
The Dynamics of Multi-Agent Reinforcement Learning

Luke Dickens, Krysia Broda and Alessandra Russo1 2

Abstract. Infinite-horizon multi-agent control processes with non-
determinism and partial state knowledge have particularly interesting
properties with respect to adaptive control, such as the non-existence
of Nash Equilibria (NE) or non-strict NE which are nonetheless
points of convergence. The identification of reinforcement learning
(RL) algorithms that are robust, accurate and efficient when applied
to these general multi-agent domains is an open, challenging prob-
lem. This paper uses learning pressure fields as a means for evalu-
ating RL algorithms in the context of multi-agent processes. Specif-
ically, we show how to model partially observable infinite-horizon
stochastic processes (single-agent) and games (multi-agent) within
the Finite Analytic Stochastic Process framework. Taking long term
average expected returns as utility measures, we show the existence
of learning pressure fields: vector fields – similar to the dynamics
of evolutionary game theory, which indicate medium and long term
learning behaviours of agents independently seeking to maximise
this utility. We show empirically that these learning pressure fields
are followed closely by policy-gradient RL algorithms.

1 Introduction

Reinforcement Learning (RL) has long shown itself to be a pow-
erful technique for optimising control of large scale control prob-
lems. Early research focused on single-agent problems with full state
knowledge [10]. A particular feature of these kinds of problems are
that the set of optimal control strategies (policies) always contains
some members that are completely deterministic, i.e. a functional
policy is sufficient for best results. Also, in many other RL applica-
tions, including those with partial-state knowledge [7] and/or cooper-
ative multi-agent problems [2] the focus has been on building knowl-
edge structures that allow one to consider the learning outcomes to
be deterministic policies.

It has long be realised that, when state knowledge is limited,
stochastic policies can outperform the best functional alternatives by
an arbitrary degree, even for small single-agent problems [15]. This
means that often better control can be achieved if one allows con-
trol decisions (actions) to be chosen non-deterministically based on
current knowledge. In fact, it is widely understood that during the
learning phase of on-policy RL techniques – those that interact di-
rectly with the system they aim to control – it is essential that poli-
cies have some stochastic properties, and this idea is often referred to
as the exploration-exploitation trade-off [16]. Not all RL techniques
rely on this assumption of the sufficiency of deterministic policies. In
particular, gradient based optimisation approaches developed in the

1 Imperial College London, UK, email:
{luke.dickens03,k.broda,a.russo}@imperial.ac.uk

2 This research is continuing through participation in the International Tech-
nology Alliance sponsored by the U.S. Army Research Laboratory and the
U.K. Ministry of Defence.

last ten years or so are able to explore the space of stochastic policies
more freely [1, 3, 11, 14].

For multi-agent problems, where agents are competitive – or more
generally non-cooperative, stochastic policies play an even greater
role. Nash shows [13] that agents in non-cooperating games require
stochastic strategies to avoid being exploited by others. He identi-
fies points in the space of joint strategies, known as Nash Equilibria
(NE), where no agent can unilaterally change strategy to improve
their chances. These NE can be thought of as the multi-agent ana-
logue of maximum utility in single-agent tasks. However, Bowling
and Veloso showed that games of restricted policy can be formulated
which have no NE [5]. In such systems, there is no ultimate learning
outcome, instead an agent’s only option is to continually adapt its
(stochastic) policy to avoid being exploited by others. In these per-
petual learning domains, it is useful to have a means to investigate
the dynamic, mid-term learning behaviour of agents.

The paper addresses this by using learning pressure fields as a
means to study the behaviour of RL algorithms in the context of
infinite-horizon partially observable stochastic games. We formulate
the Finite Analytic Stochastic Process (FASP) framework, and show
how the single-agent partially observable markov decision process
(POMDP) and partially observable stochastic games can be mod-
elled as FASPs. Taking long term average expected returns as utility
measures, we show the existence of learning pressure fields (LPFs):
vector fields, which represent the medium and long term learning
behaviour of agents independently seeking to maximise these mea-
sures. The LPF is related to the dynamics of evolutionary game the-
ory [9] – in that it represents the combined gradient of adaptation
for agents independently optimising within a game. This has been
extended to the dynamics of RL algorithms maximising in stochas-
tic games with full state access, see [6] and [17]. This paper ex-
tends the domain to partially observable stochastic games, and this
demands that agents maximise their long term average expected re-
turn (payoff), and not immediate or geometrically discounted pay-
offs as would otherwise be sufficient. Section 2 formulates the FASP
framework and shows that POMDPs and other stochastic games can
be modelled as FASPs. Section 3 gives analytic results for FASPs,
shows how to find the long term average for any real valued signal,
and formalises learning pressure fields. Section 4 runs a series of ex-
periments using four actor-critic algorithms to see whether the LPFs
are followed and to evaluate how each algorithm performs. Section
5 concludes the paper with a discussion and an indication of future
work.

2 Finite Analytic Stochastic Processes

Probably the most successful family of models in RL is based on
the Markov Decision Process (MDP), including partially observable
(PO)MDPs [7]; cooperative multi-agent MDP derivatives, such as

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-367

367

the decentralised (DEC-)POMDP [2]; and other systems under ad-
versarial/non-cooperative control, such as Markov Games [12, 18].
MDP models complement the agent paradigm with the concepts of
reward, state, action, and in some cases observation, and many such
multi-agent MDP variants have been proposed.

While there is a great deal of variety in these models, they share
many underlying properties. Here, we formalise a set of Markov De-
cision Process derivative frameworks called Finite Analytic Stochas-
tic Processes (FASPs), which allow us to flexibly model single- and
multi-agent stochastic processes. We show that the POMDP [7] is
an example of a FASP, and present the Simultaneous Multi-Agent
(SMA)FASP – a variant of the framework.

Given a FASP where agents follow reactive policies, we can pre-
dict the average expected return for any state dependent signal. Using
these predictions, we can construct learning pressure fields (see Sec-
tion 3), from which we make further inferences on how two or more
optimising agents will interact, even when they are motivated by dif-
ferent utility signals. We first develop some concepts.

Definition 1 (Probability Distribution) For a set X , a probability
distribution over X describes a random variable, and identifies ei-
ther the probability of each value of that random variable when X
is discrete, or the probability of the value falling within a (measur-
able) subset of X , otherwise. The set of all probability distributions
over X is denoted PD(X). For any d ∈ PD(X) and x ∈ X , x �d
implies x sampled from d; for finite X , d can be written as a vector,
d = (d1, . . . , d|X|)

ᵀ
, where d(xi)=di =Pr (x = xi |x �d).

The set of all mappings from one set to a probability distribution
over another set is called the stochastic map.

Definition 2 (Stochastic Map) A stochastic map, m, is a mapping
from set X to a probability distribution over a set Y , and the set of
all such m is given by Σ(X→Y) = {m |m : X→PD(Y)}

For any measurable subset Y ′ ⊂ Y , we write m(Y ′|x) =
Pr (y′ ∈ Y ′ |y′ �m(x)). If Y is finite, we can write m(y|x) =
Pr (y = y′ |y′ �m(x)) for any y ∈ Y .

This allows us to define our umbrella framework of MDP deriva-
tives, supporting multiple measure (utility) signals and partial ob-
servability. Models of this kind are called Finite Analytic Stochastic
Processes (FASPs).

Definition 3 (FASP) A FASP is a tuple (S, A, O, t, ω, F, i, Π),
where S, A and O are the finite state, action and observation spaces;
t ∈ Σ(S×A→S) is the transition function that generates new states
from state-action pairs; ω ∈ Σ(S →O) is the observation function
that generates observations; F = {f1, . . . , fN} is the set of mea-
sure functions, where each f i ∈ Σ(S →R) generates a real valued
measure signal, f i

n, at each time-step n; i ∈ PD(S) is the initialisa-
tion function generating initial system states; and Π is the set of all
available control policies.

We define a partially observable markov decision process
(POMDP) as a subtype of the FASP.

Definition 4 (POMDP) A POMDP is a FASP M =
(S, A, O, t, ω, {r}, i, Π) with one measure function r ∈ Σ(S →R)
called the reward function. It is controlled by one agent with actions
in A, and observations in O.

All models in this paper are state-encapsulated, meaning here that
the observation and reward functions take the state as the only input.

This contrasts with models such as the POMDP defined in [7], where
rewards and observations can depend on the state and action from
the previous time-step, as well as the current state. As shown in [8],
state-encapsulation can allow for more concise model descriptions,
particularly those with multiple non-cooperative agents, but does not
limit the expressibility of the framework.

The Simultaneous Multi-Agent (SMA)FASP is defined as follows,

Definition 5 (SMAFASP) A SMAFASP is a FASP M =
(S, A, O, t, ω, {r1, . . . , rn}, i, Π) and a set of agents, G (|G| = n).
The action space A and observation space O are the Cartesian
products of agent specific action and observation spaces respec-
tively, so A =× g∈G Ag and O = × g∈G Og . The policy space,
Π = × g∈G Πg , is the Cartesian product of agent specific policy
spaces, where Πg generates agent specific actions from Ag using
previous actions from Ag and observations from Og . rg is the
reward function for agent g ∈ G.

We now formulate two small SMAFASP examples, that will be
used throughout the paper for illustration and experiments.

Example 1 (See Figure 1) The Bowling two-step game is the
SMAFASP (S, A, O, t, ω, {rv, rh}, i, Π), with two agents gv and gh,
four states, S = {s0, sL, sR, sC}, the agent specific action sets
Av = {U, D} and Ah = {L, R} - freely available in all states,
and a single joint observation, O = {o}. The transition function,
t ∈ Σ(S × A→ S), is shown in the figure – arcs are labelled with
the action inducing it (or an asterix representing any suitable action),
and the associated probability. The observation function is trivial.
The reward functions are rv = r1 and rh = r2 for agents gv and
gh respectively, where r1 and r2 are defined in Table 1. The initial
state is s0. Each agent g’s policy is reactive and strictly stochastic,
i.e. Πg = Σ(Og →Ag) − {π |∃o ∈ Og, ∃a ∈ Ag s.t. π(o|a) = 1}.

Figure 1. The Bowling two-step game as a SMAFASP.

s0 sL sR sC

r1(.) 0 0 0 1
r2(.) 0 0 0 -1

Table 1. Reward Schemes for Bowling and Veloso’s two-step game.

The Bowling two-step game is equivalent to the example described
in [5], and it rewards agent gv and punishes gh whenever the system

L. Dickens et al. / The Dynamics of Multi-Agent Reinforcement Learning368

is in state sC . In [5] there are three states, and the policy is restricted
to be the same for every state, without using observations. The value
0 < ε << 1

2
is some small probability, and is arbitrarily set to 0.05,

this choice has only a subtle effect on the resulting analysis and is
not explored further.

In our second example, the Inverted two-step game, we swap the
reward functions, r2 for gv and r1 for gh.

Example 2 (See Figure 1) The Inverted two-step game is defined as
the Bowling two-step, except reward functions rv = r2 and rh = r1.

The Inverted two-step game rewards gh and punishes gv each time
the system enters state sc, and is otherwise like the Bowling two-step.

3 Analytics

We begin with a brief definition of a Markov-Process.

Definition 6 A Markov-Process is a set of n states S and n2 tran-
sition probabilities, where transition probability pij represents the
probability that if the system is in state si at some time t, then the
sytem will be in state sj at time t + 1.

The transition probabilities pij form the elements of the transition
matrix, P , with Pji = pij ; P identifies the Markov-Process.

In general, a policy for a FASP can depend on an arbitrarily rich
history of observations and actions upto the present, but for the pur-
poses of clarity we restrict ourselves to reactive policies, π, in the set
Π ⊆ Σ(O→A); extensions to this are discussed in Section 5. For a
reactive policy, π ∈ Π, the dynamics of this system resolves into a
set of state to state transition probabilities, called the State Transition
Function, and defined as follows.

Definition 7 (State Transition Function) Given a FASP M =
(S, A, O, t, ω, r, i, Π), with Π = {f |f : O→PD(A)}, the full
state transition function is τM : Π→Σ(S →S), where for π ∈ Π,
τM (π) = τπ

M (written as τπ when M is clear), and, ∀s, s′ ∈ S,

τπ
M (s′|s) =

X
o∈O

X
a∈A

ω(o|s)π(a|o)t(s′|s, a)

Clearly, for a fixed π ∈ Π, the FASP behaves as a Markov Pro-
cess and the state transition function gives the probabilities in the
associated transition matrix, T π , in the following way,

T π
ji = τπ(sj |si)

Our analytic solution makes use of the ergodicity property, defined
for Markov-Process, and in turn for FASPs, as follows.

Definition 8 (ergodicity) A Markov-Process with states S is step er-
godic, if every state s ∈ S is positive recurrent (guaranteed to be
returned to in finite time), aperiodic (the greatest common divisor of
all returning paths’ lengths is 1), and accessible by all states s′ �= s
(will reach s from s′ in finite time).

A FASP is ergodic, if for any fixed policy π ∈ Π it resolves to an
ergodic Markov-Chain.

The occupancy for a Markov-Process or a FASP is a probability dis-
tribution, b ∈ PD(S), and represents our knowledge about the state
of the system, and can be written as a vector, b , with b

ᵀ
1 = 1.

Lemma 1 Given some occupancy b and a state dependent measure
signal r ∈ Σ(S→R), then the expected signal from r is written as

E (r(b)) = E (r |r �r(s), s �b) =
X
s∈S

b(s)E (r(s))

A Markov-Process, P , which is ergodic, has a well defined unique
stationary (asymptotic) occupancy, d satisfying d = Pd, and the
system approaches d at large time-steps, irrespective of the starting
occupancy, i.e. limn→∞ P nd0 = d, ∀d0 ∈ PD(S) [15].

Clearly, for any ergodic FASP, and fixed policy π ∈ Π, there is
also a policy dependent asymptotic occupancy d(π), written as dπ ,
satisfying dπ = T πdπ and limn→∞ P nd0 = dπ , ∀d0 ∈ PD(S).

We are interested in maximising the average value for some given
reward signal for an infinite trace, and, hence, define the expected
return for the signal r given policy π as

Jr(π) = lim
N→∞

E

1

N

NX
i=0

ri

˛̨̨
˛̨π
!

From [8] we get the following result.

Theorem 2 (From [8]) For any ergodic FASP, fixed π ∈ Π and r ∈
Σ(S →R), the expected average signal on r over any infinite trace,
approaches the occupancy return for r(dπ) w.p.1, i.e.

Jr(π) = E (r(dπ)) =
X
s∈S

dπ(s)E (r(s))

A policy space, Π, is parametrised by Θ ⊆ R
l if there is a sur-

jective function μ : Θ→Π, so for any θ ∈Θ, then μ(θ) = πθ∈ Π.
For brevity, πθ is written as θ. Joint policy space Π =× g∈G Πg is
parametrised by Θ =× g∈G Θg in the obvious way.

For any SMAFASP, each agent g is assumed to have a reward sig-
nal rg , and wishes select θ to maximise its associated expected return
Jg(θ). Having identified this aim, it is natural to consider gradient
ascent (policy-gradient) methods. For single-agent policy-gradient
methods, as for the POMDP, this involves sampling (or estimating)
the gradient of Jg(θ) at the present policy θ, ∇θJg , then updating
the improved policy to θ′ = θ + β.∇θJg – using suitably small β,
and in this way climb the gradient to some local maximum.

However, there are two challenges to overcome: firstly there is no
immediately available way to sample the gradient, and secondly in a
multi-agent environment the expected return function Jg : Θ → R

is defined over the entire joint policy Θ, but each agent can at best
maximise this function within its own policy space Θg .

The first challenge is addressed by RL techniques described as
policy-gradient approaches, where the agent estimates the gradient
in some way in order to climb it. The GPOMDP method, from [1],
estimates the gradient directly, but other actor-critic methods [16]
estimate the policy-gradient using intermediate estimates called the
value- and Q-functions – details of these can be found in [8]. It is the
actor-critic algorithms that we explore in this paper.

The second challenge is perhaps more profound, partly because in
general each agent knows nothing about the other agents’ choice of
policies, and, more ominously, the other agents will exploit any pre-
dictable behaviour to their advantage. However, each agent is subject
to this same challenge, and must explore action choices and their
consequences to find the most advantageous policy with respect to
all the others’ policies.

3.1 Learning Pressure Fields

For single-agent problems, it is possible to use ∇θJg to incre-
mentally adapt the policy, but, for multi-agent systems, the policy
θ = (θg, θ−g) ∈ Θ is a joint policy, where agent g’s policy part is
θg ∈ Θg , and θ−g refers to the rest of the policy – which g knows
nothing of and cannot control. The agent cannot find the full gradient,

L. Dickens et al. / The Dynamics of Multi-Agent Reinforcement Learning 369

and instead is limited to finding the partial gradient at θ, ∇θg J(θ),
and using this to improve it’s policy with θ′

g = θg + β.∇θg Jg(θ)
[5, 8]. Since each Θg is orthogonal to every other and together span
Θ, we can combine these partial gradients to give a combined gra-
dient of perceived local improvement, or learning pressure vector,
given for n agents by the following vector, in block matrix notation.

Γ(θ) =
“
∇θ1J1(θ)

ᵀ ∇θ2J2(θ)
ᵀ

. . . ∇θnJn(θ)
ᵀ”ᵀ

This defines the learning pressure field (LPF), and we posit that it
represents a prediction of the learning behaviour of the multi-agent
system, where each agent is a policy-gradient learner [8].

3.2 Solving the Two-Step Game

In both the games defined in Section 2 there is a cycle of two-steps:
the first transitions from s0 to either sL or sR, the second transitions
to s0 or sC . From then at all odd steps i, si = sL or sR and si+1 =
s0 or sC . We say the process is two-step ergodic.

Definition 9 (n-step ergodicity) A Markov-Chain with states S is
n-step ergodic, if every state s ∈ S is positive recurrent; has a pe-
riodicity of n (returns to s can only occur after k.n steps, k ∈ N);
and is accessible by all states s′ �= s.

A FASP is n-step ergodic, if for any fixed policy, π ∈ Π, it resolves
to an n-step ergodic Markov-Chain.

Both the Bowling and Inverted two-step games are two-step er-
godic. To solve them, we must first parametrise our policy. Recall
that there are two agents each with a choice of two actions in a single
observation. We parametrise π with θv, θh ∈ (0, 1), which respec-
tively represent the probabilities of gv and gh choosing a1.

πθ
v (a1|o) = θv πθ

v (a2|o) = 1 − θv

πθ
h(a1|o) = θh πθ

h(a2|o) = 1 − θh

Since this game is two-step ergodic, we can find an surrogate to the
asymptotic occupancy, called the composite asymptotic occupancy,
d̄θ , this is an unbiased linear combination of dθ

odd and dθ
even, which

represent the asymptotic occupancies at odd and even time-steps re-
spectively. dθ

odd can be found by fixing some θ ∈ Θ and only ob-
serving the resulting process at odd time-steps. This resolves to a
Markov-Process with S = {sL, sR}, and transition matrix

T θ
odd =

„
θh + ε − 2εθh θh + ε − 2εθh

1 − θh − ε + 2εθh 1 − θh − ε + 2εθh

«

The associated asymptotic occupancy satisfies

dθ
odd = T θ

oddd
θ
odd

A similar approach is used to find dθ
even. We use d̄θ = 1

2
(dθ

even+

dθ
odd), in place of dθ in Theorem 2 to predict the expected returns.

Figures 2 and 3 show Jv(θ) = r1(d̄
θ) and Jh(θ) = r1(d̄

θ) respec-
tively for the Bowling two-step, and indicate that agent gv prefers
joint policies θ≈(0, 0) or (1, 1) while gh prefers θv ≈1 − θh.

The partial gradients ∇θv Jv(θ) and ∇θhJh(θ) can be used to
construct the LPF, Γ(θ) – see Figure 4. These show, for example,
that a joint policy (θv, θh) = (0.2, 0.2), induces gv to lower θv ,
while gh wants to increase θh; this reflects the preferences for gv and
gh described above. The Bowling two step-game has a non-strict NE
at (θv, θh) = (0.5, 0.5), but Figure 4 indicates that policy-gradient
methods may converge on this point anyway. In a similar way, we
construct the LPF for the Inverse two-step game, see Figure 5. This
shows that the Inverse two-step game has no NE.

Figure 2. Jv for Bowling two-step game

Figure 3. Jh for Bowling two-step game

Figure 4. LPF for the Bowling two-step

Figure 5. LPF for the Inverted two-step

4 Experiments

We test our predictions with the following actor-critic techniques, as
described in [8].

L. Dickens et al. / The Dynamics of Multi-Agent Reinforcement Learning370

TD: TD(λ) estimation – λ = 0.9 with QP optimisation.
MTD: MTD(λ) estimation – λ = 0.9 with QP optimisation.
PMC: PMC estimation – γ = 0.9 with QP optimisation.
QVP: PMC estimation – γ = 0.9 with QVP optimisation.

For each of the SMAFASP games from Section 2 and for each or-
dered combination of two algorithms, we ran thirty-two 100000-step
traces in each game, and collected the reward accumulated by agent
gv in each case. Figures 6 and 7 show the mean accumulated re-
wards for the Bowling and Inverted two-step games respectively; the
different algorithm combinations are indicated in the keys, and the
results are staggered with a gap of 1000 time-steps for easier read-
ing. For both two-step games, we can see that all the algorithms per-
formed approximately equally, but in the Inverted two-step there is,
on the whole, a greater spread of results both within and between
tests. However, these graphs do not give us any more information,
and while it may be possible to justify the choice of one or other
algorithm for use with one of these games, we cannot generalise fur-
ther about the algorithms’ relative performance for unseen games.
We cannot even say why there was a difference between the two
games tested. Which graph is more practical in terms of generali-
sation?

For the same experiments, we also collected the joint-policy at
each time-step, as represented by the vector θ = (θv, θh). This al-
lows us to observe how θ changed with time, and how closely the
path through policy space of each experiment (the policy trace) ad-
hered to the LPF, shown in Section 3. First, we looked at both agents
using the same algorithm. Figure 8 shows the first 10000-steps of
the policy trace from when both agents used the TD(λ) algorithm on
the Bowling two-step, λ = 0.9; two different line styles are used
to help differentiate traces, and the policy at step 10000 is shown
with a point. We were also able to see how different algorithms fared
against one another. Figure 9 shows 10000-step traces, for agents gv

and gh using PMC and QVP respectively, in the Inverted two-step
game. Other algorithm combinations showed similar results.

These policy trace graphs give us more information, and show
that all the algorithms did indeed perform equivalently, and sup-
port the notion that actor-critic algorithms follow the LPF, even
when different algorithms compete against one another. In particu-
lar, the Inverted two-step traces seem to get trapped at policy values
θ ≈ (1, 0) and (0, 1) on occasion. This phenomena appears to be
highly dependent on the initial policy and noise in the system, and
not due to particular behavioural patterns. This indicates that the dif-
ferences in the accumulated rewards for the Inverted two-step may
be artifacts of the experimental process, rather than true differences
between the algorithms. We have found that even more information
can be inferred by looking at stop frame animations of the policy
traces, as opposed to static images3.

5 Discussion

In this paper, we have explained the need for accurate, efficient and
robust RL algorithms for multi-agent domains, and for these algo-
rithms to operate effectively in the domain of stochastic policies.
This justifies the need to have appropriate tools and methodologies
for evaluating such RL algorithms, and that is our focus here.

We began by formulating an umbrella framework, the FASP, under
which a number of single- and multi-agent decision processes can be
formulated, and then chose to focus on SMAFASPs – one variety of
multi-agent FASP. This has given us the opportunity to investigate

3 Examples can be made available on request.

non-cooperative games, which have been shown to have the widest
selection of potential phenomena [5, 8].

We concentrated on infinite-horizon processes with purely reac-
tive policies, i.e. those with no memory. For infinite-horizon FASPs,
considering only reactive policies is not as constrictive as it may
first appear; the associated policies must be independent of time,
as even an agent with a very large memory must eventually forget
(fail to remember) some of its interaction history. Finite memories
represent an improved but still incomplete historical record, and are
therefore fundamentally no different from an observation that pro-
vided the same information. Further, in multi-agent non-cooperative
problems, where agents compete in a series of episodes, the interac-
tion from previous episodes may inform the current action. So, while
the game appears episodic in structure, the on-going engagement be-
tween agents is not.

We showed that for small models, we can predict the expected re-
turn for any finite measure signal, such as a reward, and were able
to construct learning pressure fields (LPF) from the partial gradients
of these expected returns. With the LPF we claim to predict the di-
rection of learning even in non-cooperative multi-agent systems, and
we justify this both theoretically and experimentally.

In particular, the experiments showed that for our models the LPFs
were followed surprisingly closely by all the actor-critic algorithms
we selected to investigate, and gave us substantially more informa-
tion than did the more familiar accumulated reward graphs. More-
over, these trace graphs showed an approximate equivalence between
what are substantially different approaches. For instance the more
traditional TD(λ) estimation with the stochastic incremental QP op-
timisation algorithm performs similarly to the fairly radically differ-
ent PMC estimation approach using the triple table optimisation –
see [8] for a complete description of these algorithms.

The next question one might ask is, ‘Why would we need more
than one actor-critic algorithm, if they all perform approximately
equally in these experiments?’

The reasons could be theoretical or experimental and a shortlist
is as follows. Firstly, The MTD(λ) and PMC estimation approaches
are theoretically more sound for step-size parameters that can vary
upwards as well as decay to zero [8]. Such an approach is used by
agents in [4] to avoid exploitation by others.

Additionally, the PMC estimation approach gives theoretical
bounds on the error in the gradient estimate [8]. This places a limit
on the approximation each choice of parameter γ represents in terms
of bias to the gradient, and may help us select these parameter val-
ues more appropriately. Also, the similarities in structure and perfor-
mance of the PMC and TD(λ) algorithms seems to suggest there is
some equivalence between using TD with λ and PMC with γ, when
λ = γ. More experimental results are needed to justify this, and ide-
ally we would like to see an equivalent theoretical result for TD(λ).

The QVP approach, unlike the other algorithms tested here, does
not require the agent to keep an explicit representation of the policy,
in terms of finite probability distributions. For large action spaces,
this could be lighter weight, and may prove more amenable to learn-
ing with continuous action spaces [8].

In practice, there could be any number of reasons for one algo-
rithm to be preferred over another. What this paper provides is one
way to investigate these and other algorithms in detail, to facilitate
this choice.

L. Dickens et al. / The Dynamics of Multi-Agent Reinforcement Learning 371

Figure 6. Average Rewards for gv in Bowling two-step game. Figure 7. Average Rewards for gv in Inverted two-step game.

Figure 8. TD versus TD in Bowling two-step game Figure 9. PMC versus QVP in Inverted two-step game

5.1 Future Work

At present, we are investigating how these actor-critic algorithms
might be extended to find solutions in systems with more than one
measure signal per agent, such as a reward and a risk signal. This
might involve staying below one bound for one expected return and
maximising the return on the other, or perhaps more interestingly to
optimise all expected returns simultaneously in order to find candi-
date pareto optimal solutions.

Another theoretical advance would include adapting the PMC and
MTD algorithms to learn natural (or covariant) gradients as has al-
ready been done for the TD(λ) approach [3, 14]. These approaches
use the local shape of the gradient function to learn more efficiently.

In terms of experimental results and tools, we would like to de-
velop a measure of deviance from the predicted LPF for experimental
traces. This would give a quantitative way to leverage the knowledge
contained in the LPF. The experimental testing of RL algorithms has
only just begun, and we hope to extract more useful experimental
results for RL algorithms with the help of tools like the LPF.

This is a rich seam of research the fruits of which could be power-
ful and flexible techniques for optimising control, as well as perhaps
more insight into the theory of learning.

REFERENCES

[1] J. Baxter and P. Bartlett, ‘Infinite-Horizon Policy-Gradient Estimation’,
Journal of Artificial Intelligence Research, 15, (2001).

[2] D. Bernstein, S. Zilberstein, and N. Immerman, ‘The complexity of de-
centralized control of markov decision processes’, in UAI, (2000).

[3] S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and M. Lee, ‘Incremental
Natural Actor-Critic Algorithms’, in NIPS, (2008).

[4] M. Bowling and M. Veloso, ‘Simultaneous adversarial multi-robot
learning’, in IJCAI, (2003).

[5] M. Bowling and M. Veloso, ‘Existence of Multiagent Equilibria with
Limited Agents’, Journal of Artificial Intelligence Research, 22, (2004).

[6] Michael Bowling and Manuela Veloso, ‘Multiagent learning using a
variable learning rate’, Artificial Intelligence, 136, 215–250, (2002).

[7] D. Braziunas, ‘POMDP solution methods: a survey’, Technical report,
Department of Computer Science, University of Toronto, (2003).

[8] L. Dickens, Learning to Act Stochastically, Ph.D. dissertation, Imperial
College (University of London), December 2009.

[9] D. Fudenberg and D. K. Levine, The Theory of Learning in Games,
MIT Press, 1998.

[10] L. Kaelbling, M. Littman, and A. Moore, ‘Reinforcement learning: A
survey’, Journal of Artificial Intelligence Research, 4, (1996).

[11] V. R. Konda and J. N. Tsitsiklis, ‘On actor-critic algorithms’, SIAM J.
Control Optim., 42(4), (2003).

[12] M. Littman, ‘Markov games as a framework for multi-agent reinforce-
ment learning’, in ICML, (1994).

[13] John Nash, Non-Cooperative Games, Ph.D. dissertation, Princeton Uni-
versity, 1950.

[14] J. Peters and S. Schaal, ‘Natural Actor-Critic’, Neurocomputing, 71(7-
9), (2008).

[15] S. Singh, T. Jaakkola, and M. Jordan, ‘Learning without State-
Estimation in Partially Observable Markovian Decision Processes’, in
ICML, (1994).

[16] R.S. Sutton and A.G. Barto, Reinforcement Learning: An Introduction,
MIT Press, Cambridge, MA, 1998.

[17] K. Tuyls, P. J. Hoen, and B. Vanschoenwinkel, ‘An Evolutionary Dy-
namical Analysis of Multi-Agent Learning in Iterated Games’, Au-
tonomous Agents and Multi-Agent Systems, 12(1), 115–153, (2006).

[18] M. Zinkevich, A. Greenwald, and M. Littman, ‘Cyclic Equilibria in
Markov Games’, in NIPS, (2005).

L. Dickens et al. / The Dynamics of Multi-Agent Reinforcement Learning372

