e., all nodes appearing in graph Gi

except Xi itself) are called ‘relatives of Xi’. Condition ii in Defini-

tion 1 (the so-called ‘modularity property’) entails that MBi(Xi) is

a MB of Xi in X.

HRFs provide a direct way of computing the pseudo-likelihood

p∗(x) of a given state x of the variables in X [2]:

p
∗(X = x) =

dY
i=1

p(Xi = xi|MBi(Xi) = mbi(Xi)) (1)

where mbi(Xi) is the state of MBi(Xi). Gibbs sampling techniques

[9] need to be used when we want to extract a strict joint probability

from a HRF.

It is known that the class of joint probability distributions repre-

sentable by Bayesian networks (BNs) is strictly included in the class

of pseudo-likelihood distributions representable by HRFs [7]. Since

the theorems establishing this result do not rely on the assumption

that the involved random variables are discrete, the result holds for

continuous as well as for discrete event spaces.

3 PARAMETER LEARNING

In continuous HRFs, parameter learning consists in estimating the

conditional density p(Xi|MBi(Xi)), for each node Xi belonging

to the HRF. As for (unconditional) probability density function es-

timation, conditional density estimation can be addressed by either
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parametric or nonparametric techniques. In order to make the model

as widely applicable as possible (in particular to estimation tasks

where no domain knowledge is available), we learn the parameters

of continuous HRFs using a (kernel-based) nonparametric technique.

Kernel-based conditional density estimation is addressed in Sec. 3.1,

while in Sec. 3.2 we propose a data-driven bandwidth selection tech-

nique.

3.1 Kernel-based conditional density estimation

In order to estimate the conditional density p(y|x), where y is the

value of a random variable Y and x is the value of a random vector

X, we use the Nadaraya-Watson (NW) estimator [18, 25, 23]. Sup-

pose we are given a dataset D = {(x1, y1), . . . , (xn, yn)}. Then,

the estimator takes the following form:

p̂(y|x) =

Pn

i=1
Kh1(y − yi)Kh2(x − xi)Pn

i=1
Kh2(x − xi)

(2)

In Eq. 2, each function Kh is defined as follows:

Kh(u) =
1

hd
K

„
‖u‖

h

«
(3)

where K is a kernel function, h is the bandwidth (or window width),

i.e. a parameter determinining the width of the kernel function, and

d is the dimensionality of u. Our choice for K is the Epanechnikov

kernel [5]:

K(x) =
3

4
(1 − x

2)1{|x|≤1} (4)

where

1{|x|≤1} =

j
1 if |x| ≤ 1
0 otherwise

(5)

We use the Epanechnikov kernel not only because it is known to be

asymptotically optimal, but also because it offers a significant com-

putational advantage (at least in the presence of large datasets) with

respect to other optimal functions such as the Gaussian kernel [24].

3.2 Bandwidth selection

In order for the NW estimator to deliver accurate predictions, it is

crucial to choose suitable values for the bandwidths h1 and h2. Our

strategy for dealing with this task is based on the idea of finding the

bandwidth values that maximize the cross-validated log-likelihood

(CVLL) of the estimator with respect to dataset D [24, 13]. CVLL

can be defined as follows:

CV LL(h1, h2) =
1

n

nX
i=1

log(p̂−i(yi|xi)p̂
−i(xi)) (6)

where

p̂
−i(yi|xi) =

P
j �=i

Kh1(yi − yj)Kh2(xi − xj)P
j �=i

Kh2(xi − xj)
(7)

and

p̂
−i(xi) =

1

n − 1

X
j �=i

Kh2(xi − xj) (8)

Simplifying Eq. 6, we get:

CV LL(h1, h2) =

=

 
1

n

nX
i=1

log
X
j �=i

Kh1(yi − yj)Kh2(xi − xj)

!
− log(n − 1)

(9)

The algorithm that we develop in order to maximize

CV LL(h1, h2) performs a double dichotomic search in a space

of possible bandwidth pairs. Two ranges of values (0, hmax1) and

(0, hmax2) are simultaneously explored by evaluating subregions

of the intervals (according to the CVLL metric) and then narrowing

down the search to smaller intervals in an iterative way. An iteration

of the algorithm begins by splitting each interval (0, hmaxi
) in two

(equally large) regions Hi1 and Hi2 . Then, each pair (H1i
,H2j

)
such that i, j ∈ {1, 2} is evaluated by choosing the median of

each region as the value of the corresponding bandwidth. Finally,

the pair of regions that maximizes the CVLL is selected as pair

of (narrower) intervals for the following iteration. The algorithm

returns the highest-scoring pair (h1, h2) found during the search.

Pseudocode for the described technique is provided by Algorithm 1.

Algorithm 1 Bandwidth selection by double dichotomic search

Input: Limit points hmax1 , hmax2 ; number s of iterations; dataset

D.

Output: Bandwidth pair (h1, h2).

1. maxScore = −∞
2. for(i = 1 to 2)

3. mini = 0
4. maxi = hmaxi

5. mediani = 1

2
maxi

6. for(i = 1 to s)

7. for(j = 1 to 2)

8. εj = 1

4
(maxj − minj)

9. hj1 = medianj − εj

10. hj2 = medianj + εj

11. (k, k′) = arg maxk,k′∈{1,2} CV LL(h1k
, h2k′ )

12. median1 = h1k

13. median2 = h2k′

14. for(j = 1 to 2)

15. minj = medianj − εj

16. maxj = medianj + εj

17. if(CV LL(h1k
, h2k′ ) > maxScore)

18. maxScore = CV LL(h1k
, h2k′ )

19. h1 = h1k

20. h2 = h2k′

21. return (h1, h2)

Clearly, the complexity of computing the CVLL function is

quadratic in the number of data points. This can be a serious lim-

itation when dealing with very large datasets. However, a promis-

ing way of overcoming this issue is proposed in [13] based on dual-

tree recursion [10]. Although the idea goes beyond the scope of the

present work, we notice that incorporating the dual-tree fast approxi-

mation to the CVLL metric into the framework of kernel-based HRFs

would be straightforward.

4 STRUCTURE LEARNING

Structure learning in HRFs consists of learning, for each variable

Xi, which variables belong to MBi(Xi). This reduces to learning

what other variables appear in BNi, and in particular what edges are

contained in Gi. Markov Blanket Merging (MBM) is the first struc-

ture learning algorithm that has been proposed thus far for HRFs

[6, 7]. As compared to state-of-the-art learning algorithms for BNs

and Markov random fields (MRFs), the main selling point of MBM is
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a dramatic reduction of the computational cost of structure learning.

MBM tries to maximize the model pseudo-likelihood given a dataset

D. To this aim, it starts from an initial assignment of relatives to

the model variables, then it learns the local BNs and it iteratively

refines the assignment in order to come up with MBs that increase

the pseudo-likelihood with respect to previous assignments. The al-

gorithm stops when no further refinement of the MBs increases the

model pseudo-likelihood. Although the original version of MBM is

designed for learning discrete HRFs, it can be used with little mod-

ification to learn continuous HRFs. Secs. 4.1–4.3 describe the way

we modify MBM in order to adapt it to KHRFs.

4.1 Model initialization

One part of the algorithm that needs to be modified in a suitable

way is the model initialization technique. In discrete HRFs, MBM

produces an initial assignment by choosing an initial size k of the

set of relatives, and then by selecting as relatives of each Xi the k

variables that display the highest statistical dependence with respect

to Xi, where the strength of the correlation is measured by the value

of the χ2 statistic. Since the χ2 statistic naturally applies to discrete

variables only, what we need is a way of measuring correlation for

pairs of continuous variables in a direct way (i.e. without having to

discretize the variables before applying the test).

Our choice is to measure the statistical correlation for any pair

of continuous variables by the value of the correlation ratio [14] for

that pair. Consider two random variables Xi and Xj that have been

observed n times within a dataset D. Moreover, define μ̂i, μ̂j , and μ̂

in the following way:

μ̂i =
1

n

nX
k=1

xik
(10)

μ̂j =
1

n

nX
k=1

xjk
(11)

μ̂ =
1

2
(μ̂i + μ̂j) (12)

where xik
and xjk

denote the values of the k-th observation of xi and

xj in D. Then, the correlation ratio statistic η for the pair (Xi, Xj)
can be computed as follows:

η(Xi, Xj) =

s
n(μ̂i − μ̂)2 + n(μ̂j − μ̂)2Pn

k=1
(xik

− μ̂)2 + (xjk
− μ̂)2

(13)

The correlation ratio is such that 0 ≤ η ≤ 1, where lower values cor-

respond to stronger degrees of correlation, while higher values mean

weaker correlation. The reason for using the correlation ratio statis-

tic is that it is a fairly general dependence test, capable of detecting

not only linear dependencies but also non-linear ones. On the other

hand, more standard dependence tests such as the correlation coef-

ficient [15] can only capture linear dependencies, for example when

the distribution is multivariate normal. Therefore, correlation ratio is

a suitable choice for the initialization of MBM, given that our goal

is to estimate densities without making assumptions on the nature of

the modeled dependencies.

4.2 Local structure learning

In the BNs composing our nonparametric HRFs, the conditional den-

sity of each node given its parents is modeled by using NW estima-

tors (as described in Sec. 3). For root nodes, the NW estimator clearly

reduces to a standard (unconditional) Parzen window model [20]. An

important point in MBM that needs to be addressed in a different way

when dealing with continuous domains is the scoring function used

to evaluate the structure of the local BNs. While the original version

of MBM uses a heuristic function based on the minimum description

length principle [6, 7], a natural evaluation function for kernel-based

graphical models is the model CVLL with respect to the training

dataset D [11, 12]. For a BN with graph G and nodes X1, . . . , Xd, if

D = {x1, . . . ,xn} and each xj is a vector (x1, . . . , xd), the struc-

ture G is scored as follows:

CV LL(G) =
nX

j=1

dX
i=1

log p̂
−j(xij

|paj(Xi)) (14)

where paj(Xi) is the state of the parents of Xi in xj . Clearly,

a CVLL-based strategy is much less prone to overfitting than a

straight maximum-likelihood approach. The CVLL function is max-

imized (up to a local optimum) by heuristic search in the space of

d-dimensional BN structures. To this aim, we use the greedy hill-

climbing algorithm described in [6, 7].

4.3 Global structure learning

The last correction we introduce in the MBM algorithm concerns

the evaluation function that we apply to the global structure of

the HRF. Rather than maximizing straightly the model pseudo-log-

likelihood with respect to the dataset, we optimize instead a cross-

validated version of that function, consistently with the choices

we made also for bandwidth selection and local structure learning.

For a dataset D containing n d-dimensional patterns and a HRF

with graphs G1, . . . ,Gd, the cross-validated pseudo-log-likelihood

(CVLL*) measure, denoted by CV LL∗(G1, . . . ,Gd), is defined by

the following equation:

CV LL
∗(G1, . . . ,Gd) =

nX
j=1

dX
i=1

log p̂
−j(xij

|mbij
(Xi)) (15)

where mbij
(Xi) is the state of the MB of Xi in pattern xj .

5 RELATED WORK

In directed and undirected graphical models, nonparametric condi-

tional density estimators (based on Parzen windows) are used for

the first time in [11, 12]. With respect to these models, in contin-

uous HRFs we not only exploit double-kernel estimators (instead

of single-kernel Parzen windows), but we also automate the task

of bandwidth selection. A nonparametric technique for learning the

structure of continuous BNs is also developed in [17]. However,

that method is only aimed at inferring the conditional independen-

cies from data, rather than at learning the overall density function.

A semiparametric technique for learning undirected graphs, leading

to so-called ‘nonparanormal’ MRFs (NPMRFs), is proposed in [16].

The nonparanormal approach consists in transforming the original

data points (which are not assumed to satisfy any given distributional

form) by mapping them onto a different set of points, which are as-

sumed to follow a multivariate normal distribution. The graph is then

estimated from the transformed dataset using the graphical lasso al-

gorithm [8], which is both computationally efficient and theoretically

sound for Gaussian distributions [22]. The idea of mapping the orig-

inal dataset into a feature space where data are assumed to be nor-

mally distributed is also exploited in [1].
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6 EXPERIMENTAL EVALUATION

The aim of this section is to evaluate the accuracy of KHRFs at mod-

eling (multivariate) densities featuring nonlinear dependencies be-

tween the variables plus random noise (distributed in heterogeneous

ways). To this aim, we sample a number of datasets from synthetic

distributions, where the distributions are randomly generated in such

a way as to make it unlikely that any particular parametric assump-

tion may be satisfied. We then exploit the produced data for pat-

tern classification, comparing the performance of our model to other

probabilistic techniques. The data generation process is described in

Sec. 6.1, while Sec. 6.2 illustrates the results of the experiments.

The models and algorithms considered in the evaluation are imple-

mented in the JProGraM software package, which is freely available

at http://www.dii.unisi.it/˜freno/JProGraM.html

under an open-source license.

6.1 Random data generation

In order to generate datasets featuring nonlinear correlations between

the variables, we exploit the idea of defining a random distribu-

tion based on a (randomly generated) directed acyclic graph (DAG),

where each node corresponds to a random variable and each arc cor-

responds to a dependence of the child on the parent. Therefore, the

data generation process is made up of three stages: first, we generate

a random DAG with a specified number of nodes; second, we gener-

ate a random distribution from a specified DAG; third, we generate a

random dataset from a specified (DAG-shaped) distribution.

6.1.1 Directed acyclic graph generation

Given a number d of nodes and a parameter pmax specifying the

maximum number of parents allowed for each node, we generate a

random DAG using Algorithm 2. We start by ordering the nodes from

X1 to Xn. Then, for each Xi, we randomly select p nodes from

the set {X1, . . . , Xi−1} (where p is a random integer in the interval

[0, min{i− 1, pmax}]), and for each selected node Xj we introduce

an edge from Xj to Xi. The resulting pair (V, E), where V is the set

of vertices and E is the set of edges, is returned as output.

Algorithm 2 Random DAG generation

Input: Number d of nodes; integer pmax.

Output: DAG G = (V, E).

1. V = {X1, . . . , Xd}
2. E = ∅
3. for(i = 1 to d)

4. p = random integer in [0, min{i − 1, pmax}]
5. P = ∅
6. while(|P| < p)

7. j = random integer in [1, i − 1]
8. P = P ∪ {(Xj , Xi)}
9. E = E ∪ P

10. return (V, E)

6.1.2 Distribution generation

Algorithm 3 generates a random distribution from a DAG G =
(V, E). The idea is that each edge (Xi, Xj) in the DAG represents a

dependence of Xj on Xi, where the dependence is determined by a

polynomial function of third degree fji
(x) = a

ji
1 x3+a

ji
2 x2+a

ji
3 x+

a
ji
4 . The coefficients of each polynomial are selected randomly in the

interval [−amax, amax]. Moreover, each node Xi is assigned a beta

density function betai(x), defined as follows (for a < x < b and

αi, βi > 0):

betai(x) =
Γ(αi + βi)

Γ(αi)Γ(βi)(b − a)αi+βi−1
(x − a)αi−1(b − x)βi−1

(16)

where

Γ(x) =

Z ∞

0

t
x−1

e
−t

dt (17)

The idea is that the values observed for variable Xi are subject to

random noise, where the noise is distributed over the interval (a, b)
according to a beta density with parameters αi and βi. For each

betai(x), the parameters αi and βi are randomly chosen in the inter-

vals (0, αmax] and (0, βmax] respectively, whereas a and b remain

constant. Given the polynomials and the beta densities, the value of

each Xi results from a linear combination of the related polynomial

functions plus (beta-distributed) random noise. The output of Algo-

rithm 3 is a pair (FV ,FE) such that FV = {betai(x) : Xi ∈ V}
and FE = {fij

(x) : (Xj , Xi) ∈ E}.

Algorithm 3 Random distribution generation with DAG-shaped

polynomial dependencies and beta-distributed noise

Input: DAG G = (V, E); positive real numbers αmax, βmax, amax;

real numbers a, b such that a < b.

Output: DAG-shaped distribution DG = (FV ,FE).

1. FV = ∅
2. for(i = 1 to |V|)
3. αi = random real in (0, αmax]
4. βi = random real in (0, βmax]
5. betai(x) = beta(x; αi, βi, a, b)
6. FV = FV ∪ {betai(x)}
7. FE = ∅
8. for((Xi, Xj) ∈ E)
9. for(k = 1 to 4)

10. a
ji

k = random real in [−amax, amax]
11. fji

(x) = f(x; aji
1 , . . . , a

ji
4 )

12. FE = FE ∪ {fji
(x)}

13. return (FV ,FE)

6.1.3 Dataset generation

Given a distribution DG = (FV ,FE) organized in a DAG G =
(V, E), Algorithm 4 generates patterns that are independent and iden-

tically distributed according to DG . In order to produce a pattern

x1, . . . , xd, the algorithm determines the value of each variable Xi

by first computing
P

fij(x)∈FE
fij

(xj), and then by adding to that

sum a random value sampled from the density betai(x), so as to in-

troduce some noise. The ancestral ordering of the nodes X1, . . . , Xd

in V is followed so as to ensure that the argument of each function

fij
(xj) has already been determined before computing the value of

node Xi.

If one needs to generate data that are partitioned into several

classes ω1, . . . , ωc (e.g. for the purposes of pattern classification),
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the algorithm generates data for each ωi (where i > 1) by deriv-

ing first a corresponding distribution DG i from DG i−1 in the fol-

lowing way. For each polynomial fjk
(x) in FE i−1, the coefficients

a
jk
1 , . . . , a

jk
4 are changed with probability P , where the change con-

sists in multiplying each a
jk

l by a randomly selected real number

in the interval [−maxr, maxr]. The resulting polynomial is used to

replace fjk
(x) in FE i. Finally, the integers n1, . . . , nc specify the

number of patterns to be generated for each class.

Algorithm 4 Random data generation from a DAG-shaped distribu-

tion

Input: DAG-shaped distribution DG = (FV ,FE); number c of

classes; integers n1, . . . , nc; real numbers P , maxr such that

0 < P ≤ 1, maxr > 0.

Output: Datasets D1, . . . ,Dc.

1. for(i = 1 to c)

2. Di = ∅
3. if(i > 1)

4. distributionIsUnchanged = true

5. while(distributionIsUnchanged)

6. for(fjk
(x) ∈ FE)

7. p = random real in [0, 1)
8. if(p < P)

9. for(l = 1 to 4)

10. r = random real in [−maxr, maxr]
11. a

jk

l = r · ajk

l

12. fjk
(x) = f(x; ajk

1 , . . . , a
jk
4 )

13. distributionIsUnchanged = false

14. for(j = 1 to ni)

15. for(k = 1 to d)

16. xkj
= random real sampled from betak(x)

17. xkj
= xkj

+
P

fkl(x)∈FE
fkl

(xlj )

18. Di = Di ∪ {(x1j
, . . . , xdj

)}
19. return {D1, . . . ,Dc}

6.2 Results

In order to test the accuracy of KHRFs at modeling joint densities

(as learned by MBM), we apply them to a number of pattern classifi-

cation tasks, where the datasets are generated using Algorithms 2–4.

We consider eleven tasks, where each task is based on a different

dataset D containing 500 patterns, and the patterns are equally di-

vided in two classes ω1 and ω2. The data for each task are generated

using each time a different (random) DAG. In particular, we choose

a different number d of nodes for each DAG, where 5 ≤ d ≤ 25.

Then, we use the generated DAG as input for Algorithm 3. Here, we

set amax = 2 for the polynomial functions, while the beta densities

are generated over the interval [−2, 2], setting αmax = βmax = 2.

In a preliminary phase of the experiments, we found these parame-

ters to be large enough to generate a suitably wide range of distribu-

tions. We use c = 2 and n1 = n2 = 250 as input values for Algo-

rithm 4. Moreover, when changing the distribution from ω1 to ω2, we

set maxr = 2 and P = 0.1. Our experience with preliminary results

indicated that if the values of maxr and P (especially the latter) are

too large (e.g. if P � 0.2), the resulting classification tasks tend to

be too easy to be dealt with, because patterns belonging to different

classes are then distributed farther apart in the feature space. Before

exploiting the datasets, we normalize the values of each feature Xi by

transforming each xij
into

xij
−mink xik

maxk xik
−mink xik

, where 1 ≤ k ≤ |D|.

We compare the performance of KHRFs to kernel-based BNs

(KBNs), kernel-based MRFs (KMRFs), NPMRFs, and Gaussian

MRFs (GMRFs). In kernel-based BNs and MRFs we estimate con-

ditional densities in the same way as in KHRFs, while the model

structure is learned using the algorithms proposed in [11] and [12]

respectively. For the purposes of bandwidth selection, we always per-

form two iterations of Algorithm 1, whereas the limit points hmax1

and hmax2 are set differently for BNs, MRFs, and HRFs, based on

preliminary validation on separate datasets. In particular, the used

values are hmax1 = 2 and hmax2 = 1 for KBNs, hmax1 = 1 and

hmax2 = 2 for KMRFs, and hmax1 = 0.05 and hmax2 = 0.5 for

KHRFs. Structure learning in GMRFs and NPMRFs is performed as

described in [8] and [16], using the graphical lasso technique, and

conditional densities are then estimated within the resulting struc-

tures using Gaussian and nonparanormal conditional models respec-

tively. To the best of our knowledge, the learning algorithms consid-

ered for KBNs, KMRFs, and NPMRFs are the state of the art in the

literature on (continuous) nonparametric and semiparametric graphi-

cal models. On the other hand, GMRFs provide an authoritative term

of comparison for evaluating the effect of relaxing the parametric

assumption in density estimation.

In order to exploit the models for pattern classification, we par-

tition the training data D for each task in two subsets D1 and D2,

such that all patterns in Di belong to class ωi. For each model, we

learn two class-specific versions, training each version on the respec-

tive dataset. Patterns in the test set are then classified as follows. For

each class ωi, we compute the posterior probability P (ωi|x) that a

pattern x belongs to class ωi:

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)
(18)

where p(x|ωi) is the (pseudo-)likelihood of the model learned for

class ωi given x, P (ωi) is the prior probability of class ωi (esti-

mated as
|Di|
|D|

), and p(x) =
P

j
p(x|ωj)P (ωj). Given the posterior

probability of each class, we attach to x the label with the highest

probability, based on a maximum a posteriori strategy. The results

of the experiments are reported in Table 1, where values are aver-

aged by 5-fold cross-validation. For each model, we measure both

recognition accuracy and training time (per class), where time was

measured (in seconds) on a 2.34 GHz CPU.

Table 1 lends itself to the following interpretation. First, KHRFs

are more accurate overall than the other models in terms of recogni-

tion rate. At the same time, learning KHRFs is much less expensive

than learning kernel-based BNs and MRFs. Second, although GM-

RFs and NPMRFs are the most efficient models from the computa-

tional point of view, their advantage over KHRFs against the growth

of the number of variables is not as significant as the advantage of

GMRFs, NPMRFs, and KHRFs over KBNs and KMRFs. Third, the

relatively low accuracy of GMRFs as compared to KHRFs, together

with the fact that the improvement of NPMRFs over GMRFs is not

as stable as one may wish, confirms that the distributions generating

the datasets violate the parametric and semiparametric assumptions

to a significant extent. Therefore, the considered experimental set-

ting provides evidence not only that kernel-based HRFs are a very

reasonable choice when no prior knowledge is available concerning

the form of the distribution to be estimated, but also that KHRFs are

the most promising option within the kernel-based family, both in

terms of computational efficiency and prediction accuracy.
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Table 1. Recognition accuracy (average ± standard deviation) and average training time (per class) measured by 5-fold cross-validation on synthetic datasets
of growing dimensionality. For each dataset, d is the number of variables composing the data vectors. KHRFs are compared to other nonparametric (KBNs and

KMRFs), semiparametric (NPMRFs), and parametric (GMRFs) graphical models. The highest accuracy value in each row is indicated in bold font.

Recognition Accuracy (%) / Training Time (s)

d KBN GMRF NPMRF KMRF KHRF

10 59.4 ± 4.4 31.5 61.2 ± 2.0 0.2 61.4 ± 3.8 0.2 59.6 ± 4.5 25.7 62.6 ± 7.6 3.0

11 48.8 ± 4.6 33.8 51.6 ± 2.0 0.2 54.8 ± 4.5 0.2 49.2 ± 5.2 31.9 62.4 ± 4.8 4.7

12 80.8 ± 2.8 57.6 70.6 ± 4.2 0.2 87.2 ± 3.1 0.2 79.0 ± 2.6 27.1 82.2 ± 2.3 4.7

13 56.2 ± 3.9 63.9 53.2 ± 2.4 0.2 56.4 ± 33.6 0.2 56.4 ± 4.6 60.3 65.0 ± 4.5 3.1

14 83.8 ± 4.7 93.0 87.2 ± 2.3 0.2 75.6 ± 7.7 0.3 85.0 ± 5.0 69.2 88.4 ± 2.9 6.1

15 68.0 ± 2.6 90.4 58.8 ± 3.4 0.2 30.0 ± 24.4 0.3 68.4 ± 4.8 93.7 73.8 ± 3.7 5.0

16 55.0 ± 6.3 146.7 76.0 ± 4.6 0.2 66.4 ± 7.3 0.3 63.2 ± 4.5 82.8 81.4 ± 1.7 3.0

17 52.2 ± 2.1 141.3 50.6 ± 1.3 0.2 63.4 ± 1.8 0.3 55.8 ± 3.9 102.8 56.4 ± 2.4 3.4

18 58.2 ± 7.3 152.1 53.6 ± 2.7 0.3 64.0 ± 3.2 0.3 62.2 ± 5.9 136.7 75.2 ± 2.7 3.9

19 97.8 ± 0.7 196.2 97.6 ± 1.8 0.3 91.0 ± 1.7 0.3 98.4 ± 0.8 167.2 98.8 ± 0.7 4.3

20 96.6 ± 2.5 270.0 98.4 ± 1.0 0.3 78.8 ± 3.5 0.3 96.6 ± 1.4 212.4 97.4 ± 1.2 6.0

7 CONCLUSIONS AND FUTURE WORK

The main contribution of this work was to show that a continuous

version of the HRF model can be built out of Nadaraya-Watson esti-

mators, with very promising experimental results in terms of predic-

tion accuracy. At the same time, the scalability properties of MBM

with respect to the number of variables are preserved by KHRFs.

Since a serious limitation of kernel-based estimators is that they do

not scale well with respect to the number of data points, one direction

for future research is to investigate the behavior of KHRFs when a

dual-tree fast approximation to the CVLL* metric is used for band-

width selection, as suggested in Sec. 3.2. On the other hand, although

we believe that the methodology we used for generating synthetic

benchmarks captures a fairly general class of distributions, it would

be useful to evaluate the prediction accuracy of KHRFs not only on

different synthetic distributions, considering alternative dependence

relationships and density functions, but also in real-world applica-

tions.
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