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Abstract. This paper proposes several operational approaches for
solving fair allocation problems in the context of multiagent opti-
mization. These problems arise in various contexts such as assign-
ing conference papers to referees or sharing of indivisible goods
among agents. We present and discuss various social welfare func-
tions that might be used to maximize the satisfaction of agents while
maintaining a notion of fairness in the distribution. All these welfare
functions are in fact non-linear, which precludes the use of classical
min-cost max-flow algorithms for finding an optimal allocation. For
each welfare function considered, we present a Mixed Integer Linear
Programming formulation of the allocation problem that can be effi-
ciently solved using standard solvers. The results of numerical tests
we conducted on realistic cases are given at the end of the paper to
confirm the practical feasibility of the proposed approaches.

1 Introduction

Allocation problems are pervasive in the field of multiagent decision
making. The general problem consists of allocating m items to n
agents. Depending on the context, the items can represent tasks, re-
sources, goods or any object that can be assigned to one or several
agents. In practical applications, one can distinguish different vari-
ants of the general problem: 1) one to one allocation problems, also
known as assignment problems [5] where m = n and for which a
single item is assigned to any agent and vice versa; 2) many to one
allocation problems where m is greater than n and for which several
items can be assigned to each agent (e.g. sharing indivisible goods
[3], the Santa Claus Problem [1]); 3) many to many allocation prob-
lems where items (tasks) can be assigned in parallel to several agents,
each agent being in charge of possibly several tasks. A typical ex-
ample of the latter case is the conference paper allocation problem
where items are papers to be reviewed (k times each) and agents are
referees [12, 9]. In classical formulations of these problems, prefer-
ences are supposed to be additively decomposable in two ways. On
the one hand, the Social Welfare function measuring the overall util-
ity of a solution (allocation) for the collection of agents is defined as
the sum of individuals’ utilities (utilitarian approach). On the other
hand, individual utility functions are supposed to be additive, i.e. the
value of a subset of items for a given agent is defined as the sum of
the utilities of each item. Hence the goal is to maximize an overall
linear function of type

∑
i,j uijzij where uij (resp. and zij ) rep-

resents, for any item j and agent i, the utility of object j for agent
i (resp. a boolean decision variable concerning the assignment of j
to i). This linear function is typical of the so-called “linear assign-
ment problem” that can be solved in polytime either by the hungar-
ian algorithm (for one to one assignment problems), or by algorithms
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designed for min-cost max-flow problems, and more generally by in-
teger linear programming (for more details see [13, 5]).

However, the double additivity of the overall utility function can
be questioned. Firstly, linear social welfare functions do not provide
any control on the fairness of the solution. The compensative nature
of the aggregation obtained by a sum of individual utilities allows
serious inequalities in the repartition of satisfactions. This might be
a drawback in many decision making processes involving multiple
agents. This is the case in allocation procedures where fairness is
often an important issue. For example, in the paper assignment prob-
lems, seeking the satisfaction of all reviewers will promote their good
cooperation for similar tasks in the next conference. In resource al-
location problems, avoiding important ruptures in services requested
by every client will preserve their satisfaction and contribute to the
development of the service. The following example illustrates the
idea of fairness in multiagent allocation problems:

Example 1 We consider a conference paper allocation problem
with 5 papers that must be assigned to 3 reviewers in such a way that
each paper gets exactly two reviews and each reviewer gets at most
4 papers. In a preliminary round, reviewers have expressed their
willingness to review with respect to the different papers using utility
scale {1, . . . , 4}, 4 being the most favorable evaluation (we assume
here that reviewers enjoy referring papers; whenever reviewing a
paper is seen as a charge, utilities can be replaced by costs). The
utilities are given in the following table:

uij Paper 1 Paper 2 Paper 3 Paper 4 Paper 5
Reviewer 1 3 3 4 3 4
Reviewer 2 3 4 4 2 3
Reviewer 3 1 2 3 2 3

In this problem, any solution is characterized by a 3×5 boolean ma-
trix Z whose general term zij = 1 if and only if reviewer i receives
paper j. This implicitly represents a set of 215 solutions but many of
them do not satisfy the constraints characterizing a feasible alloca-
tions. If we want to find a feasible allocation maximizing the sum of
individual utilities we have to solve the following linear program:

max
∑3

i=1

∑5
j=1 uijzij

(P0) s.t.

{ ∑3
i=1 zij = 2 ∀j = 1 . . . 5∑5
j=1 zij ≤ 4 ∀i = 1 . . . 3

zij ∈ {0, 1} ∀i, ∀j

The optimal solution is as follows: reviewer 1 receives papers
{1, 3, 4, 5}, reviewer 2 receives {1, 2, 3} and reviewer 3 receives
{2, 4, 5}. The overall utility of this solution is 32 which can be de-
composed into 3 components to make explicit the reviewers’ satis-
faction profile. This gives (14, 11, 7) which is quite unfair, one agent
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getting two times more than another one. Such inequalities are nei-
ther desirable nor necessary. For example, if we consider another
repartition such as that one: reviewer 1 gets {1, 4, 5}, reviewer 2
gets {1, 2, 3} and reviewer 3 gets {2, 3, 4, 5} we obtain a better bal-
anced utility profile: (10, 11, 10) for a very small reduction of the
average satisfaction (31/3 instead of 32/3). Although more attrac-
tive in terms of fairness, this solution cannot be found by solving
(P0) because it is suboptimal.

This example shows that the linear assignment formulation is
perhaps not suited to multiagent optimization problems for which
achieving a well-balanced utility profile is important. Moreover, in
some cases, there exist positive or negative synergies among items
that cannot be represented by an additive function. When some items
are complementary, the value of the set is more than the sum of its
parts. On the contrary, when items are redundant, resorting to sub-
additive utility functions might be necessary. This is another reason
why additive utilities are not always relevant in allocation problems.
In this paper, we concentrate on the first problem: the determina-
tion of fair allocations in multiagent problems. In order not to mul-
tiply the sources of complexity in the same study, we assume here
that individual utility functions are additive (as in the classical case)
but we will resort to non-linear social welfare functions able to cap-
ture an idea of fairness in the evaluation of solutions. These models
are imported from Social Choice Theory (inequality measurement)
and multicriteria analysis (compromise search). The measurement
of inequalities has indeed received much attention in Social Choice
Theory and Mathematical Economics where several non-linear social
welfare functions have been proposed to capture an idea of fairness in
the evaluation of solutions (see e.g. [16, 17, 24]). Other models have
been developed in multicriteria analysis for characterizing good com-
promise solutions with respect to conflicting objective (e.g. [27]).
The aim of this paper is to investigate the use of such models in mul-
tiagent combinatorial optimization problems. We consider allocation
problems with various non-linear utility functions and propose refor-
mulation that can be solved by standard linear programming solvers
for real-size instances. This study concerns the case of centralized
information. For a distributed version of the multiagent allocation
problem, the reader should consult [8, 7, 15].

The paper is organized as follows. In Section 2 we discuss ap-
proaches focusing on the least satisfied agent. In Section 3 we con-
sider Gini social evaluation functions that make possible to control
the weight of any agent, depending on its rank in the satisfaction
order. In Section 4 we consider specific instances of Choquet inte-
grals that allow to favor well balanced utility profiles while keeping
the possibility of attaching a specific weight to each agent in each
coalition. For all these models we provide solution methods using
linear-programming. The practical tests performed to illustrate the
effectiveness of these models are given in Section 5.

2 Basic formulations

The general allocation problem we are considering can be stated as
follows: we want to distribute m items over n agents. The number of
items that can be allocated to agent i is restricted to interval [αi, βi],
i = 1, . . . , n. Item j must be assigned to a number of agents re-
stricted to the interval [α′

j , β
′
j ], j = 1, . . . ,m. A n×m matrix gives

the utility uij of assigning item j to agent i. Hence, denoting zij the
allocation variable for agent i and item j we obtain the following 0-1
optimization problem:

max ψ(x1, . . . , xn) (1)

(Πψ) s.t.

⎧⎨
⎩

xi =
∑m

j=1 uijzij i = 1, . . . , n

αi ≤ ∑m
j=1 zij ≤ βi i = 1, . . . , n

α′
j ≤ ∑n

i=1 zij ≤ β′
j j = 1, . . . ,m

(2)

zij ∈ {0, 1} ∀i, ∀j (3)

where ψ is a social welfare function defined from individual satis-
faction indices xi, i = 1, . . . , n as a non-decreasing function of its
arguments. This general optimization program fits to many different
situations involving multiple agents. For example, in fair allocation
of indivisible goods, we set αi = 0 and βi = m for i = 1 . . . n
and α′

j = β′
j = 1, j = 1 . . .m. This formulation also fits to con-

ference paper allocation problems. In this case αi = 0 and βi = K,
i = 1 . . . n, where K is the maximal number of papers that can be
allocated to a reviewer, and α′

j = β′
j = R, j = 1 . . . ,m (a paper

must be reviewed by R referees).
In the introduction, we have seen that linear combinations of in-

dividual utilities do not properly capture the idea of fairness of a
solution; this suggests resorting to non-linear functions for ψ. In
this direction, the maxmin approach that consists of maximizing
ψ(x1, . . . , xn) = mini=1...n{xi} is probably the simplest alterna-
tive to the linear model. This criterion that directly translates the idea
of Economic Egalitarianism consists of maximizing the satisfaction
of the least satisfied agent. Coming back to Example 1, we can see
that the initial allocation yielding (14, 11, 7) as utility vector would
be suboptimal since the other solution presented yields (10, 11, 10)
which guarantees a better worst-case value (10 instead of 7). Unfor-
tunately problem Πmin (maxmin allocation problem) is NP-hard as
soon as there are two agents [4, 9, 11]. Although min is not a linear
function, problem Πmin can be formulated as a 0-1 linear program
as follows:

max z

(Π′
min) s.t.

⎧⎨
⎩

z ≤ ∑m
j=1 uijzij i = 1, . . . , n

αi ≤ ∑m
j=1 zij ≤ βi i = 1, . . . , n

α′
j ≤ ∑n

i=1 zij ≤ β′
j j = 1, . . . ,m

zij ∈ {0, 1} ∀i, ∀j

This makes it possible to solve realistic-size instances using standard
solvers as will be shown in Section 5.

Focusing on the worst case is sometimes too drastic because the
smaller component of utility vectors might mask very different situ-
ations. There are indeed undesirable drowning effects with the min
that prevent discrimination between two utility vectors such as (10,
10, 10) and (10, 20, 20) for example. To overcome the problem we
consider instead a refinement of the min with a weighted sum:

ψ(x1, . . . , xn) = min
i=1...n

xi + ε
n∑

i=1

xi (4)

where ε is a strictly positive real number, chosen arbitrary small. This
criterion can be seen as a particular instance of weighted Tcheby-
cheff distance with respect to a reference point, a classical scalariz-
ing function used to generate compromise solutions in multiobjective
optimization [27]. It can also be seen as a lexicographic aggregation
of the egalitarian criterion (min) with the utilitarian criterion (sum
of utilities) with priority to egalitarianism. Obviously, this augmen-
tation of min does not change the complexity of the problem nor the
existence of a linear reformulation.

However, using an augmented min does not really solve the prob-
lem but shifts it to other components than the minimum. For example
we cannot discriminate between (10, 10, 10, 40) and (10, 20, 20, 20).
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To overcome the problem, another possibility is the leximin criterion.
If x↑ represents the vector x whose components have been sorted by
increasing order (x↑

i ≤ x↑
i+1) then x is preferred to y according to

the leximin if and only if x↑
k > y↑

k for some k and x↑
i = y↑

i for
all i < k. Thus (10, 20, 20, 20) is preferred to (10, 10, 10, 40). The
problem of finding a leximin-optimal allocation is proved NP-hard in
[9]. Nevertheless, the linearization of the min can be adapted for the
leximin operator using lexicographic linear optimization as shown
in [30] and [18]. We introduce now more compensatory inequality
measures used in Social Choice Theory.

3 Generalized Gini social-evaluation functions

Generalized Gini social-evaluation functions as defined in Social
Choice theory by Blackorby and Donaldson [2] can be an interest-
ing choice for ψ in (1) for inequality measurement. They are defined
as follows:

W (x) =
n∑

i=1

wix
↑
i (5)

where wi > wi+1 for i = 1, . . . , n − 1. Note that if w1 = 1 and
the other weights tend to 0 then W (x) tends to the egalitarian cri-
terion (min). This shows that finding a W -optimal allocation is also
NP-hard. Whenever differences of type wi − wi+1 tends to 0 (i.e.
weights tend to be nearly equal) W (x) tends to the utilitarian cri-
terion (sum). On the contrary when differences of type wi − wi+1

tend to be arbitrarily large, then W (x) tends to the leximin crite-
rion. Of course W (x) offers many other possibilities. This family of
functions is also known in multicriteria analysis under the name of
ordered weighted averages (OWA) [31]. In the field inequality mea-
surement, generalized Gini social-evaluation functions have received
an axiomatic justification by Weymark [29]. His axiomatic analy-
sis shows that W has several nice properties including monotonic-
ity with respect to each component (here individual utilities) which
ensures Pareto-efficiency of W -optimal solutions, but also mono-
tonicity with respect to utility transfers from a “richer” agent to a
“poorer” agent, which guarantees the fairness of W -optimal solu-
tions. This means that transfers reducing inequalities, also known as
Pigou-Dalton transfers [17], will improve the value of social utility
W (x). More formally, let x ∈ R

n
+ be the utility vector of a feasible

solution, such that xi > xj for some i, j in a multiagent problem,
then for any other feasible solution yielding an utility vector of the
form y = (x1, . . . , xj+ε, . . . , xi−ε, . . . , xn) with 0 < ε < xi−xj ,
we have W (y) ≥ W (x). In mathematical terms, this means that
W (x) is Schur-concave [16]. Interestingly enough, function W (x)
can be rewritten as follows:

W (x) = ω.L(x) (6)

where ω = (w1 − w2, w2 − w3, . . . , wn−1 − wn, wn) is a positive
weighting vector and L(x) = (L1(x), . . . , Ln(x)) is the Lorenz
vector associated to x defined by Lk(x) =

∑k
i=1 x

↑
i . The notion

of Lorenz vector was initially used to measure relative inequalities
of vectors having the same average (see the results of Hardy, Little-
Hood and Polya in [16]). Lorenz vectors can also be used to mea-
sure inequalities of vectors having possibly different means, using
the generalized Lorenz dominance introduced by Shorrocks [26].

Definition 1 Generalized Lorenz dominance is a strict preference
relation �L defined on utility vectors in R

n
+ by: x �L y if Li(x) ≥

Li(y) for all i = 1 . . . n, one of these inequalities being strict.

For example, in Figure 1 the line separating light gray and dark
gray areas represents the Lorenz curve Li(x), i = 1, . . . , n of
a utility vector x unequally dividing 100 utility points among 10
agents. On the same figure the diagonal line bounding above the
light gray area represents the Lorenz curve of an the ideal distribu-
tion y = (10, . . . , 10) such that L∗

i (y) = 10 i for i = 1, . . . , 10. We
can see that the former line remains below the diagonal line which
shows that x is Lorenz-dominated by y.
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Figure 1. Lorenz curve and Gini index

Lorenz-dominance is a partial weak-order comparing utility vec-
tors in terms of fairness. However, due to the incompleteness of
this model, it cannot be used easily in fair multiagent optimization
problems. Fortunately, Equation (6) shows that the generalized Gini
social-evaluation function W (x) induces a linear extension of the
Generalized Lorenz Dominance partial order, better suited to opti-
mization tasks. Let us consider the following example:

Example 2 Consider a problem involving 3 agents and assume
we have to compare 3 feasible solutions with utility vectors x =
(11, 12, 13), y = (9, 12, 14) and z = (17, 15, 8). We have L(x) =
(11, 23, 36), L(y) = (9, 21, 35) and L(z) = (8, 23, 40). L(x)
Pareto-dominates L(y) which means that x �L y. Moreover no
dominance holds between L(z) and the two other Lorenz vectors
which leaves z uncomparable. If we use a Gini social-evaluation
function W (x) with w1 = 5/9, w2 = 3/9 and w1 = 1/9 we get:
W (x) = 104/9,W (y) = 95/9 and W (z) = 102/9 which entails
the following preference order: x � z � y.

As pointed out by Weymark [29], W (x) is a generalization of the
original Gini social-evaluation function defined by:

W(x) =
1

n2

n∑
i=1

(2(n− i) + 1)x↑
i (7)

This social function is at the origin of the so-called Gini coeffi-
cient [10] measuring the degree of inequality of an income distri-
bution in a society and defined by I(x) = 1 − W(x)/μ(x) where
μ(x) = 1

n

∑n
i=1 xi. This index actually measures a “distance” to

perfect equity that can be illustrated on Figure 1. It can indeed be
shown that I(x) equals two times the area in light gray. It is im-
portant to note that, despite its relevance for measuring inequalities,
Gini coefficient I(x) cannot be used directly for ψ in (1) because it
does not satisfy strict monotonicity with respect to Pareto dominance.
Indeed, scaling all incomes (here individual utilities) proportionally
does not affect the value of the index. Hence nothing guarantees the
Pareto efficiency of I-optimal solutions. This is the reason why we
shall use W(x) and not I(x) in (1), or more generally any instance
of W (x), to determine fair Pareto-efficient allocations.
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We present now a LP-solvable formulation of problem Πψ with
ψ(x) = W (x) in Equation (1). Following an idea introduced in [20],
we express the kth Lorenz component Lk(x), for any fixed x, as the
solution of the following linear program:

min

n∑
i=1

aikxi

(PLk ) s.t.

{ ∑n
i=1 aik = k

aik ≤ 1 i = 1 . . . n

aik ≥ 0 i = 1 . . . n

Lk(x) can also be obtained by solving the dual problem:

max krk −
n∑

i=1

bik

(DLk ) s.t.
{

rk − bik ≤ xi i = 1 . . . n

bik ≥ 0 i = 1 . . . n

Using Equation (6) and the fact that components of ω are strictly
positive, we can combine problems (DLk ) k = 1 . . . n with the ini-
tial allocation problem Πψ to get the following linear formulation
[20, 11]:

max
n∑

k=1

ωk(krk −
n∑

i=1

bik)

(Π′
W ) s.t.

⎧⎨
⎩

αi ≤ ∑m
j=1 zij ≤ βi i = 1, . . . , n

α′
j ≤ ∑n

i=1 zij ≤ β′
j j = 1, . . . ,m

rk − bik ≤ ∑m
j=1 uijzij i, k = 1 . . . n

bik ≥ 0 i, k = 1 . . . n

zij ∈ {0, 1} i = 1 . . . n, j = 1 . . .m

Remark that using a similar combination with primal problems
(PLk ) instead of (DLk ), k = 1 . . . n leads to a quadratic function
due to products of variables such as aikxi. Fortunately, resorting to
the dual problems preserves linearity of the objective function. Hence
we get a linear problem with n2+2(m+n) constraints, nm boolean
variables, and n2+n continuous variables, which can be solved with
standard LP-solvers as will be shown in Section 5.

4 The Choquet integral as an inequality measure

Until now, all social evaluation functions we have considered for ψ in
Equation (1) are symmetric. This means that the value ψ(x) remains
unchanged by permutation of the components of x. This property
basically says that every agent has the same importance in the eval-
uation process, no matter who he really is, only his satisfaction level
is considered. This anonymity property is generally seen as desir-
able in multiagent decision making. However, in particular situations,
it might happen that some agents are more important than others.
This is the case for example in resource allocations problems where
clients have exogenous rights (see for example [3, 19]). This sug-
gests considering weighted extensions of social evaluation functions.
Actually Gini social evaluation functions can easily be extended to
incorporate weights of agents. For example, one can complete the
initial population of agents with clones of initial agents whose mul-
tiplicity is proportional to the agents’ weights. It is then sufficient
to apply function W (x) on augmented utility vectors. This simple
idea can be implemented without resorting to an explicit multiplica-
tion of agents. It is more appropriate to consider weighted extensions

of ordered weighted averages named WOWA for weighted ordered
weighted averages [28]. Such WOWA operators can be linearized
similarly as W (x) as shown by Ogryczak in [21]. This can be used
to produce a LP-solvable formulation of Πψ where ψ is an WOWA,
as done with Π′

W proposed in Section 3 for ψ = W .
One step further in the sophistication of social evaluation func-

tions, we might be interested in extending inequality measures to
tackle situations where the importance attached to a group of agents
cannot simply be represented by the sum of their weights. The intro-
duction of a non-additive measure to model the importance of coali-
tions is classical in Game Theory where it is used to model positive
or negative synergies among players. We recall now some definitions
linked to capacities, a classical tool to model the importance of coali-
tions within the set N = {1, . . . , n} of agents.

Definition 2 A capacity is a mapping v : P(N) → R such that
v(∅) = 0, v(N) = 1 , and v(A) ≤ v(B) whenever A ⊆ B.

Definition 3 A capacity v is said to be convex when v(A ∪ B) +
v(A ∩ B) ≥ v(A) + v(B) for all A,B ⊆ N , and additive when
v(A ∪B) + v(A ∩B) = v(A) + v(B) for all A,B ⊆ N .

The dual v̄ of a capacity v is a capacity defined by v̄(A) = 1 −
v(N\A) for all A ⊆ N . It is easy to see that ¯̄v = v. Moreover, when
v is convex we have v(A) + v(N\A) ≤ 1, hence by definition of v̄
we have v(A) ≤ v̄(A). Hence the notion of core can be introduced:

Definition 4 The core of a capacity v is defined by:

core(v) = {λ ∈ Λ : v(A) ≤ λ(A) ≤ v̄(A)} (8)

where Λ is the set of additive capacities defined on P(N).

A well-known result due to Shapley [25] is that any convex capac-
ity has a non-empty core. This property will play a crucial role later
in the paper. Any capacity is completely characterized by 2n coef-
ficients, representing the importance v(A) of any coalition A ⊆ N .
When v is additive it admits a very compact representation using only
n coefficients v({i}), i = 1 . . . n since v(A) =

∑
i∈A v({i}), but

this is to the detriment of expressivity since no synergy is allowed
among agents. In the general case, a capacity admits an alternative
representation named the Möbius inverse:

Definition 5 To any capacity v : P(N) → R a mapping m :
P(N) → R called Möbius inverse can be associated, defined by:

∀A ⊆ N,m(A) =
∑
B⊆A

(−1)|A\B|v(B) (9)

v can be reconstructed from its Möbius inverse as follows:

∀A ⊆ N, v(A) =
∑
B⊆A

m(B) (10)

Using the Möbius inverse, we can define the notion of k-additive
capacities as follows [14]:

Definition 6 A capacity is said to be k-additive when its Möbius in-
verse vanishes for any A ⊆ N such that |A| > k, and there exists at
least one subset A of exactly k elements such that m(A) �= 0. More
formally:

(i) ∀A ⊆ N, |A| > k ⇒ m(A) = 0

(ii) ∃A ⊆ N, |A| = k and m(A) �= 0
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If k = 1 we get an additive capacity. k−additive capacities for small
values of k greater than 1 are very useful because in practical situa-
tions, they offer a sufficient expressivity to model positive or negative
interactions between agents with a reduced number of parameters.
For example, when k = 2 the capacity is completely characterized
by (n2+n)/2 coefficients (one Möbius mass for every singleton and
every pair).

In decision theory the main model based on the use of a capacity
is called the Choquet integral [23]. The Choquet integral of a utility
vector x ∈ R

n with respect to capacity v is defined by:

Cv(x) =
n∑

i=1

[x↑
i −x↑

i−1]v(X
↑
i ) =

n∑
i=1

[v(X↑
i )−v(X↑

i+1)]x
↑
i (11)

where x↑
0 = 0 and X↑

i is the set of the n − i + 1 most satisfied
agents, formally X↑

i = {j ∈ N, xj ≥ x↑
i } for i ≤ n. The left

part of (11) has the following meaning: X↑
1 contains all agents and

they are at least satisfied to level x↑
1; so we start by multiplying x↑

1

by v(X↑
1 ); then every agent in X↑

2 gets at least an utility increment
of (x↑

2 − x↑
1) so that we add the coefficient (x↑

2 − x↑
1) weighted

by the importance of coalition X↑
2 , and so on . . . . When used with

a capacity such that v(N) = 1 and v(A) = 0 for all A �= N then
Cv(x) = x↑

1 for all x, we get the egalitarian criterion. Hence problem
Πψ where ψ is a Choquet integral is NP-hard since Πmin is NP-
hard (see Proposition 1). When used with an additive capacity, Cv(x)
boils down to a weighted sum (the utilitarian criterion). Of course
when used with a non-additive capacity, function Cv offers additional
descriptive possibilities. Among others we have the following nice
property [6]:

Proposition 1 If v is convex then ∀x1, . . . , xp ∈ R
n, ∀k =

1, . . . , p, ∀λ1, . . . , λp ≥ 0 such that
∑p

i=1 λi = 1 we have:

Cv(x
1) = . . . = Cv(x

p) ⇒ Cv(

p∑
i=1

λix
i) ≥ Cv(x

k) (12)

Property (12) named “preference for diversification” in the context
of portofolio management (see [6]) can be re-interpreted in terms of
fairness because it means that smoothing or averaging a cost vector
makes the society of agents better off. For example, let us consider a
multiagent allocation problem with 2 agents and 3 different solutions
with utility vectors x1 = (10, 20), x2 = (20, 10) and x3 = (12, 12).
If v({1}) = v({2}) = 0.1 we have Cv(x

1) = 10 + 0.1(20 −
10) = 12; similarly Cv(x

2) = Cv(x
3) = 12. The average vector

of {x1, x2, x3} is x̄ = (14, 14) with Cv(x̄) = 14, which is better
than x1, x2 and x3. This illustrates the impact of Property (12). Thus
it seems interesting to study the maximization of a Choquet integral
with a convex capacity v.

We now introduce a first linear reformulation of the problem of
finding a Cv-optimal allocation. It is based on the following result
due to Schmeidler [23] that holds for any convex capacity v:

Cv(x) = min
λ∈core(v)

n∑
i=1

λ({i})xi (13)

Equation (13) suggests that Cv(x) can also be seen as the optimal
value of the following linear program:

min
n∑

i=1

λixi

(PCv ) s.t.
{

v(A) ≤ ∑
i∈A λi ∀A ⊆ N

λi ≥ 0 i = 1 . . . n

Cv(x) can also be seen as the optimal value of the dual program:

max
∑
A⊆N

v(A)dA

(DCv ) s.t.
{ ∑

A⊆N :i∈A dA ≤ xi i = 1 . . . n

dA ≥ 0 ∀A ⊆ N

We present now a 0-1 linear program obtained by combination of
(DCv ) with our initial problem Πψ for ψ = Cv in Equation (1):

max
∑
A⊆N

v(A)dA

(Π′
Cv

) s.t.

⎧⎨
⎩

∑
A⊆N :i∈A dA ≤ ∑m

j=1 uijzij i = 1, . . . , n

αi ≤ ∑m
j=1 zij ≤ βi i = 1, . . . , n

α′
j ≤ ∑n

i=1 zij ≤ β′
j j = 1, . . . ,m

zij ∈ {0, 1} ∀i, ∀j
dA ≥ 0 ∀A ⊆ N

This linear program has nm+2n−1 variables including nm assign-
ment variables zij and 2n − 1 variables dA for every non-empty set
A ⊆ N . This reformulation can be used for fair optimization prob-
lems involving very few agents but it will become quickly intractable
by standard LP-solver as the number of agents increases. Fortunately,
in practice, Choquet integrals are often used with k−additive capac-
ities which restricts the number of parameters involved in the model
while keeping good descriptive possibilities. However, there is no
obvious way of using k-additivity of v to simplify problem Π′

Cv
. To

go one step further in this direction we propose rewriting Cv(x) as a
function of its Möbius transform which gives (see [14]):

Cv(x) =
∑
A⊆N

m(A)min
i∈A

xi (14)

This formulation of Cv(x) is easily linearizable provided that
Möbius masses m(A) are positive. Capacities whose Möbius masses
are positive are well-know. For 2-additive measures, they coincide
with convex capacities. For larger values of k they form a sub-
class of convex capacities called belief functions [22]. In the sequel
we will assume that v is a belief function generated from positive
Möbius masses. Note that the convexity of belief functions guaran-
tees fairness of solutions through Property (12). Now, assuming that
all Möbius masses are positive the search of the Choquet-optimal
allocation can be expressed from Πψ and (14) as follows:

max
∑
A⊆N

m(A)yA

(Π′′
Cv

) s.t.

⎧⎨
⎩

yA ≤ ∑m
j=1 uijzij ∀A ⊆ N, ∀i ∈ A

αi ≤ ∑m
j=1 zij ≤ βi i = 1, . . . , n

α′
j ≤ ∑n

i=1 zij ≤ β′
j j = 1, . . . ,m

zij ∈ {0, 1} ∀i, ∀j
where yA, A ⊆ N are auxiliary variables used to linearize min oper-
ations. This problem has as many variables as problem Π′

Cv
but more

constraints. Fortunately it can be significantly reduced in size under
the k−additivity assumption. For example, with a 2-additive convex
capacity, problem Π′′

Cv
has only nm+ (n2 +n)/2 variables includ-

ing nm assignment variables and (n2 + n)/2 variables yA (one for
each singleton and pair) and only 2(n+m) + n2 constraints.

5 Numerical tests

This section gives some numerical tests for the different problems
presented before. We performed these tests using ILOG CPLEX 12.1
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on a computer with 8 Gb of memory and an Intel Core 2 Duo 3.33
GHz processor. Table 1 gives the results obtained for the paper as-
signment problem modeled as follows: n = m/4, each reviewer
receives at most 9 papers (αi = 0 and βi = 9), a paper has to be
reviewed by exactly 2 reviewers (α′

j = β′
j = 2), and a reviewer ex-

presses his preferences for reviewing a paper with a number between
0 and 5 (i.e. uij ∈ [1, 5]). Table 2 represents the results obtained for
the Santa Claus problem with n = m/4 agents, αi = 0, βi = m
and α′

i = β′
i = 1 and the same utility functions. Computation times

tmin, tW , tCv expressed in seconds represent average solution times
over 20 random instances of the same size m (number of objects)
for problems Πmin,ΠW and Π′′

Cv
respectively. For the Gini social-

evaluation function we used the classical instance given in Equation
(7). For the Choquet integral, we used 2-additive convex capacities
generated from randomly drawn positive Möbius masses.

m tmin

400 0.36
800 6.81

1200 21.25
1600 56.21
2000 85.54
2400 112.27
2800 181.75
3200 270.45
3600 496.93

m tW tCv

200 1.29 0.04
300 2.77 1.36
400 7.51 3.81
500 18.34 8.79
600 36.19 18.83
700 68.39 52.34
800 120.61 89.37
900 177.65 165.14
1000 271.39 342.19

Table 1. Computation times (s) for the paper assignment problem

m tmin

400 0.56
800 8.52

1200 34.15
1600 95.82
2000 201.63
2400 329.29
2800 550.86
3200 794.26
3600 1169.84

m tW tCv

200 0.49 0.08
300 6.91 3.59
400 24.42 9.78
500 77.91 27.75
600 154.25 55.47
700 359.54 133.55
800 518.94 181.91
900 979.08 393.77
1000 1547.87 646.11

Table 2. Computation times for (s) the Santa Claus problem.

6 Conclusion

We have discussed various criteria enabling to incorporate the idea of
fairness in multiagent optimization problems. For each of these cri-
teria we have provided a reformulation of the problem as a 0-1 linear
program (see problems Πmin,ΠW ,Π′

Cv
and Π′′

Cv
) that gives the op-

timal solution. Numerical tests have shown that these linear programs
are solvable with standard solvers for real size problems. Of course,
the use of a general Choquet integral gets more heavy when the num-
ber of agents increases. Fortunately, the use of k-additive capacities
with small k offers a good way of reducing the complexity of the
model (number of parameters) and the size of the LP to be solved
(Π′′

Cv
) while keeping very good descriptive possibilities compared to

standard linear models.
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