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Abstract. Optimization of ground traffic is a major issue of air
traffic management: optimal ground circulation could decrease flight
delays and consequently decrease costs and increase passenger well-
ness. This paper proposes a planning algorithm for ground traffic
based on contract reservation. This algorithm is iterative: it plans air-
craft itinerary one after the other. A first version is described using
the classical A∗ algorithm. Then the model is extended to deal with
time and speed uncertainty to ensure the feasibility of the planned
trajectories while avoiding conflicts between aircrafts. Its efficiency
is evaluated on Toulouse-Blagnac airport, regarding quality of the
solution and computation times.

1 INTRODUCTION

One of the major issues of Air Traffic Management concerns the op-
timization of airport traffic. Indeed, the air traffic growth is having
a hard impact on airport congestion. Flight delays are obviously im-
pacted leading to an economic interest on ground traffic optimization
methods. This optimization may also take into account ecologic is-
sues such as noise and pollution reduction.

The optimization of ground traffic can hardly be performed by hu-
man controllers: managing several aircrafts moving on the airport
during rush hours on quite complex taxiway networks may be dif-
ficult. It is especially the case when hard weather conditions occur
(e.g. fog).

A lot of researches have tried to help ground controllers either by
defining new visualization displays (DST [13], AMAN [11], DMAN,
etc.) or by improving traffic predictability by sharing flight data be-
tween airports and controllers (CDM [10]). Currently, these methods
help improving controller situation awareness or traffic predictabil-
ity, but are not used to help planning the ground movements.

A lot of approaches manage flight departure scheduling from
the airport using constraint relaxation [14], cooperative/coordinated
plannings [4, 3], or optimization algorithms [5]. However, they do
not consider prediction nor feasibility of the ground movements that
correspond to these schedulings.

Some authors then tried to estimate taxiing time without planning
or simulating the complete aircraft movements: [2] estimates this
time using reinforcement learning; [8] stochastically computes
flight delay based on airport congestion; [12] statistically estimates
taxiing time from past data. These approaches could provide good
approximations to schedule arrivals or plan air trajectories, but are
not precise enough to estimate the pollution on the airport or control
departure delays.
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This paper presents an iterative algorithm for real-time planning
of ground movements. This algorithm is intended to be used on-
line to plan itineraries for aircrafts moving on an airport. Then these
itineraries (sequel of points with time intervals) could be used ei-
ther by human controllers, pilots, or by an automatic control law to
control the aircraft speed along the trajectory. This algorithm is cur-
rently used in a simulation infrastructure allowing to evaluate airport
capacities, environmental impacts, or optimization of new airport in-
frastructure.

Section 2 presents the overall problem and notations, and briefly
describes the concepts. Section 3 details the A∗-based algorithm and
some preliminary results. Then uncertainty management is addressed
and experimented in section 4. Finally, section 5 discusses the ben-
efits of the proposed approach, its limits, and the way it could be
improved.

2 PROBLEM DESCRIPTION

2.1 Graph representation

The airport infrastructure is modelled as an oriented graph
G = (V, E) where vertices V are located points of the airport (taxi-
way intersections, gates, runway access points), and edges E are the
airport taxiways. Each edge (u, v) ∈ E has a weight corresponding
to the length of the edge, i.e. dist(u, v).

A flight f is described by a starting vertex vs (a gate for depar-
tures, or a runway for arrivals), a final vertex vf , a starting time ts

(the departure time from gate for departures, or the estimated landing
time for arrivals), and a type or category, that will constrain the
maximal speed smax of the aircraft. Moreover, aircraft separation
must be ensured: two aircrafts must never be closer than a given
distance D.

2.2 Push-backs modelling

Departures usually follow a push-back procedure when leaving their
gate. Such procedures are directly modelled in the graph structure by
adding push-back nodes in the graph: the departure path from gates
to push-back nodes are duplicated (Alg. 1, Fig. 1), allowing to define
a reduced speed on push-back edges.

2.3 Problem and constraints

The problem is then to find, for each flight fk ∈ F , an itinerary, or
contract, i.e. a set of points and associated times σk = (vi, ti)0≤i≤lk

,
such that:
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Algorithm 1 Duplicate(γ): Duplicate push-backs from gate γ.
Require: γ ∈ V : an airport gate.

1: for all (u, v) ∈ E, (u, v) push-back for gate γ do

2: Create a copy u′ of vertex u
3: V ← V ∪ {u′}
4: E ← E − {(γ, u), (u, v)}
5: E ← E ∪ {(γ, u′), (u′, v)}
6: end for
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0

(a) Initial graph.

E86

85

1

0

85’

(b) With push-back.

Figure 1. Push-back nodes duplication: push-back of gate E86 is (85, 1).

• first and last points correspond to the flight characteristics

v0 = vs, t0 = ts, vlk = vf (1)

• consecutive points are reachable

∀i, (vi, vi+1) ∈ E (2)

• the aircraft speed is below its maximal speed

∀i, ti+1 > ti and sk =
dist(vi, vi+1)

ti+1 − ti
≤ smax (3)

• aircraft separation is ensured

∀fj ∈ F, j �= k, ∀v ∈ V, ∀t, t′ / (v, t) ∈ σk, (v, t′) ∈ σj ,

|t′ − t| ≥ D

sk

(4)

The overall objective is to minimize the travel time of all the air-
crafts:

minΣfk∈F (tlk − t0k ) (5)

Computing a solution to this problem is quite complex. Although
finding a path for a given aircraft f in the airport graph could
be efficiently done in O(|V |2) – Dijkstra algorithm complexity
– computing a global optimum while managing time constraints
(including separation) worsen the complexity to O(|F |! |V |4). This
is merely intractable without any appropriate resolution method.

Gotteland [6] proposes a time-bounded approach in which the
optimization process considers all flights during an horizon Hp. His
approach optimizes the order in which flights must be planned, and
their itineraries, to minimize the global delay. By considering all the
flights, this approach is still complex, and the author has to consider
a limited search graph, leading to sub-optimal results. In [9],
an iterative approach is proposed, but its complexity avoid to use
it on real-time, or leads to the same sub-optimal considerations as [6].

The approach proposed in this paper decomposes the algorithm
into iterative computations: each flight is planned one after the other.
The contract of flight fk is computed using the contracts of already
planned flights without allowing to modify them. This solution is ob-
viously not optimal regarding the global objective of equation (5).
However, it is more realistic, as aircrafts start moving on the airport
one after the other depending of their departure time. This approach
is also robust to delays, as a flight starting δt after its initial start-
ing time will not influence already planned flights but will try to be
inserted in the current circulation.

3 ITERATIVE PLANNING ALGORITHM

3.1 ∗-based modeling and planning

As discussed before, the approach proposed in this paper is iterative.
Each flight will be announced and planned one after the other
depending on its starting time. The flight itinerary is planned accord-
ing to already reserved contracts in order to satisfy the separation
constraint.

The algorithm is based on A∗ [7] (Alg. 2). It computes an itinerary
from an initial node v0 to a final node vf . A∗ is a best-first search
algorithm, exploring nodes minimizing function g + h where g is
the cost function and h the heuristic. If h is admissible (it must
not overestimate the real cost to the goal), A∗ returns a solution
minimizing g. Classicaly, h is the euclidean distance, or other norms
(1-norm, ∞-norm, . . . ) The optimal path is finally extracted reading
the parent relation p from goal vf back to the initial vertex v0.

Algorithm 2 The A∗ algorithm.
1: O ← {v0}
2: ∀v ∈ V, g(v) ← +∞,
3: g(v0) = 0, h(v0) ← h(v0, vf )
4: ∀v ∈ V, p(v) ← v
5: while O �= ∅ do

6: x ← argmaxz∈argminy∈O (g(y)+h(y)) g(z)

7: if x = vf then

8: return shortest path from v0 to vf

9: end if

10: O ← O − {x}
11: for all (x, y) ∈ E do

12: g′(y) ← COST (x, y)
13: if g′(y) < g(y) then

14: g(y) ← g′(y)
15: p(y) ← x
16: O ← O ∪ {y}
17: end if

18: end for

19: end while

Constraints (3) and (4) are not managed by the algorithm itself but
by defining an appropriate cost function. In standard shortest-path
problems, g is defined as the weight matrix of graph G, and COST
function is given by equation (6).

∀(u, v) ∈ E, COST (u, v) = g(u) + dist(u, v) (6)

In the ground movements problem, the aim is to minimize the
travel time of each flight. Hence, the cost function of a node vi+1

must be expressed according to the time taken by the aircraft to move
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from the previous point vi to vi+1. Then COST (vi, vi+1) = ti+1.
Constraint (3) leads to:

dist(vi, vi+1)

ti+1 − ti
≤ smax ⇔ ti+1 ≥ ti +

dist(vi, vi+1)

smax
(7)

providing a lower bound for ti+1.

Constraint (4) is satisfied by Alg. 3. This algorithm computes the

Algorithm 3 Cost function COST (u, v).

1: tv = tu + dist(u,v)
smax

2: for all fj ∈ F, j < k do

3: t′ = contract(fj , v)
4: δ = D

suv
= D

dist(u,v)
(tv − tu)

5: if |tv − t′| < δ then

6: tv = t′ + δ
7: end if

8: end for

9: return tv

shortest time tv at which the aircraft will be able to arrive at v while
satisfying the separation constraint. contract(fj) is the contract al-
ready planned for flight fj , giving for each node v a time t′ at which
the aircraft will pass over v.

Algorithm 3 is executed at each step of the A∗ algorithm.
Hence the complexity of the itinerary computation for a flight is
O(|V |2 |F |), where O(|V |2) is the complexity of Alg. 2 and O(|F |)
the complexity of Alg. 3.

The heuristic function is given by equation (8). This heuristic is
admissible ensuring the optimality of Alg. 2.

h(vi) = h(vi, vf ) =
dist(vi, vf )

smax
(8)

3.2 Results

The previous algorithms have been implemented in C++, using the
Boost Graph Library structures and algorithms. Some experiments
have been made based on the Toulouse-Blagnac airport, whose graph
has 205 nodes and 361 edges.

Figure 2 shows the number of delayed flights (in %) according
to the number of flights planned on the airport during 100 hours2.
Each flight start and final point is uniformly drawn from the set of
gates or runways of the airport graph. The flight starting time is also
uniformly drawn according to the number of flights managed during
the 100h.

The relative number of delayed flights (in % of the total number of
flights) is linear, showing the complexity to manage a high number
of aircrafts in such an airport. Results from an actual one-day traffic
on Blagnac airport are shown in Tab. 1. The number of delayed
flights is not consistent between random simulation results and the
real traffic data. This can be explained by the fact that the real traffic
is not uniform over the day. Rush hours are nearer to 25 fl/h (2500
flights in 100 hours), giving more consistent results (around 10% of
flights are delayed).

Figure 3 shows the resulting average and maximal delays for de-
layed flights according to the number of flights. The average and

2 This simulation time has been chosen to have statistically sound results.
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Figure 2. Relative number of delayed flights.

Table 1. Results on a one-day traffic planning.

Flights per hour 10
Delayed flights (%) 10.39

Flights w. delay > 5% 1.3
Flights w. delay > 10% 0.65
Flights w. delay > 20% 0

Average delay (in %) 4.28
Worst delay (in %) 10.05

worst delays are consistent with those of the real Blagnac traffic re-
sults. Globally, the results for the Blagnac airport give some accept-
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Figure 3. Relative average and worst delays.

able delays. Managing around 20 flights per hour leads to 8% delayed
flights, with an average delay less than 5% of their travel time.

Moreover, the computation time associated to the itinerary
planning is less than 1 second per flight on a Core2 2.16GHz, 2Go
RAM standard laptop, which makes the process fully usable on-line.

However, the resulting itineraries, that correspond to sequels of
timed nodes, are not realistic. The hypothesis is that the aircraft speed
is constant on each edge, leading to a discontinuous speed evolution
of the aircraft (Fig. 4) along its trajectory (Fig. 5). The second draw-
back concerns the accuracy of starting time. To be sure an itinerary
will be ready for an arriving flight as soon as it goes out of its runway,
the planning process must compute its itinerary around a couple of
seconds before it lands. However, the ”starting time” (i.e. the time at
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Figure 5. Trajectory of flight 988.

which the aircraft will join the first taxiway) cannot be known pre-
cisely.

The following section deals with these two drawbacks and the way
their associated uncertainties are managed in the planning algorithm.

4 MANAGING UNCERTAINTY

Improving the realism of the planned itineraries means that the strong
time constraint (a unique date associated to a node) must be relaxed.
The itinerary must be represented as a sequel of nodes associated to
time intervals. These intervals may be due to: (1) the uncertainty on
the flight starting time (that will be propagated over the itinerary), or
(2) the uncertainty on the aircraft speed, leading to an uncertainty
on the time taken to cover a taxiway (that will increase over the
itinerary).

4.1 Propagating time uncertainty

To represent time uncertainty, the itinerary of flight fk is now a set
σk = (vi, Ti)0≤i≤lk

, where Ti is an interval [t−i , t+i ]. The cost func-
tion for the A∗ algorithm must be defined to provide, for each node
vi+1, a time interval Ti+1 during which3 the aircraft can go over node
vi+1 while satisfying separation constraint (4).

As done in Alg. 3, Ti+1 is iteratively computed by comparing the
sooner possible interval T to already planned contracts T ′. This com-

3 Actually fk can be on vi+1 at any time t ∈ Ti+1.

parison is based on the Allen’s algebra [1]. Allen defines thirteen
relations to compare two intervals, summarized in Tab. 2.

Table 2. Allen’s algebra relations.

Timeline Relation Notation4

X before Y X < Y
Y after X Y > X

X meets Y XmY
Y is met by X Y miX
X overlaps Y XoY

Y is overlapped by X Y oiX
X starts Y XsY

Y is started by X Y siX
X finishes Y XfY

Y is finished by X Y fiX
X during Y XdY

Y contains X Y diX

X equals Y X = Y

The fact that X is either (for instance) before or overlaps Y is
noted X{<, o}Y .

Interval time computation is ensured by Alg. 4:

• The computation of the separation time is over-estimated to guar-
antee the separation constraint (line 4);

• If Tv does not intersect T ′ + Δ, separation is ensured and Tv is
not modified (line 6);

• If Tv has an intersection with T ′ + Δ, and finishes later (line 8),
then Tv is truncated: as the aircraft may arrive on v at any time be-
tween t−v and t+v , it can obviously move slower to arrive between
(t′+ + δT ) and t+v ;

• Line 10 is an extreme case of the previous one.

Algorithm 4 Interval cost function COST (u, v).

1: Tv ← Tu + dist(u,v)
smax

2: for all fj ∈ F, j < k do

3: T ′ ← contract(fj , v)
4: δT ← D

smin
= D

dist(u,v)
(max(t+v , t′+) − t−u )

5: Δ ← [−δT , +δT ]
6: if T {<, >}T ′ then

7: continue

8: else if Tv {si, oi, di}T ′ + Δ then

9: Tv ← [t′+ + δT , t+v ]
10: else if Tv {s, f, fi, o, d, =}T ′ + Δ then

11: Tv ← [t′+ + δT , t′+ + δT ]
12: end if

13: end for

14: return Tv

In the special case where Tu = [tu, tu] (i.e., is reduced to a single
time) Alg. 4 is similar to Alg. 3.

4.2 Speed uncertainty

Managing starting time uncertainty gives some flexibility to the flight
trajectories: arriving at a given node v must be done between t−v and

4 i stands for inverse.
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t+v , allowing the aircraft to manage its speed. However, it is not suf-
ficient: Tv intervals may be reduced to singletons (Alg. 4, line 11),
leading to a discontinuous speed profile.

Hence a speed uncertainty must be introduced in the COST func-
tion to have a more realistic speed profile. This uncertainty is given
by a δS parameter representing the tolerance over the nominal speed
sk. Typically, δS = 3m/s in the following experiments.

Algorithm 5 is a modified version of Alg. 4 that introduces speed
uncertainty. Indeed, Alg. 5 manages both start time uncertainty and
speed uncertainty, and the way this uncertainty is propagated (and
evolves) along the itinerary.

Algorithm 5 Interval cost function COST (u, v) with speed uncer-
tainty.

1: Tv ← Tu + dist(u,v)
[smax−δS ,smax+δS ]

= Tu + [ dist(u,v)
smax+δS

, dist(u,v)
smax−δS

]
2: for all fj ∈ F, j < k do

3: T ′ ← contract(fj , v)
4: δT ← D

smin
= D

dist(u,v)
(max(t+v , t′+) − t−u )

5: Δ ← [−δT , +δT ]
6: if T {<, >}T ′ then

7: continue

8: else if Tv {si, oi, di}T ′ + Δ then

9: Tv ← [t′+ + δT , t+v ]
10: else if Tv {s, f, fi, o, d, =}T ′ + Δ then

11: Tv ← t′+ + δT

12: end if

13: end for

14: return Tv

The overall complexity has not changed (O(|V |2 |F |)), but the
computation time should be slightly higher as interval operations are
more expensive than float operations.

4.3 Results

Figure 6 shows the speed profile bounds (min and max speeds) for
Flight 988 (see Fig. 5 for flight trajectory and Fig. 4 for its previous
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Figure 6. Speed bounds for flight 988 along its trajectory.

speed profile). While there still is a discontinuity around y = 40,
the provided profile allows the aircraft speed to be more smoothly
controlled. The itinerary is now more realistic and executable.

Figures 7 and 8 present the evolution of the number of delayed
flights and their delays according to the width of the starting time
interval |T0|. The number of delayed flights is near constant (Fig. 7),
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meaning that |T0| has only a local effect on ”already delayed” flights.
Moreover, although the maximal delay is linear according to |T0| –
which is reasonable – the average delay is always under 20% (Fig.
8).

Figures 9 and 10 clearly show that speed uncertainty has very few
influence on the number of delayed flights and their delays.
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Table 3 shows results on the Blagnac airport actual traffic using
a time interval uncertainty of 20 seconds and a speed uncertainty
of 3 m/s. These results are encouraging regarding the number of
delayed flights and their average delay. However, the worst delay,
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Table 3. Results with |T0| = 20 and δS = 3.

Flights per hour 10
Delayed flights (%) 29.2

Flights w. delay > 5% 19.5
Flights w. delay > 10% 18.2
Flights w. delay > 20% 14.9

Average delay (in %) 17.8
Worst delay (in %) 447.4

that correspond to an actual travel time more than fifth the optimal
travel time, clearly emphases the major drawback of the proposed ap-
proach: itineraries are computed to satisfy aircraft separation what-
ever the other aircrafts trajectories, i.e. considering their worst possi-
ble delay.

5 CONCLUSION

The approach proposed in this paper is dedicated to compute airport
ground movements. The planning algorithm is iterative, i.e. it plans
flights one after the other, ensuring speed and separation constraints.
Several cost function of A∗ have been implemented to manage
time and speed uncertainties as time intervals. The results have
shown the realism of the provided itineraries (in term of delays,
speed profile and airport capacity), and proved the efficiency of the
algorithm in term of computation time (less than 1 second per flight).

However, some drawbacks must be pointed out:

1. Controlling the aircraft speed to ensure separation may lead to
unexpected situations where the aircraft speed is very small; as
separation constraint is only verified on nodes (and not on edges),
a situation where several aircrafts are slowly moving on a busy
taxiway is possible.

2. The planned trajectory are over-constrained: during execution, the
aircraft will have a specific trajectory, arriving on each node at a
unique time; next flights will not reconsider their itinerary and will
then use a ”worst-time” assumption.

These two issues will be addressed by adopting a real-time
behaviour, each flight planning (and modifying) its itinerary while
moving on the airport. Moreover such an approach may allow
to deal with runway crossing (which is dependent on the actual
situation and is not addressed in this paper), and on-line control

clearances. These developments will then include a simulation of
the aircraft trajectory intimately connected to the planning algorithm.

Finally, the proposed approach is to be used not only to plan and
simulate ground movements, but also to evaluate airports capacities,
or give accurate estimation of ”gate to runway” travel time to the
departure management team or runway control.
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