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Abstract. We investigate the expressive power and computational
complexity of ELν , the extension of the lightweight description logic
EL with concept constructors for greatest fixpoints. It is shown that
ELν has the same expressive power as EL extended with simula-
tion quantifiers and that it can be characterized as a largest fragment
of monadic second-order logic that is preserved under simulations
and has finite minimal models. As in basic EL, all standard reason-
ing problems for general TBoxes can be solved in polynomial time.
ELν has a range of very desirable properties that EL itself is lack-
ing. Firstly, least common subsumers w.r.t. general TBoxes as well
as most specific concepts always exist and can be computed in poly-
nomial time. Secondly, ELν shares with EL the Craig interpolation
property and the Beth definability property, but in contrast to EL al-
lows the computation of interpolants and explicit concept definitions
in polynomial time.

1 INTRODUCTION

The well-known description logic (DL) ALC is usually regarded as
the basic DL that comprises all Boolean concept constructors and
from which more expressive DLs are derived by adding further ex-
pressive means. This fundamental role of ALC is largely due to its
well-behavedness regarding logical, model-theoretic, and computa-
tional properties which can, in turn, be explained nicely by the fact
that ALC-concepts can be characterized as the bisimulation invari-
ant fragment of first-order logic (FO): an FO formula is invariant
under bisimulation if, and only if, it is equivalent to an ALC-concept
[23, 12, 16]. For example, invariance under bisimulation can ex-
plain the tree-model property of ALC and its favorable computa-
tional properties [25]. In the above characterization, the condition
that ALC is a fragment of FO is much less important than its bisimu-
lation invariance. In fact, ALCμ, the extension of ALC with fixpoint
operators, is not a fragment of FO, but inherits almost all important
properties of ALC [7, 11, 20]. Similar to ALC, ALCμ’s fundamen-
tal role (in particular in its formulation as the modal mu-calculus)
can be explained by the fact that ALCμ-concepts comprise exactly
the bisimulation invariant fragment of monadic second-order logic
(MSO) [14, 7]. Indeed, from a purely theoretical viewpoint it is hard
to explain why ALC rather than ALCμ forms the logical under-
pinning of current ontology language standards; the facts that mu-
calculus concepts can be hard to grasp and that, despite the same the-
oretical complexity, efficient reasoning in ALCμ is more challenging
than in ALC are probably the main reasons.

In recent years, the development of very large ontologies and the
use of ontologies to access instance data has led to a revival of inter-
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est in tractable DLs. The main examples are EL [4] and DL-Lite [8],
the logical underpinnings of the OWL profiles OWL2 EL and OWL2
QL, respectively. In contrast to ALC, a satisfactory characterization
of the expressivity of such DLs is still missing, and a first aim of this
paper is to fill this gap for EL. To this end, we characterize EL as
a maximal fragment of FO that is preserved under simulations and
has finite minimal models. Note that preservation under simulations
alone would characterize EL with disjunctions, and the existence of
minimal models reflects the “Horn-logic character” of EL.

The second and main aim of this paper, however, is to introduce
and investigate two equi-expressive extensions of EL with greatest
fixpoints, ELν and ELν+, and to prove that they stand in a simi-
lar relationship to EL as ALCμ to ALC. To this end, we prove that
ELν (and therefore also ELν+, which admits mutual fixpoints and
is exponentially more succinct than ELν ) can be characterized as a
maximal fragment of MSO that is preserved under simulations and
has finite minimal models. Similar to ALCμ, ELν and ELν+ inherit
many good properties of EL such as its Horn-logic character and the
crucial fact that reasoning with general concept inclusions (GCIs)
is still tractable. In contrast to ALCμ, the development of practical
decision procedures is thus no obstacle to using ELν+. Moreover,
ELν+ has a number of very useful properties that EL and most of its
extensions are lacking. To begin with, we show that in ELν+ least
common subsumers (lcs) w.r.t. general TBoxes always exist and can
be computed in polynomial time (for a bounded number of concepts).
This result can be regarded as an extension of similar results for least
common subsumers w.r.t. classical TBoxes in EL with greatest fix-
point semantics in [2]. Similarly, in ELν+ most specific concepts
always exist and can be computed in linear time; a result which also
generalizes [2]. Secondly, we show that ELν+ has the Beth definabil-
ity property with explicit definitions being computable in polytime
and of polynomial size. It has been convincingly argued in [22, 21]
that this property is of great interest for structuring TBoxes and for
ontology based data access. Another application of ELν+ is demon-
strated in [15], where the succinct representations of definitions in
ELν+ are used to develop polytime algorithms for decomposing cer-
tain general EL-TBoxes.

To prove these result and provide a better understanding of the
modeling capabilities of ELν+ we show that it has the same ex-
pressive power as extensions of EL by means of simulation quan-
tifiers, a variant of second-order quantifiers that quantifies “modulo
a simulation of the model”; in fact, the relationship between simu-
lation quantifiers and ELν+ is somewhat similar to the relationship
between ALCμ and bisimulation quantifiers [10].

Proofs are omitted for brevity. The reader is referred to [17] for a
version of this paper containing all proofs.
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2 PRELIMINARIES

Let NC and NR be countably infinite and mutually disjoint sets of
concept and role names. EL-concepts are built according to the rule

C := A | � | ⊥ | C � D | ∃r.C,

where A ∈ NC, r ∈ NR, and C, D range over EL-concepts3. An
EL-concept inclusion takes the form C � D, where C, D are EL-
concepts. As usual, we use C ≡ D to abbreviate C � D, D � C.
A general EL-TBox T is a finite set of EL-concept inclusions. An
ABox assertion is an expression of the form A(a) or r(a, b), where
a, b are from a countably infinite set of individual names NI, A ∈ NC,
and r ∈ NR. An ABox is a finite set of ABox assertions. By Ind(A)
we denote the set of individual names in A. An EL-knowledge base
(KB) is a pair (T ,A) that consists of an EL-TBox T and an ABox A.

The semantics of EL is based on interpretations I = (ΔI , ·I),
where the domain ΔI is a non-empty set, and ·I is a function map-
ping each concept name A to a subset AI of ΔI , each role name r
to a binary relation rI ⊆ ΔI × ΔI , and each individual name a to
an element aI of ΔI . The interpretation CI ⊆ ΔI of EL-concepts
C in an interpretation I is defined in the standard way [5], and so are
models of TBoxes, ABoxes, and KBs. We will often make use of the
fact that EL-concepts can be regarded as formulas in FO (and, there-
fore, MSO) with unary predicates from NC, binary predicates from
NR, and exactly one free variable [5]. We will often not distinguish
between EL-concepts and their translations into FO/MSO.

We now introduce ELν , the extension of EL with greatest fix-
points and the main language studied in this paper. ELν -concepts
are defined like EL-concepts, but additionally allow the greatest fix-
point constructor νX.C, where X is from a countably infinite set of
(concept) variables NV and C an ELν -concept. A variable is free in
a concept C if it occurs in C at least once outside the scope of any
ν-constructor that binds it. An ELν -concept is closed if it does not
contain any free variables. An ELν -concept inclusion takes the form
C � D, where C, D are are closed ELν -concepts. The semantics of
the greatest fixpoint constructor is as follows, where V is an assign-
ment that maps variables to subsets of ΔI and V[X 
→ W ] denotes
V modified by setting V(X) = W :

(νX.C)I,V =
[

{W ⊆ ΔI | W ⊆ CI,V[X �→W ]}

Example 1 For the concept C = νX.(∃has parent.X), we have
e ∈ CI if, and only if, there is an infinite has parent-chain start-
ing at e in I, i.e., there exist e0, e1, e2, . . . such that e = e0 and
(ei, ei+1) ∈ has parentI for all i ≥ 0.

We can now form the TBox T = {Human being � C} stating
that every human being has an infinite chain of parents.

We will also consider an extended version of the ν-constructor that
allows to capture mutual recursion. It has been considered e.g. in
[9, 24] and used in a DL context in [20]; it can be seen as a variation
of the fixpoint equations considered in [7]. The constructor has the
form νiX1 · · ·Xn.C1, . . . , Cn where 1 ≤ i ≤ n. The semantics is
defined by setting (νiX1 · · ·Xn.C1, . . . , Cn)I,V to

S
{Wi | ∃W1, . . . , Wi−1, Wi+1, . . . , Wn s.t. for 1 ≤ j ≤ n:

Wj ⊆ C
I,V[X1 �→W1,...,Xn �→Wn]
j }

We use ELν+ to denote EL extended with this mutual greatest fix-
point constructor. Clearly, νX.C ≡ ν1X.C, thus every ELν -concept

3 In the literature, EL is typically defined without ⊥. The sole purpose of
including ⊥ here is to simplify the formulation of some results.

is equivalent to an ELν+-concept. We now consider the converse di-
rection. Firstly, the following proposition follows immediately from
well known results on mutual fixpoint constructors [7].

Proposition 2 For every ELν+-concept one can construct an equiv-
alent ELν -concept.

In this paper, we define the length of a concept C as the number of
occurrences of symbols in it. Then the translation in Proposition 2
yields an exponential blow-up and one can show that indeed there is
a sequence of ELν+-concepts C0, C1, . . . such that Ci is of length
p(i), p a polynomial, whereas the shortest ELν -concept equivalent
to Ci is of length at least 2i [17].

By extending the translation of EL-concepts into FO in the obvi-
ous way, one can translate closed ELν+-concepts into MSO formu-
las with one free first-order variable. We will often not distinguish
between ELν+-concepts and their translation into MSO.

3 CHARACTERIZING EL USING
SIMULATIONS

The purpose of this section is to provide a model-theoretic charac-
terization of EL as a fragment of FO that is similar in spirit to the
well-known characterization of ALC as the bisimulation-invariant
fragment of FO. To this end, we first characterize EL�, the extension
of EL with the disjunction constructor �, as the fragment of FO that
is preserved under simulation. Then we characterize the fragment
EL of EL� using, in addition, the existence of minimal models. A
pointed interpretation is a pair (I, d) consisting of an interpretation
I and d ∈ ΔI . A signature Σ is a set of concept and role names.

Definition 3 (Simulations) Let (I1, d1) and (I2, d2) be pointed in-
terpretations and Σ a signature. A relation S ⊆ ΔI1 × ΔI2

is a Σ-simulation between (I1, d1) and (I2, d2), in symbols S :
(I1, d1) ≤Σ (I2, d2), if (d1, d2) ∈ S and the following conditions
hold:

1. for all concept names A ∈ Σ and all (e1, e2) ∈ S, if e1 ∈ AI1

then e2 ∈ AI2 ;
2. for all role names r ∈ Σ, all (e1, e2) ∈ S, and all e′1 ∈ ΔI1 with

(e1, e
′
1) ∈ rI1 , there exists e′2 ∈ ΔI2 such that (e2, e

′
2) ∈ rI2

and (e′1, e
′
2) ∈ S.

If such an S exists, then we also say that (I2, d2) Σ-simulates
(I1, d1) and write (I1, d1) ≤Σ (I2, d2).

If Σ = NC ∪ NR, then we omit Σ and use the term simulation to de-
note Σ-simulations and (I1, d1) ≤ (I2, d2) stands for (I1, d1) ≤Σ

(I2, d2). It is well-known that the description logic EL is intimately
related to the notion of a simulation, see for example [3, 18]. In par-
ticular, EL-concepts are preserved under simulations in the sense that
if d1 ∈ CI1 for an EL-concept C and (I1, d1) ≤ (I2, d2), then
d2 ∈ CI2 . This observation, which clearly generalizes to EL�, il-
lustrates the (limitations of the) modeling capabilities of EL/EL�.
We now strengthen it to an exact characterization of the expressive
power of these logics relative to FO.

Let ϕ(x) be an FO-formula (or, later, MSO-formula) with one free
variable x. We say that ϕ(x) is preserved under simulations if, and
only if, for all (I1, d1) and (I2, d2), I1 |= ϕ[d1] and (I1, d1) ≤
(I2, d2) implies I2 |= ϕ[d2].

Theorem 4 An FO-formula ϕ(x) is preserved under simulations if,
and only if, it is equivalent to an EL�-concept.
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To characterize EL, we add a central property of Horn-logics on
top of preservation under simulations. Let L be a set of FO (or, later,
MSO) formulas, each with one free variable. We say that L has (fi-
nite) minimal models if, and only if, for every ϕ(x) ∈ L there exists
a (finite) pointed interpretation (I, d) such that for all ψ(x) ∈ L, we
have I |= ψ[d] if, and only if, ∀x.(ϕ(x) → ψ(x)) is a tautology.

Theorem 5 The set of EL-concepts is a maximal set of FO-formulas
that is preserved under simulations and has minimal models (equiv-
alently: has finite minimal models): if L is a set of FO-formulas that
properly contains all EL-concepts, then either it contains a formula
not preserved under simulations or it does not have (finite) minimal
models.

We note that de Rijke and Kurtonina have given similar characteriza-
tions of various non-Boolean fragments of ALC. In particular, The-
orem 4 is rather closely related to results proved in [16] and would
certainly have been included in the extensive list of characterizations
given there had EL already been as popular as it is today. In con-
trast, the novelty of Theorem 5 is that it makes the Horn character of
EL explicit through minimal models while the characterizations of
disjunction-free languages in [16] are based on simulations that take
sets (rather than domain-elements) as arguments.

4 SIMULATION QUANTIFIERS AND ELν

To understand and characterize the expressive power and modeling
capabilities of ELν , we introduce three distinct types of simulation
quantifiers and show that, in each case, the resulting language has the
same expressive power as ELν .

Simulating interpretations. The first language ELsi extends EL by
the concept constructor ∃sim(I, d), where (I, d) is a finite pointed
interpretation in which only finitely many σ ∈ NC ∪ NR have a non-
empty interpretation σI ⊆ ΔI . The semantics of ∃sim(I, d) is de-
fined by setting for all interpretations J and e ∈ ΔJ ,

e ∈ (∃sim(I, d))J iff (I, d) ≤ (J , e).

Example 6 Let I be an interpretation such that ΔI = {d},
(d, d) ∈ has parentI , and σI = ∅ for all remaining role and
concept names σ. Then ∃sim(I, d) is equivalent to the concept
νX.(∃has parent.X) from Example 1.

To attain a better understanding of the constructor ∃sim, it is inter-
esting to observe that every ELsi-concept is equivalent to a concept
of the form ∃sim(I, d).

Lemma 7 For every ELsi-concept C one can construct, in linear
time, an equivalent concept of the form ∃sim(I, d).

Proof By induction on the construction of C. If C = A for a concept
name A, then let I = ({d}, ·I), where AI = {d} and σI = ∅ for all
symbols distinct from A. Clearly, A and ∃sim(I, d) are equivalent.
For C1 = ∃sim(I1, d1) and C2 = ∃sim(I2, d2) assume that ΔI1 ∩
ΔI2 = {d1} = {d2}. Then ∃sim(I1 ∪I2, d1) is equivalent to C1 �
C2, where ΔI1∪I2 = ΔI1 ∪ ΔI2 , and σI1∪I2 = σI1 ∪ σI2 for all
σ ∈ NC∪NR. For C = ∃r.∃sim(I, d) construct a new interpretation
I′ by adding a new node e to ΔI and setting (e, d) ∈ rI

′
. Then

∃sim(I′, e) and C are equivalent.

We will show that there are polynomial translations between ELsi

and ELν+. When using ELν+ in applications and to provide a trans-
lation from ELν+ to ELsi, it is convenient to have available a “syn-
tactic” simulation operator.
Simulating models of TBoxes. The second language ELst extends
EL by the concept constructor ∃simΣ.(T , C), where Σ is a finite
signature, T a general TBox, and C a concept. To admit nestings of
∃sim, the concepts of ELst are defined by simultaneous induction;
namely, ELst-concepts, concept inclusions, and general TBoxes are
defined as follows:

• every EL-concept, concept inclusion, and general TBox is an
ELst-concept, concept inclusion, and general TBox, respectively;

• if T is a general ELst-TBox, C an ELst-concept, and Σ a finite
signature, then ∃simΣ.(T , C) is an ELst-concept;

• if C, D are ELst-concepts, then C � D is a ELst-concept inclu-
sion;

• a general ELst-TBox is a finite set of ELst-concept inclusions.

The semantics of ∃simΣ.(T , C) is as follows:

d ∈ (∃simΣ.(T , C))I iff there exists (J , e) such that J is a
model of T , e ∈ CJ and (J , e) ≤Γ (I, d), where Γ = (NC ∪
NR) \ Σ.

Example 8 Let T = {A � ∃has parent.A} and Σ = {A}. Then
∃simΣ.(T , A) is equivalent to the concept ∃sim(I, d) defined in Ex-
ample 6.

We will later exploit the fact that ∃simΣ.(T , C) is equivalent to
∃simΣ ∪ {A}.(T ′, A), where A is a fresh concept name and T ′ =
T ∪ {A � C}. Another interesting (but subsequently unexploited)
observation is that we can w.l.o.g. restrict Σ to singleton sets since

∃sim({σ} ∪ Σ).(T , C) ≡ ∃sim{σ}.(∅, ∃simΣ.(T , C))

∃sim∅.(T , C) ≡ ∃sim{B}.(T , C)

where B is a concept name that does not occur in T and C.
Simulating models of KBs. The third language ELsa extends EL
by the concept constructor ∃simΣ.(T ,A, a), where a is an individ-
ual name in the ABox A, T is a TBox, and Σ a finite signature.
More precisely, we define ELsa-concepts, concept inclusions, gen-
eral TBoxes, and KBs, by simultaneous induction as follows:

• every EL-concept, concept inclusion, general TBox, and KB is an
ELsa-concept, concept inclusion, general TBox, and KB, respec-
tively;

• if (T ,A) is a general ELsa-KB, a an individual name in A, and
Σ a finite signature, then ∃simΣ.(T ,A, a) is an ELsa-concept;

• if C, D are ELsa-concepts, then C � D is an ELsa-concept in-
clusion;

• a general ELsa-TBox is a finite set of ELsa-concept inclusions;
• an ELsa-KB is a pair (T ,A) consisting of a general ELsa-TBox

and an ABox.

The semantics of ∃simΣ.(T ,A, a) is as follows:

d ∈ (∃simΣ.(T ,A, a))I iff there exists d ∈ (∃simΣ.(T ,A, a))I

iff there exists a model J of (T ,A) such that (J , aJ ) ≤Γ (I, d),
where Γ = (NC ∪ NR) \ Σ.

Example 9 Let T = ∅, A = {has parent(a, a)}, and Σ = ∅. Then
∃simΣ.(T ,A, a) is equivalent to the concept ∃sim(I, d) defined in
Example 6.
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Let L1,L2 be sets of concepts. We say that L2 is polynomially at
least as expressive as L1, in symbols L1 ≤p L2, if for every C1 ∈
L1 one can construct in polynomial time a C2 ∈ L2 such that C1 and
C2 are equivalent. We say that L1,L2 are polynomially equivalent,
in symbols L1 ≡p L2, if L1 ≤p L2 and L2 ≤p L1.

Theorem 10 The languages ELν+, ELsi, ELst, and ELsa are poly-
nomially equivalent.

We provide sketches of proofs of ELsi ≤p ELν+, ELν+ ≤p ELst,
ELst ≤p ELsa, and ELsa ≤p ELsi.
ELsi ≤p ELν+. By Lemma 7, considering ELsi-concepts of the
form ∃sim(I, d) is sufficient. Each such concept is equivalent to the
ELν+-concept ν�d1 · · · dn.C1, . . . , Cn, where the domain ΔI =
{d1, . . . , dn} is regarded as a set of concept variables, d = d�, and

Ci =
�

{A | di ∈ AI} �
�

{∃r.dj | (di, dj) ∈ rI}.

ELν+ ≤p ELst. Let C be a closed ELν+-concept. An equivalent
ELst-concept is constructed by replacing each subconcept of C of
the form ν�X1, . . . , Xn.C1, . . . , Cn with an ELst-concept, proceed-
ing from the inside out. We assume that for every variable X that
occurs in the original ELν+-concept C, there is a concept name AX

that does not occur in C. Now ν�X1, . . . , Xn.C1, . . . , Cn (which
potentially contains free variables) is replaced with the ELst-concept

∃sim{AX1 , . . . , AXn}.({AXi � C↓
i | 1 ≤ i ≤ n}, AX�)

where C↓
i is obtained from Ci by replacing every variable X with

the concept name AX .
ELst ≤p ELsa. Let C be an ELst-concept. As already ob-
served, we may assume that D is a concept name in all subcon-
cepts ∃simΣ.(T , D) of C. Now replace each ∃simΣ.(T , A) in C,
proceeding from the inside out, by ∃simΣ.(T ,A, a), where A =
{A(a)}. The resulting concept is equivalent to C.
ELsa ≤p ELsi. To prove this inclusion, we make use of canonical
models for ELsa-KBs, and extension of the canonical models used
for EL in [4]. In particular, canonical models for ELsa can be con-
structed by an extension of the algorithm given in [4], see [17] for
details.

Theorem 11 (Canonical model) For every consistent ELsa-KB
(T ,A), one can construct in polynomial time a model IT ,A of
(T ,A) with |ΔIT ,A | bounded by twice the size of (T ,A) and
such that for every model J of (T ,A), we have (IT ,A, aIT ,A) ≤
(J , aJ ) for all a ∈ Ind(A).

To prove ELsa ≤p ELsi, it suffices to show that any outer-
most occurrence of a concept of the form ∃simΣ.(T ,A, a) in an
ELsa-concept C can be replaced with the equivalent ELsi-concept
∃sim(IΣ

T ,A, a), where IΣ
T ,A denotes IT ,A except that all σ ∈ Σ are

interpreted as empty sets. First let d ∈ (∃simΣ.(T ,A, a))J . Then
there is a model I′ of (T ,A) such that (I′, aI′

) ≤Σ (J , d). By
Theorem 11, (IT ,A, aIT ,A) ≤ (I′, aI′

). Thus, by closure of sim-
ulations under composition, (IΣ

T ,A, a) ≤Σ (J , d) as required. The
converse direction follows from the condition that IT ,A is a model
of (T ,A). This finishes our proof sketch for Theorem 10.

It is interesting to note that, as a consequence of the proofs of
Theorem 10, for every ELν+-concept there is an equivalent ELν+-
concept of polynomial size in which the greatest fixpoint construc-
tor is not nested, and similarly for ELst, ELsa. An important con-
sequence of the existence of canonical models, as granted by The-
orem 11, is that reasoning in our family of extensions of EL is

tractable. Recall that KB consistency is the problem of deciding
whether a given KB has a model; subsumption w.r.t. general TBoxes
is the problem of deciding whether a subsumption C � D follows
from a general TBox T (in symbols, T |= C � D); and the instance
problem is the problem of deciding whether an assertion C(a) fol-
lows from a KB (T ,A) (in symbols, (T ,A) |= C(a)).

Theorem 12 (Tractable reasoning) Let L be any of the languages
ELν , ELν+, ELsi, ELst, or ELsa. Then KB consistency, subsump-
tion w.r.t. TBoxes, and the instance problem can be decided in PTIME

.

Proof (sketch) By Theorem 10, it suffices to concentrate on L =
ELsa. The PTIME decidability of KB consistency is proved in [17] as
part of the algorithm that constructs the canonical model. Subsump-
tion w.r.t. general TBoxes can be polynomially reduced in the stan-
dard way to the instance problem. Finally, by Theorem 11, we can
decide the instance problem as follows: to decide whether (T ,A) |=
C(a), where we can w.l.o.g. assume that C = A for a concept name
A, we check whether (T ,A) is inconsistent or aIT ,A ∈ AIT ,A .
Both can be done in PTIME .

Besides of the canonical model of a KB from Theorem 11, we also
require the canonical model IT ,C of a general ELν+-TBox T and
concept C which is defined by taking the reduct not interpreting A of
the canonical model IT ′,A for T ′ = T ∪{A � C} and A = {A(a)}
(A a fresh concept). We set dC = aIT ′,A . IT ,C is a model of T with
dC ∈ CIT ,C such that (IT ,C , dC) ≤ (J , e) for all models J of T
with e ∈ CJ .

5 CHARACTERIZING ELν USING
SIMULATIONS

When characterizing EL as a fragment of first-order logic in Theo-
rem 5, our starting point was the observation that EL-concepts are
preserved under simulations and that EL is a Horn logic, thus having
finite minimal models. The same is true for ELν : first, ELν -concepts
are preserved under simulations, as ELsi is obviously preserved un-
der simulations and, by Theorem 10, every ELν -concept is equiva-
lent to an ELsi-concept. And second, a finite minimal model of an
ELν -concept C is given by the canonical model (IT ,C , dC) defined
above for T = ∅. However, ELν is clearly not a fragment of FO.
Instead, it relates to MSO in exactly the way that EL related to FO.

Theorem 13 The set of ELν -concepts is a maximal set of MSO-
formulas that is preserved under simulations and has finite minimal
models: if L is a set of MSO-formulas that properly contains all ELν -
concepts, then either it contains a formula not preserved under sim-
ulations or is does not have finite minimal models.

Proof Assume that L ⊇ ELν is preserved under simulations and has
finite minimal models. Let ϕ(x) ∈ L. We have to show that ϕ(x)
is equivalent to an ELν -concept. To this end, take a finite minimal
model of ϕ, i.e., an interpretation I and a d ∈ ΔI such that for all
ψ(x) ∈ L we have that ∀x.(ϕ(x) → ψ(x)) is valid iff I |= ψ[d]. We
will show that ϕ is equivalent to (the MSO translation of) ∃sim(I, d).
We may assume that ∃sim(I, d) ∈ L. Since d ∈ (∃sim(I, d))I ,
we thus have that ∀x.(ϕ(x) → ∃sim(I, d)(x)) is valid. Conversely,
assume that d′ ∈ (∃sim(I, d))J for some interpretation J . Then
(I, d) ≤ (J , d′). We have (I, d) |= ϕ[d]. Thus, by preservation of
ϕ(x) under simulations, J |= ϕ[d′]. Thus ∀x.(∃sim(I, d)(x) →
ϕ(x)) is also valid. This finishes the proof.
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A number of closely related characterizations remain open. For
example, we conjecture that an extension of Theorem 4 holds for
ELν,� and MSO (instead of EL and FO). Also, it is open whether
Theorem 13 still holds if finite minimal models are replaced by arbi-
trary minimal models.

6 APPLICATIONS

The μ-calculus is considered to be extremely well-behaved regarding
its expressive power and logical properties. The aim of this section is
to take a brief look at the expressive power of its EL-analogues ELν

and ELν+. In particular, we show that ELν+ is more well-behaved
than EL in a number of respects. Throughout this section, we will not
distinguish between the languages previously proved polynomially
equivalent.

To begin with, we construct the least common subsumer (LCS)
of two concepts w.r.t. a general ELν+-TBox (the generalization to
more than two concepts is straightforward). Given a general ELν+-
TBox T and concepts C1, C2, a concept C is called a LCS of C1, C2

w.r.t. T in ELν+ if T |= Ci � C for i = 1, 2; if T |= Ci � D for
i = 1, 2 and D a ELν+-concept, then T |= C � D. It is known [2]
that in EL the LCS does not always exist.

Example 14 In EL, the LCS of A, B w.r.t.

T = {A � ∃has parent.A, B � ∃has parent.B}

does not exist. In ELν , however, the LCS of A,B w.r.t. T is given by
νX.∃has parent.X (see Example 1).

To construct the LCS in ELν+, we adopt the product construction
used in [2] for the case of classical TBoxes with a fixpoint semantics.
For interpretations I1 and I2, the product I1 × I2 is defined by
setting ΔI1×I2 = ΔI1 × ΔI2 , (d1, d2) ∈ AI1×I2 iff di ∈ AIi

for i = 1, 2, and ((d1, d2), (d
′
1, d

′
2)) ∈ rI1×I2 iff (di, d

′
i) ∈ rIi for

i = 1, 2.

Theorem 15 (LCS) Let T be a general ELν+-TBox and C1 and
C2 be ELν+-concepts. Then ∃sim(IT ,C1 × IT ,C2 , (dC1 , dC2)) is
the LCS of C1, C2 w.r.t. T in ELν+.

The same product construction has been used in [2] for the case of
classical TBoxes with a fixpoint semantics, which, however, addi-
tionally require a notion of conservative extension (see Section 7).

Our second result concerns the most specific concept, which plays
an important role in the bottom-up construction of knowledge bases
and has received considerable attention in the context of EL [2, 6].
Formally, a concept C is the most specific concept (MSC) for an in-
dividual a in a knowledge base (T ,A) in ELν+ if (T ,A) |= C(a)
and for every ELν+-concept D with (T ,A) |= D(a), we have
T |= C � D. In EL, the MSC need not exist, as is witnessed by
the knowledge base (∅, {has parent(a, a)}), where the MSC for a
is non-existent.

Theorem 16 (MSC) In ELν+, the MSC always exists for any a in
any KB (T ,A) and is given as ∃sim∅.(T ,A, a).

In [2], the MSC in EL-KBs based on classical TBoxes with a fixpoint
semantics is defined. The relationship between ELν+ and fixpoint
TBoxes is discussed in more detail in Section 7.

We now turn our attention to issues of definability and interpola-
tion. From now on, we use sig(C) to denote the set of concept and

role names used in the concept C. A concept C is a Σ-concept if
sig(C) ⊆ Σ. Let T be a general ELν+-TBox, C an ELν+-concept
and Γ a finite signature.

We start with considering the fundamental notion of a Γ-definition.
The question addressed here is whether a given concept can be ex-
pressed in an equivalent way by referring only to the symbols in a
given signature Γ [22, 21]. Formally, a Γ-concept D is an explicit Γ-
definition of a concept C w.r.t. a TBox T if, and only if, T |= C ≡ D
(i.e., C and D are equivalent w.r.t. T ). Clearly, explicit Γ-definitions
do not always exist in any of the logics studied in this paper: for
example, there is no explicit {A}-definition of B w.r.t. the TBox
{A � B}. However, it is not hard to show the following using the
fact that ∃simΣ.(T , C) is the most specific Γ-concept that subsumes
C w.r.t. T .

Proposition 17 Let C be an ELν+-concept, T a general ELν+-
TBox and Γ a signature. There exists an explicit Γ-definition of C
w.r.t. T iff ∃simΣ.(T , C) is such a definition (Σ = sig(T , C) \ Γ).

It is interesting to note that if T happens to be a general EL-TBox
and C an EL-concept and there exists an explicit Γ-definition of
C w.r.t. T , then the concept ∃simΣ.(T , C) from Proposition 17 is
equivalent w.r.t. T to an EL-concept over Γ. This follows from the
fact that EL has the Beth definability property (see below for a defi-
nition) which follows immediately from interpolation results proved
for EL in [15]. The advantage of giving explicit Γ-definitions in
ELν+ even when T and C are formulated in EL is that Γ-definitions
in ELν+ are of polynomial size while the following example shows
that they may be exponentially large in EL.

Example 18 Let T consist of Ai ≡ ∃ri.Ai+1 � ∃si.Ai+1 for
0 ≤ i < n, and An ≡ �. Let Γ = {r0, . . . , rn−1, s0, . . . , sn−1}.
Then A0 has an explicit Γ-definition w.r.t. T in EL, namely C0,
where Ci = ∃ri.Ci+1 � ∃si.Ci+1 and Cn = �. This definition
is of exponential size and it is easy to see that there is no shorter
Γ-definition of A0 w.r.t. T in EL.

Say that a concept C is implicitly Γ-defined w.r.t. T iff T ∪ TΓ |=
C ≡ CΓ, where TΓ and CΓ are obtained from T and C, respectively,
by replacing each σ �∈ Γ by a fresh symbol σ′. The Beth definability
property, which was studied in a DL context in [22, 21], ensures that
concepts that are implicity Γ-defined have an explicit Γ-definition.

Theorem 19 (Beth Property) ELν+ has the polynomial Beth de-
finability property: for every general ELν+-TBox T , concept C, and
signature Γ such that C is implicitly Γ-defined w.r.t. T , there is an
explicit Γ-definition w.r.t. T , namely ∃sim(sig(T , C) \ Γ).(T , C).

The proof of Theorem 19 relies on ELν having a certain interpolation
property. Say that two general TBoxes T1 and T2 are Δ-inseparable
w.r.t. ELν if T1 |= C � D iff T2 |= C � D for all ELν -inclusions
C � D.

Theorem 20 (Interpolation) Let T1 ∪ T2 |= C � D and as-
sume that T1 and T2 are Δ-inseparable w.r.t. ELν for Δ =
sig(T1, C) ∩ sig(T2, D). Then the Δ-concept F = ∃simΣ.(T1, C),
Σ = sig(T1, C) \ Δ, is an interpolant of C, D w.r.t. T1, T2; i.e.
T1 |= C � F and T2 |= F � D.

We show how Theorem 19 follows from Theorem 20. Assume that
T ∪ TΓ |= C ≡ CΓ, where T , TΓ, C, CΓ satisfy the conditions of
Theorem 19. Then T and TΓ are Γ-inseparable and Γ ⊇ sig(T , C)∩
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sig(TΓ, CΓ). Thus, by Theorem 20, T |= ∃simΣ.(TΓ, CΓ) � C
for Σ = sig(TΓ, CΓ) \ Γ. Now Theorem 19 follows from the
fact that ∃simΣ.(TΓ, CΓ) is equivalent to ∃simΣ′.(T , C) for Σ′ =
sig(T , C) \ Γ.

In [15], it is shown that EL also has this interpolation property.
However, the advantage of using ELν+ is that interpolants are of
polynomial size. The decomposition algorithm for EL given in [15]
crucially depends on this property of ELν+.

7 RELATION TO TBOXES WITH FIXPOINT
SEMANTICS

There is a tradition of considering DLs that introduce fixpoints at
the TBox level instead of at the concept level [19, 20, 1]. In [3],
Baader proposes and analyzes such a DL based on EL and greatest
fixpoints. This DL, which we call ELgfp here, differs from ELν in
that (i) TBoxes are classical TBoxes rather than sets of GCIs C � D,
i.e., sets of expressions A ≡ C with A ∈ NC and C a concept (cycles
are allowed) and (ii) the ν-concept constructor is not present; instead,
a greatest fixpoint semantics is adopted for TBoxes.

On the concept level, ELν is clearly strictly more expressive than
ELgfp: since fixpoints are introduced at the TBox level, concepts of
ELgfp coincide with EL-concepts, and thus there is no ELgfp-concept
equivalent to the ELν -concept νX.∃r.X . In the following, we show
that ELν is also more expressive than ELgfp on the TBox level, even
if we restrict ELν -TBoxes to (possibly cyclic) concept definitions,
as in ELgfp. We use the standard notion of logical equivalence, i.e.,
two TBoxes T and T ′ are equivalent iff T and T ′ have precisely
the same models. As observed by Schild in the context of ALC [20],
every ELgfp-TBox T = {A1 ≡ C1, . . . , An ≡ Cn} is equivalent in
this sense to the ELν+-TBox {Ai ≡ νiX1, . . . , Xn.C′

1, . . . , C
′
n |

1 ≤ i ≤ n}, where each C′
i is obtained from Ci by replacing each

Aj with Xj , 1 ≤ j ≤ n. Note that since we are translating to mutual
fixpoints, the size of the resulting TBox is polynomial in the size of
the original one. In the converse direction, there is no equivalence-
preserving translation.

Lemma 21 For each ELgfp-TBox, there is an equivalent ELν+-
TBox of polynomial size, but no ELgfp-TBox is equivalent to the ELν -
TBox T0 = {A ≡ P � νX.∃r.X}.

Proof It is not difficult to show that for every ELgfp-TBox T , defined
concept name A in T , and role name r, at least one of the following
holds:

• there is an m ≥ 0 such that T |= A � ∃rn.� implies n ≤ m or
• T |= A � ∃rn.B for some n > 0 and defined concept name B.

Since neither of these is true for T0, T is not equivalent to T0.

Restricted to classical TBoxes, ELgfp and ELν become equi-
expressive if the strict notion of equivalence used above is replaced
with one based on conservative extensions, thus allowing the in-
troduction of new concept names that are suppressed from logical
equivalence.

8 Conclusion

We have introduced and investigated the extensions ELν and ELν+

of EL with greatest fixpoint operators. The main result of this paper
is that ELν+ can be regarded as a completion of EL regarding its ex-
pressive power in which reasoning is still tractable, but where many

previously non-existent concepts (such as the LCS and MCS) exist
and/or can be expressed more succinctly (such as interpolants and
explicit concept definitions). Interestingly, the alternative extension
of EL by smallest rather than greatest fixpoints is much less well-
behaved. For example, even the addition of transitive closure to EL
leads to non-tractable reasoning problems [13].
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