
Uncertainty Propagation for Efficient Exploration in
Reinforcement Learning

Alexander Hans1,2 and Steffen Udluft2

Abstract. Reinforcement learning aims to derive an optimal pol-
icy for an often initially unknown environment. In the case of an
unknown environment, exploration is used to acquire knowledge
about it. In that context the well-known exploration-exploitation
dilemma arises—when should one stop to explore and instead ex-
ploit the knowledge already gathered? In this paper we propose an
uncertainty-based exploration method. We use uncertainty propaga-
tion to obtain the Q-function’s uncertainty and then use the uncer-
tainty in combination with the Q-values to guide the exploration to
promising states that so far have been insufficiently explored. The
uncertainty’s weight during action selection can be influenced by a
parameter. We evaluate one variant of the algorithm using full covari-
ance matrices and two variants using an approximation and demon-
strate their functionality on two benchmark problems.

1 INTRODUCTION

In the machine learning field of reinforcement learning (RL) [18] one
is concerned with an agent acting in an initially often unknown en-
vironment. The agent chooses its actions based on the current state,
after executing an action the agent observes a state transition and
a reward. The aim is to maximize the expected sum of (possibly
discounted) future rewards. In the case of an initially unknown en-
vironment, the agent must explore to gather knowledge needed to
act optimally, i.e., choose those actions that maximize the reward. In
that context the well-known exploration-exploitation dilemma arises:
when should the agent stop trying to gain more information (explore)
and start to act optimally w.r.t. to already gathered information (ex-
ploit)?

In this paper, we propose a method that combines existing (already
gathered) knowledge and uncertainty about the environment to fur-
ther explore areas that seem promising judging by the current knowl-
edge. Moreover, by aiming at obtaining high rewards and decreasing
uncertainty at the same time, good online performance is possible.

Our algorithms use the uncertainty of the Q-function, which is de-
termined by applying uncertainty propagation (UP) to the Bellman
iteration. In previous work, this approach was used to derive robust
policies (quality assurance) [10, 16]. Here we show how the same
principle can be applied to uncertainty-based exploration.

The exploration-exploitation dilemma has been of interest for a
long time, resulting in many contributions, some of them also dealing
with model uncertainty like we do here (e.g., [1, 5–7, 12, 17, 19]).

1 Ilmenau University of Technology, Neuroinformatics & Cognitive
Robotics Lab, P.O. Box 100565, D-98684 Ilmenau, Germany, email:
alexander.hans.ext@siemens.com

2 Siemens AG, Corporate Research and Technologies, Otto-Hahn-Ring 6,
D-81739 Munich, Germany, email: steffen.udluft@siemens.com

The main contribution of this paper is to show that using a natu-
ral measure of the uncertainty obtained via UP it is possible to ex-
plore efficiently without relying on an artificial exploration bonus.
Furthermore, in two variants of our algorithm the Q-function itself
is not modified and still represents the followed policy and actu-
ally collected rewards. Moreover, no “optimistic” initialization of the
Q-function is necessary. Finally and most importantly, as presented
in [10, 16], the method that is used for exploration here can be used
for quality assurance by simply changing the parameter that influ-
ences how the uncertainty is considered for action selection.

2 BACKGROUND

2.1 Reinforcement Learning

In RL one is interested in finding a policy π : S �→ A that moves an
agent optimally in an environment assumed to be a Markov decision
process (MDP) M := (S,A,P,R) with a state space S, a set of possible
actions A, the system dynamics, defined as probability distribution P :
S×A×S �→ [0,1], which gives the probability of reaching state s′ by
executing action a in state s, and a reward function R : S×A×S �→R,
which determines the reward for a given transition. Moving the agent
optimally means maximizing the value function

V π (s) = ∑
s′

P(s′|s,a)[R(s,a,s′)+ γV π (s′)
]
, (1)

where γ ∈ [0,1] is the discount factor. Often a so-called Q-function
Qπ (s,a) is utilized that gives the expected discounted reward when
choosing action a in state s and afterward following policy π . The
Q-function for the optimal policy Qπ∗

= Q∗ is given by a solution of
the Bellman optimality equation

Q∗(s,a) = Es′
[
R(s,a,s′)+ γV ∗(s′)

]
(2)

= Es′

[
R(s,a,s′)+ γ max

a′
Q∗(s′,a′)

]
. (3)

From Q∗ the optimal policy follows as π∗(s) = argmaxa Q∗(s,a),
where π∗ is a deterministic policy. It can be shown that for any MDP
an optimal deterministic policy exists [14].

2.2 Uncertainty Propagation

Uncertainty propagation (UP), also known as Gaussian error propa-
gation (see, e.g., [3]), is a common method in statistics to propagate
the uncertainty of measurements to the results. It is based on a first-
order Taylor expansion. Given a function f (x) with f : RM �→ R

N

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-361

361



and the uncertainty of the function arguments as covariance matrix
Cov(x), the uncertainty of the function values f (x) is determined as

Cov( f ) = Cov( f , f ) = DCov(x)DT. (4)

D is the Jacobian matrix of f w.r.t. x consisting of the partial deriva-
tives of f w.r.t. to each component of x, i.e., Di, j =

∂ fi
∂x j

.
When neglecting correlations of the arguments x as well as corre-

lations of the components of f (x) the argument’s covariance matrix
and the resulting covariance matrix Cov( f ) are diagonal. In this case,
a simplified expression for determining the uncertainty σ fi of values
fi(x) can be used:

(σ fi)2 = ∑
j

(
Di, j

)2
(σx j)

2 (5)

= ∑
j

(
∂ fi
∂x j

)2
(σx j)

2. (6)

Here, (σ fi)2, i = 1,2, . . . ,N corresponds to the diagonal elements of
Cov( f ).

3 RELATED WORK

There have been many contributions considering efficient exploration
in RL. E.g., Dearden et al. presented Bayesian Q-learning [5], a
Bayesian model-free approach that maintains probability distribu-
tions over Q-values. They either select an action stochastically ac-
cording to the probability that it is optimal or select an action based
on value of information, i.e., select the action that maximizes the
sum of Q-value (according to the current belief) and expected gain
in information. They later added a Bayesian model-based method [4]
that maintains a distribution over MDPs, determines value functions
for sampled MDPs, and then uses those value functions to approxi-
mate the true value distribution. In model-based interval estimation
(MBIE) [17,19] one tries to build confidence intervals for the transi-
tion probability and reward estimates and then optimistically selects
the action maximizing the value within those confidence intervals.
Strehl and Littman proved that MBIE is able to find near-optimal
policies in polynomial time [17]. This was first shown by Kearns and
Singh for their E3 algorithm [12] and later by Brafman and Tennen-
holtz for the simpler R-Max algorithm [1].

R-Max takes one parameter C, which is the number of times a
state-action pair (s,a) must have been observed until its actual Q-
value estimate is used in the Bellman iteration. If it has been observed
fewer times, its value is assumed as Q(s,a) = Rmax/(1− γ), which
is the maximum possible Q-value (Rmax is the maximum possible
reward). This way exploration of state-action pairs that have been
observed fewer than C times is fostered.

In [17] Strehl and Littman present an additional algorithm called
model-based interval estimation with exploration bonus (MBIE-EB)
of which they also prove optimality. According to their experiments,
it performs similarly to MBIE. MBIE-EB alters the Bellman equation
to include an exploration bonus term β/√ns,a, where β is a param-
eter of the algorithm and ns,a the number of times state-action pair
(s,a) has been observed.

There have also been a number of contributions considering the in-
corporation of risk in RL [9, 11, 13, 15]. These approaches deal with
the risk of obtaining a low return in the single run. A risk that even
exists for an optimal policy due to the inherent stochasticity of the
MDP. The consideration of uncertainty [10,16] deals with the uncer-
tainty of the estimated parameters, due to our incomplete knowledge

about the MDP. While this uncertainty decreases with an increasing
number of observation, the stochasticity of the MDP and therefore
the risk of obtaining a low return in the single run remains.

4 UNCERTAINTY PROPAGATION FOR
EXPLORATION

We want to determine the Q-function together with its uncertainty
σQ. We can then use the knowledge of uncertainty to guide the ex-
ploration to select actions that are promising w.r.t. their Q-value but
still insufficiently explored.

To determine σQ, we start with an initial covariance matrix
Cov(Q0,P,R) and apply UP (section 2.2) to the update equation of
the Bellman iteration

Qm(s,a) := ∑
s′

P̂(s′|s,a)
[
R̂(s,a,s′)+ γV m−1(s′)

]
, (7)

where P̂ and R̂ denote the estimators for the transition probabilities
and rewards, respectively, and V m−1 the value function of the previ-
ous iteration. The Bellman equation takes P̂, R̂, and V m−1 as argu-
ments and produces Qm as result. To apply UP, we use equation (4)
on the Bellman equation to obtain the update rule

Cov(Qm,P,R) := Dm−1Cov(Qm−1,P,R)(Dm−1)T, (8)

where Dm denotes the Jacobian matrix (obtained by differentiating
equation (7))

Dm =

⎛
⎝ Dm

Q,Q Dm
Q,P Dm

Q,R
0 I 0
0 0 I

⎞
⎠ (9)

(Dm
Q,Q)(i, j),(k,l) = γπm(sk,al)P̂(sk|si,a j)

(Dm
Q,P)(i, j),(l,n,k) = δi,lδ j,n

(
R̂(si,a j,sk)+ γV m(sk)

)
(Dm

Q,R)(i, j),(l,n,k) = δi,lδ j,nP̂(sk|si,a j).

Note that in the above definition of Dm a stochastic policy π : S×A �→
[0,1] is assumed that gives the probability of choosing action a in
state s.3 Starting with an initial covariance matrix

Cov(Q0,P,R)

=

⎛
⎝ Cov(Q0) Cov(Q0,P) Cov(Q0,R)

Cov(P,Q0) Cov(P) Cov(P,R)
Cov(R,Q0) Cov(P,R)T Cov(R)

⎞
⎠ (10)

=

⎛
⎝ 0 0 0

0 Cov(P) Cov(P,R)
0 Cov(P,R)T Cov(R)

⎞
⎠ , (11)

the update rule (8) is used in parallel to the Bellman update equation
in each iteration to update the covariance matrix.

Finally, from the covariance matrix we can extract the Q-func-
tion’s uncertainty as σQm =

√
diag(Cov(Qm)).

For the diagonal version, called the diagonal approximation of
uncertainty incorporating policy iteration (DUIPI) [10], the update
equation for σQm simplifies to

(σQm(s,a))2 := ∑
s′
(dQQ)

2(σV m−1(s′))2 +

∑
s′
(dQP)

2(σ P̂(s′|s,a))2 +

∑
s′
(dQR)

2(σ R̂(s,a,s′))2, (12)

3 A deterministic policy πd can easily be mapped to a stochastic one by set-
ting π(s,a) := 1 if πd(s) = a and π(s,a) := 0 otherwise.

A. Hans and S. Udluft / Uncertainty Propagation for Efficient Exploration in Reinforcement Learning362



dQQ = γP̂(s′|s,a),
dQP = R̂(s,a,s′)+ γV m−1(s′),
dQR = P̂(s′|s,a).

While the full-matrix version operates on matrices (Cov(·) and Dm

are matrices), DUIPI can be implemented using only vectors. Ac-
cordingly, equation (12), updating a single value (σQ(s,a))2, must
be applied repeatedly to update the whole vector (σQ)2. Relating
to the complete covariance matrix Cov(Qm,P,R), the vector (σQ)2

corresponds to the diagonal of the sub-matrix Cov(Qm). For the di-
agonal version the uncertainty is initialized as σQ0 := 0. Cov(P) and
Cov(R) as well as σP and σR depend on the choice of estimators
(section 4.2).

For both variants, when the iteration converges, we obtain Q∗ and
σQ∗.

For further details we refer to [10, 16].

4.1 Negative ξ for Exploration

Now that we have the uncertainty of the Q-function, we can use it to
derive a policy that looks for high Q-values and high uncertainty by
setting ξ to a negative value:

πξ (s) := argmax
a

[Q∗(s,a)−ξ σQ∗(s,a)] . (13)

With negative ξ to a Q-value its uncertainty σQ is added (weighted
by ξ ), thus making state-action pairs with high uncertainty more at-
tractive. However, this way the uncertainty is only considered for one
step, since Q∗ does not contain the new action selection rule includ-
ing σQ∗. Instead, Q∗ represents the values of the expectation optimal
policy, πξ is therefore inconsistent in considering the uncertainty.

To overcome this problem, the policy must be updated within the
iteration, just like V m(s′) = maxa′ Qm(s′,a′) in value iteration imple-
ments policy improvement (resulting in Q∗). There are at least two
ways of implementing policy improvement within the iteration:

Updating Q-values with uncertainty. The most obvious way of
accounting for uncertainty is to modify the Q-values by adding or
subtracting the ξ -weighted uncertainty in each iteration. However,
this leads to a Q-function that is no longer the Q-function of the
policy, as it contains not only the sum of (discounted) rewards, but
also uncertainties. Therefore, using this Q and σQ it is not possible
to reason about expected rewards and uncertainties when following
this policy. Moreover, for the exploration case with negative ξ the
Q-function does not converge in general for this update scheme, be-
cause in each iteration the Q-function is increased by the ξ -weighted
uncertainty, which in turn leads to higher uncertainties in the next it-
eration. On the other hand, by choosing ξ and γ to satisfy ξ + γ < 1
it is possible to keep Q and σQ from diverging. In combination with
DUIPI for exploration this has proven useful in our experiments, as it
allows to use DUIPI successfully even for environments that exhibit
high correlations between different state-action pairs, because by up-
dating the Q-values the uncertainty is propagated through them.

Considering uncertainty for policy improvement. Instead of
mixing Q-values and their uncertainty, it is also possible to change
the update of the policy in each iteration according to equation (13).
In the Bellman update equation (7) then V m(s) = Qm(s,πm(s)),
for the update of uncertainty σV m(s) = σQm(s,πm(s)). Using this
method, the Q-values and their uncertainty are not mixed and the
Q-function remains a valid Q-function for the resulting policy. This
method was used in [10, 16].

From this follow three variants of the algorithm:

1. Full-matrix UP which considers the full covariance matrix and
does not mix Q-values and their uncertainty,

2. Classic DUIPI (DUIPI) which neglects the non-diagonal elements
of the covariance matrix and does not mix Q-values and their un-
certainty,

3. DUIPI with Q-modification (DUIPI-QM) which also neglects the
non-diagonal elements of the covariance matrix, but does modify
the Q-values with their corresponding ξ -weighted uncertainty in
each iteration.

4.2 Choice of Estimators

There are many possible ways for modeling estimators and their un-
certainty for the transition probabilities P and the rewards R.

A popular method is the frequentist approach (sampling theory)
using relative frequency as the estimator, i.e., P̂(s′|s,a) = ns,a,s′

ns,a
,

where ns,a,s′ denotes the number of observed transitions to state s′
after being in state s and executing action a and ns,a = ∑s′ ns,a,s′ the
total number of times when in state s action a was executed. Assum-
ing that all transitions from different state-action pairs are indepen-
dent of each other and the rewards, the transition probabilities can
be modeled as multinomial distributions. In the corresponding co-
variance matrix exist therefore correlations only between transitions
from identical state-action pairs. The covariance matrix is filled with
values

(Cov(P))(i, j,k),(l,m,n) = δi,lδ j,m
P(sk|si,a j)(δk,n −P(sn|si,a j))

nsi,a j

, (14)

with the Kronecker delta (δi, j = 1 if i = j and δi, j = 0 otherwise)
realizing a correlation of 0 between transitions from different state-
action pairs.

Similarly, the rewards can be estimated by their sample means, the
corresponding covariance matrix is

(Cov(R))(i, j,k)(l,m,n) = δi,lδ j,mδk,n
var(R(si,a j,sk))

nsi,a j ,sk −1
. (15)

Another possibility is using a Bayesian setting. Again assuming
all transitions from different state-action pairs to be independent of
each other and the rewards, the transitions are modeled as multino-
mial distributions. The corresponding prior over the parameter space
P(sk|si,a j) for given i and j is then modeled as a Dirichlet distri-
bution with prior parameters αi j1,αi j2, . . . ,αi j|S| (note that we set
αi j1 = αi j2 = . . .= αi j|S| = α). In the light of the observations these
are updated to posterior parameters αd

i jk = αi jk +nsi,a j ,sk . Assuming

the posterior estimator P̂(sk|si,a j) = αd
i jk/∑|S|

k=1 αd
i jk, the covariance

matrix for P then becomes

(Cov(P))(i, j,k),(l,m,n) = δi,lδ j,m
αd

k,i, j(δk,nαd
i, j −αd

n,i, j)

(αd
i, j)

2(αd
i, j +1)

. (16)

Setting α = 0 results in a prior that leads to the same estimates and
slightly lower uncertainties compared to the frequentist approach. On
the other hand, setting α = 1 leads to a flat maximum entropy prior
that assumes all transitions from a state to all other states equally
probable. In [10] setting α = m

|S| is suggested, where m is the num-
ber of expected successor states. This way most of the probability
mass is distributed among the first observed m successor states after

A. Hans and S. Udluft / Uncertainty Propagation for Efficient Exploration in Reinforcement Learning 363



a few observations. It might also be worthwhile to use a hierarchi-
cal prior as proposed in [8]. The approach also tries to distribute the
probability mass among a relatively low number of actually observed
outcomes compared to the number of possible outcomes. Instead of
directly estimating α = m

|S| , one first uses a prior over the feasible
sets of possible outcomes.

4.3 Putting It Together

Having selected an estimator for the transition probabilities and re-
wards, one first obtains estimations P̂ and R̂ along with uncertainties
σP and σR. Starting with an arbitrarily initialized Q0 and σQ0, e.g.
Q0 = σQ0 = 0, as well as arbitrary policy π0, equation (7) is used to
obtain Qm+1, where V m(s) =Qm(s,πm(s)). For full-matrix UP equa-
tion (8) is used to obtain Cov(Qm+1), while for DUIPI equation (12)
is used to obtain σQm+1. The updated Qm and σQm are then used to
update the policy:

πm+1(s) := argmax
a

Qm+1(s,a)−ξ σQm+1(s,a). (17)

For DUIPI-QM, after having obtained Qm+1 and σQm+1, Qm+1 is
modified using the weighted uncertainty:

Qm+1′(s,a) := Qm+1(s,a)−ξ σQm+1(s,a). (18)

Qm+1′ is then used to update the policy:

πm+1(s) := argmax
a

Qm+1′(s,a). (19)

When used online, ideally a new policy is generated after each
new observation. If this is too expensive, it is also possible to recal-
culate the policy only every n time steps. Naturally, unless n = 1 new
information is not used as soon as it is available.

For our experiments (section 6) we used a Bayesian estimator
with a Dirichlet prior for the transition probabilities and the expected
value and the corresponding (frequentist) uncertainty for the rewards.
Since all our MDPs exhibit deterministic rewards, using frequentist
uncertainties yields correct uncertainties.

5 COMPUTATIONAL COMPLEXITY

Time Complexity. The time complexity of the standard Bellman
iteration lies in O(|S|2|A|). DUIPI and DUIPI-QM add the step of
updating the Q-function’s uncertainty σQ, having a time complexity
of also O(|S|2|A|). Thus DUIPI and DUIPI-QM have a time com-
plexity of O(|S|2|A|). Full-matrix UP adds a time complexity of
O((|S||A|)2.376) for the update of the covariance matrix [2], thus hav-
ing a higher time complexity than the standard Bellman iteration.

Space Complexity. The space complexity of the standard Bell-
man iteration is dominated by the transition probabilities P and the
reward estimates R, both needing O(|S|2|A|) space each. The require-
ments of Q are O(|S||A|), hence the total space complexity of the
standard bellman iteration is O(|S|2|A|). DUIPI and DUIPI-QM add
a complexity of O(|S|2|A|) for σP and σR each as well as O(|S||A|)
for σQ. Therefore, the total space complexity remains O(|S|2|A|).
The full-matrix variant needs to hold the complete covariance matrix
consisting of sub-matrices Cov(Q), Cov(Q,P), Cov(Q,R), Cov(P),
Cov(P,R), and Cov(R), which equates to a space complexity of
O(|S|5|A|3).

Although those are only upper bounds (especially the covariance
matrix is in practice often sparse), it is apparent that the computa-
tional burden of full-matrix UP is considerably higher than that of
DUIPI and DUIPI-QM.

full-matrix UP DUIPI DUIPI-QM
Time Complexity O((|S||A|)2.376) O(|S|2|A|) O(|S|2|A|)
Space Complexity O(|S|5|A|3) O(|S|2|A|) O(|S|2|A|)

Table 1. Time and space complexities of the algorithms.

6 EXPERIMENTS

To demonstrate the functionality of our approach we conducted ex-
periments using two benchmark applications from the literature.4

We compare the full-matrix version, classic DUIPI, DUIPI with
Q-function modification, and two established algorithms for explo-
ration, R-Max [1] and MBIE-EB [17]. Furthermore, we present some
insight of how the parameter ξ influences the agent’s behavior.

6.1 Benchmarks

The first benchmark is the RiverSwim domain from [17], which is
an MDP consisting of six states and two actions. The agent starts
in one of the first two states (at the beginning of the row) and has
the possibility to swim to the left (with the current) or to the right
(against the current). While swimming to the left always succeeds,
swimming to the right most often leaves the agent in the same state,
sometimes leads to the state to the right, and occasionally (with small
probability) even leads to the left. When swimming to the left in the
very left state, the agent receives a small reward. When swimming to
the right in the very right state, the agent receives a very large reward,
for all other transitions the reward is zero. The optimal policy thus is
to always swim to the right. See figure 1 for an illustration.

0 1 2 3 4 5

(1,0.3,0)

(0,1,0)
(1,0.1,0)

(1,0.3,0)

(0,1,0)
(1,0.1,0)

(1,0.3,0)

(0,1,0)
(1,0.1,0)

(1,0.3,0)

(0,1,0)
(1,0.1,0)

(1,0.3,0)

(0,1,0)
(1,0.7,0)

(1,0.7.0)
(0,1,5) (1,0.6,0) (1,0.6,0) (1,0.6,0) (1,0.6,0) (1,0.3,10000)

Figure 1. Illustration of the RiverSwim domain. In the description (a,b,c)
of a transition a is the action, b the probability for that transition to occur, and
c the reward.

The other benchmark is the Trap domain from [4]. It is a maze
containing 18 states and four possible actions. The agent must collect
flags and deliver them to the goal. For each flag delivered the agent
receives a reward. However, the maze also contains a trap state. En-
tering the trap state results in a large negative reward. With probabil-
ity 0.9 the agent’s action has the desired effect, with probability 0.1
the agent moves in perpendicular direction (chosen randomly with
equal probability). See figure 2 for an illustration.

For each experiment we measured cumulative reward for 5000
steps. The discount factor was set γ = 0.95 for all experiments.

6.2 Results

Table 2 shows the results for the considered domains and algorithms
obtained with the respective parameters set to the optimal ones found.

4 Source code for all algorithms and benchmark applications can be obtained
at http://ahans.de/publications/ecai2010

A. Hans and S. Udluft / Uncertainty Propagation for Efficient Exploration in Reinforcement Learning364



S F

T

G

Figure 2. Illustration of the Trap domain. Starting in state S the agent must
collect the flag from state F and deliver it to the goal state G. Once the flag
is delivered to state G, the agent receives a reward of 1 and is transferred to
the start state S again. Upon entering the trap state T a large negative reward
of −10 is given. All other states yield a reward of 0. In each state the agent
can move in all four directions. With probability 0.9 it moves in the desired
direction, with probability 0.1 it moves in one of the perpendicular directions
with equal probability.

Reported are results averaged over multiple trials, for each average
its uncertainty is given as well.

RiverSwim Trap
R-Max 3.02±0.03×106 469±3

MBIE-EB 3.13±0.03×106 558±3
full-matrix UP 2.59±0.08×106 521±20

DUIPI 0.62±0.03×106 554±10
DUIPI-QM 3.16±0.03×106 565±11

Table 2. Best results obtained using the various algorithms in the River-
Swim and Trap domains. The used parameters for R-Max were C = 16 (River-
Swim) and C = 1 (Trap), for MBIE-EB β = 0.01 (RiverSwim) and β = 0.01
(Trap), for full-matrix UP α = 0.3, ξ = −1 (RiverSwim) and α = 0.3,
ξ = −0.05 (Trap), for DUIPI α = 0.3, ξ = −2 (RiverSwim) and α = 0.1,
ξ =−0.1 (Trap), and for DUIPI-QM α = 0.3, ξ =−0.049 (RiverSwim) and
α = 0.1, ξ =−0.049 (Trap).

For RiverSwim all algorithms except classic DUIPI perform com-
parably. By considering only the diagonal of the covariance matrix,
DUIPI neglects the correlations between different state-action pairs.
Those correlations are large for state-action pairs that have a signifi-
cant probability of leading to the same successor state. In RiverSwim
many state-action pairs have this property. Neglecting the correla-
tions leads to an underestimation of the uncertainty, which prevents
DUIPI from correctly propagating the uncertainty of Q-values of the
right most state to states further left. Thus, although Q-values in state
5 have a large uncertainty throughout the run, the algorithm settles
for exploiting the action in the left most state giving the small re-
ward if it has not found the large reward after a few tries. DUIPI-QM
does not suffer from this problem as it modifies Q-values using un-
certainty. In DUIPI-QM, the uncertainty is propagated through the
state space by means of the Q-values.

In the Trap domain the correlations of different state-action pairs
are less strong. As a consequence, DUIPI and DUIPI-QM perform
equally well. Also the performance of MBIE-EB is good in this do-
main, only R-Max performs worse than the other algorithms. R-Max
is the only algorithm that bases its explore/exploit decision solely on
the number of executions of a specific state-action pair. Even with its
parameter set to the lowest possible value, it often visits the trap state
and spends more time exploring than the other algorithms.

Although full-matrix UP performed worse than the approximate
algorithm DUIPI-QM, we expect it in general to be the best perform-
ing algorithm and believe that the results here are due to peculiarities
of the test domains.

6.3 Discussion

Figure 3 shows the effect of ξ for the algorithms. Except DUIPI-QM
the algorithms show “inverted u”-behavior. If ξ is too large (its ab-
solute value too small), the agent does not explore much and quickly
settles on a suboptimal policy. If, on the other hand, ξ is too small (its
absolute value too large), the agent spends more time exploring. We
believe that DUIPI-QM would exhibit the same behavior for smaller
values for ξ , however, those are not usable as they would lead to a
divergence of Q and σQ.

Figure 4 shows the effect ξ using DUIPI in the Trap domain.
While with large ξ the agent quickly stops exploring the trap state
and starts exploiting, with small ξ the uncertainty keeps the trap state
attractive for more time steps, resulting in more negative rewards.

Using uncertainty as a natural incentive for exploration is achieved
by applying uncertainty propagation to the Bellman equation. Our
experiments indicate that it performs at least as good as established
algorithms like R-Max and MBIE-EB. While most other approaches
to exploration assume a specific statistical paradigm, our algorithm
does not make such assumptions and can be combined with any es-
timator. Moreover, it does not rely on state-action pair counters, op-
timistic initialization of Q-values, or explicit exploration bonuses.
Most importantly, when the user decides to stop exploration, the
same method can be used to obtain certain-optimal policies for qual-
ity assurance [10, 16] by setting ξ to a positive value.

While the full-matrix UP is the more fundamental and theoreti-
cally more sound method, its computational cost is considerable. If
used with care, however, DUIPI and DUIPI-QM constitute valuable
alternatives that proved well in practice. Although our experiments
are rather small, we expect DUIPI and DUIPI-QM to also perform
well on larger problems.

full-matrix UP DUIPI DUIPI-QM
time 7 min 14 s 14 s

Table 3. Computation time for 5000 steps in the RiverSwim domain using a
single core of an Intel Core 2 Quad Q9500 processor. The policy was updated
in every time step.

7 CONCLUSION

In this paper we presented approaches to exploration based on un-
certainty propagation. We developed two principal variants of the al-
gorithm, one using the full covariance matrix and an approximate
algorithm only considering the diagonal of the covariance matrix
(DUIPI). While DUIPI lies in the same complexity class as the Bell-
man iteration and is thus computationally feasible, it fails to prop-
agate uncertainties properly in domains with high correlations be-
tween different state-actions pairs. To overcome this problem, we
modify the Q-values using their uncertainty, thus using the Bellman
iteration to propagate uncertainty. We evaluated the algorithms us-
ing two benchmark MDPs from the literature and compared them to
R-Max and MBIE-EB.

We showed that using a natural measure of uncertainty it is possi-
ble to explore efficiently. The method used here for exploration was
previously used in for quality assurance [10, 16]. One can therefore
use the method to first explore efficiently and later, when the explo-
ration phase is over, change the parameter ξ to a positive value and
use the gathered observations to determine a quantile optimal policy.

Future work will include additional experiments with different do-
mains and further theoretical analysis. Moreover, it will be interest-

A. Hans and S. Udluft / Uncertainty Propagation for Efficient Exploration in Reinforcement Learning 365



Figure 3. Cumulative rewards for RiverSwim obtained by the algorithms
for various values of ξ . The values for full-matrix UP are averaged over 50
trials, for the values for DUIPI and DUIPI-QM 1000 trials of each experiment
were performed.

ξ = −0.1

re
w
ar
d

ξ = −0.5

re
w
ar
d

ξ = −1

time step

re
w
ar
d

0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000

-10

-5

0

-10

-5

0

-10

-5

0

Figure 4. Immediate rewards of exemplary runs using DUIPI in the Trap
domain. When delivering a flag, the agent receives reward 1, when entering
the trap state it receives −10. While with ξ = −0.1 after less than 300 steps
the trap state does not seem worth exploring anymore, setting ξ =−0.5 makes
the agent explore longer due to uncertainty. With ξ = −1 the agent does not
stop exploring the trap state in the depicted 1000 time steps.

ing to see whether DUIPI-QM also performs well in a quality assur-
ance context.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their very valu-
able comments.

REFERENCES

[1] R.I. Brafman and M. Tennenholtz, ‘R-max - a general polynomial time
algorithm for near-optimal reinforcement learning’, Journal of Machine
Learning Research, 3, (2003).

[2] D. Coppersmith and S. Winograd, ‘Matrix multiplication via arithmetic
progressions’, Journal of Symbolic Computation, 9, (1990).

[3] G. D’Agostini, Bayesian Reasoning in Data Analysis: A Critical Intro-
duction, World Scientific Publishing, 2003.

[4] R. Dearden, N. Friedman, and D. Andre, ‘Model based Bayesian explo-
ration’, in Proceedings of the Conference on Uncertainty in Artificial
Intelligence, (1999).

[5] R. Dearden, N. Friedman, and S.J. Russell, ‘Bayesian Q-learning’, in
Proceedings of AAAI/IAAI, (1998).

[6] E. Delage and S. Mannor, ‘Percentile optimization in uncertain Markov
decision processes with application to efficient exploration’, in Pro-
ceedings of the International Conference on Machine Learning, (2007).

[7] A. Epshteyn, A. Vogel, and G. DeJong, ‘Active reinforcement learning’,
in Proceedings of the International Conference on Machine Learning.
Omnipress, (2008).

[8] N. Friedman and Y. Singer, ‘Efficient Bayesian parameter estimation in
large discrete domains’, in Advances in Neural Information Processing
Systems. MIT Press, (1999).

[9] P. Geibel, ‘Reinforcement learning with bounded risk’, in Proceedings
of the International Conference on Machine Learning. Morgan Kauf-
mann, San Francisco, CA, (2001).

[10] A. Hans and S. Udluft, ‘Efficient uncertainty propagation for reinforce-
ment learning with limited data’, in Proceedings of the International
Conference on Artificial Neural Networks, (2009).

[11] M. Heger, ‘Consideration of risk in reinforcement learning’, in Pro-
ceedings of the International Conference on Machine Learning. Mor-
gan Kaufmann, (1994).

[12] M. Kearns and S. Singh, ‘Near-optimal reinforcement learning in poly-
nomial time’, in Proceedings of the International Conference on Ma-
chine Learning, (1998).

[13] R. Neuneier and O. Mihatsch, ‘Risk sensitive reinforcement learning’,
in Advances in Neural Information Processing Systems, (1998).

[14] M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming, John Wiley & Sons Canada, Ltd., 1994.

[15] M. Sato and S. Kobayashi, ‘Variance-penalized reinforcement learn-
ing for risk-averse asset allocation’, in Proceedings of the International
Conference on Intelligent Data Engineering and Automated Learning,
Data Mining, Financial Engineering, and Intelligent Agents, London,
UK, (2000). Springer-Verlag.

[16] D. Schneegass, S. Udluft, and T. Martinetz, ‘Uncertainty propagation
for quality assurance in reinforcement learning’, in Proceedings of the
International Joint Conference on Neural Networks, (2008).

[17] A.L. Strehl and M.L. Littman, ‘An analysis of model-based interval
estimation for markov decision processes.’, Journal of Computer and
System Sciences, 74(8), (2008).

[18] R.S. Sutton and A.G. Barto, Reinforcement Learning: An Introduction,
MIT Press, 1998.

[19] M. Wiering and J. Schmidhuber, ‘Efficient model-based exploration’,
in Proceedings of the International Conference on Simulation of Adap-
tive Behavior: From Animals to Animats 5, Montreal, (1998). MIT
Press/Bradford Books.

A. Hans and S. Udluft / Uncertainty Propagation for Efficient Exploration in Reinforcement Learning366


