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Abstract. This work presents a new approach that allows the use of
cases in a case base as heuristics to speed up Multiagent Reinforce-
ment Learning algorithms, combining Case-Based Reasoning (CBR)
and Multiagent Reinforcement Learning (MRL) techniques. This ap-
proach, called Case-Based Heuristically Accelerated Multiagent Re-
inforcement Learning (CB-HAMRL), builds upon an emerging tech-
nique, Heuristic Accelerated Reinforcement Learning (HARL), in
which RL methods are accelerated by making use of heuristic infor-
mation. CB-HAMRL is a subset of MRL that makes use of a heuris-
tic function H derived from a case base, in a Case-Based Reason-
ing manner. An algorithm that incorporates CBR techniques into the
Heuristically Accelerated Minimax–Q is also proposed and a set of
empirical evaluations were conducted in a simulator for the Littman’s
robot soccer domain, comparing the three solutions for this problem:
MRL, HAMRL and CB-HAMRL. Experimental results show that us-
ing CB-HAMRL, the agents learn faster than using RL or HAMRL
methods.

1 Introduction

Heuristic Accelerated Reinforcement Learning (HARL) [6] is an
emerging technique in which Reinforcement Learning (RL) methods
are sped up by making use of a conveniently chosen heuristic func-
tion, which is used for selecting appropriate actions to perform in
order to guide exploration during the learning process. HARL tech-
niques are very attractive: as RL, they are based on firm theoretical
foundations. As the heuristic function is used only in the choice of the
action to be taken, many of the conclusions obtained for RL remain
valid for HARL algorithms, such as the guarantee of convergence to
equilibrium in the limit – given that some predefined conditions are
satisfied – and the definition of an upper bound for the error [6].

Although several methods have been successfully applied for
defining the heuristic function, a very interesting option has only re-
cently been explored: the reuse of previously learned policies, us-
ing a Case-Based Reasoning approach [8]. This paper investigates
the combination of Case-Based Reasoning (CBR) and Multiagent
Heuristically Accelerated Reinforcement Learning (HAMRL) [7]
techniques, with the goal of speeding up MRL algorithms by us-
ing previous domain knowledge, stored as a case base. To do so, we
propose a new algorithm, the Case-Based Heuristically Accelerated
Minimax–Q (CB-HAMMQ), which incorporates Case-Based Rea-
soning techniques into an existing HAMRL algorithm, the Heuristi-
cally Accelerated Minimax–Q (HAMMQ).

Soccer competitions, such as RoboCup, have been proven to be
an important challenge domain for research, and one where RL tech-
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niques have been widely used. The application domain of this paper
is a simulator for the robot soccer domain that extends the one pro-
posed by Littman [20], called “Expanded Littman’s Soccer”. Never-
theless, the technique proposed in this work is domain independent.

The paper is organized as follows: section 2 briefly reviews the
Multiagent Reinforcement Learning problem, describes the HAMRL
approach and the HAMMQ algorithm, while section 3 describes
Case-Based Reasoning. Section 4 shows how to incorporate CBR
techniques into HAMRL algorithms, in a modified formulation of
the HAMMQ algorithm. Section 5 describes the Robotic Soccer do-
main used in the experiments, presents the experiments performed,
and shows the results obtained. Finally, Section 6 provides our con-
clusions.

2 Heuristic Accelerated Multiagent Reinforcement
Learning

Systems where multiple agents compete among themselves to ac-
complish their tasks can be modeled as a discrete time, finite state,
finite action Markov Game (MG) – also known as Stochastic Game
(SG). The goal of an agent in a MRL problem is to learn an optimal
policy π : S → A1 × . . . × Ak that maps the current state s into
a desirable action(s) a to be performed in s, from any starting state.
In MRL, this policy is learned through trial-and-error interactions of
the agent with its environment: on each interaction step the agent
senses the current state s of the environment, chooses an action a to
perform, executes this action, altering the state s of the environment,
and receives a scalar reinforcement signal r (a reward or penalty).

This paper considers a well-studied specialization of MGs in
which there are only two players, called agent and opponent, hav-
ing opposite goals. Such specialization, called a zero-sum Markov
Game (ZSMG) [20] , allows the definition of only one reward func-
tion that the learning agent tries to maximize while the opponent
tries to minimize. A two player ZSMG is defined by the quintuple
〈S,A,O, T ,R〉, where:

• S: a finite set of environment states.
• A: a finite set of actions that the agent can perform.
• O: a finite set of actions that the opponent can perform.
• T : S×A×O → Π(S): the state transition function, where Π(S)

is a probability distribution over the set of states S. T (s, a, o, s′)
defines a probability of transition from state s to state s′ (at a time
t+1) when the learning agent executes action a and the opponent
performs action o.

• R : S×A×O → �: the reward function that specifies the reward
received by the agent when it executes action a and its opponent
performs action o, in state s.
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To solve a ZSMG, Littman [20] proposed the use of a strategy
similar to Minimax for choosing an action in the Q-Learning algo-
rithm, the Minimax–Q algorithm, which works in the same way as
Q-Learning does. The action-value function of an action a in a state
s when the opponent takes an action o is can be computed iteratively
by:

Q̂t+1(s, a, o) ←Q̂t(s, a, o) +

α [r(s, a, o) + γVt(s
′) − Q̂t(s, a, o)], (1)

where α is the learning rate, γ is the discount factor and the value
Vt(s) of a state can be computed using the following equation:

V (s) = max
π∈Π(A)

min
o∈O

X
a∈A

Q(s, a, o)πa, (2)

where the agent’s policy π is a probability distribution over actions,
and πa is the probability of taking the action a against the opponent’s
action o. In an Alternating Markov Game (AMG), where two players
take their actions in consecutive turns, the policy becomes determin-
istic and Equation 2 can be simplified:

V (s) = max
a∈A

min
o∈O

Q(s, a, o). (3)

Formally, a Heuristically Accelerated Multiagent Reinforcement
Learning (HAMRL) algorithm is a way to solve a MG problem with
explicit use of a heuristic function H : S ×A×O → � to influence
the choice of actions during the learning process. H(s, a, o) defines
a heuristic that indicates the desirability of performing action a when
the agent is in state s and the opponent executes action o.

The first HAMRL algorithm proposed was the Heuristically
Accelerated Minimax Q (HAMMQ) [7], as an extension of the
Minimax–Q algorithm. The only difference between them is that in
the HAMMQ the heuristic function is used in the action choice rule,
which defines which action at must be executed when the agent is in
state st. The action choice rule used in the HAMMQ is a modifica-
tion of the standard ε−Greedy rule used in Minimax–Q, to include
the heuristic function:

π(s) =

8<
:arg max

a
min

o

h
Q̂(s, a, o) + ξHt(s, a, o)

i
if q ≤ p,

arandom otherwise,
(4)

where H : S × A×O → � is the heuristic function, q is a random
value uniformly distributed over [0, 1] and 0 ≤ p ≤ 1 is a parame-
ter that defines the exploration/exploitation tradeoff. The subscript t
indicates that the heuristic function can be non-stationary (it can be
computed only once, or be continually recomputed) and 0 ≤ ξ ≤ 1
is a real variable used to weight the influence of the heuristic.

As a general rule, the value of Ht(s, a, o) used in HAMMQ should
be higher than the variation among the Q̂(s, a, o) values for the same
s ∈ S, o ∈ O, in such a way that it can influence the choice of
actions, and it should be as low as possible in order to minimize the
error. It can be defined as:

H(s, a, o) =

(
max

i
Q̂(s, i, o) − Q̂(s, a, o) + η if a = πH(s),

0 otherwise.
(5)

where η is a small real value (usually 1) and πH(s) is the action
suggested by the heuristic policy. Convergence of this algorithm was
presented by Bianchi, Ribeiro and Costa [7], together with the defi-
nition of an upper bound for the error. The complete HAMMQ algo-
rithm is presented in Table 1.

Table 1. The HAMMQ algorithm.

Initialize Q̂t(s, a, o) and Ht(s, a, o) arbitrarily.
Repeat (for each episode):

Initialize s.
Repeat (for each step):

Update the values of Ht(s, a, o) as desired.
Select an action a using Equation 4.
Execute the action a, observe r(s, a, o), s′.
Update the values of Q(s, a, o) according to Equation 1.
s ← s′.

Until s is terminal.
Until some stopping criterion is reached.

Despite the fact that RL is a method that has been traditionally
applied in the Robotic Soccer domain, only recently have HARL
methods been used in this domain. Bianchi, Ribeiro and Costa [7]
investigated the use of a HAMRL algorithm in a simplified simulator
for the robot soccer domain and Celiberto et al. [10] studied the use
of the HARL algorithms to speed up learning in the RoboCup 2D
Simulation domain. The heuristic used in both of these papers were
very simple ones: in the first paper the heuristic was ‘if the agent is
with the ball, go to the opponent’s goal’, and in the second paper it
was simply ‘go to the ball’.

3 Case-Based Reasoning

Humans frequently try to solve a new problem by remembering a pre-
vious similar situation, reasoning about it, and then reusing knowl-
edge of that situation to solve the new problem. Case-based reasoning
(CBR) [1, 22] uses knowledge of previous situations (cases) to solve
new problems, by finding a similar past case and reusing it in the new
problem situation. In the CBR approach, a case usually describes a
problem and its solution, i.e., the state of the world in a given instant
and the sequence of actions to perform to solve that problem.

According to López de Màntaras et al. [22], solving a problem by
CBR involves “obtaining a problem description, measuring the sim-
ilarity of the current problem to previous problems stored in a case
base with their known solutions, retrieving one or more similar cases,
and attempting to reuse the solution of the retrieved case(s), possibly
after adapting it to account for differences in problem descriptions”.
Other steps that are usually found in CBR systems are the evaluation
of the proposed solution, the revision of the solution, if required in
light of its evaluation, and the retention (learning) of a new case, if
the system has learned to solve a new problem.

The case definition used in this work is the one proposed in Ros
[25] and Ros et al. [26], which is composed of three parts: the prob-
lem description (P ), the solution description (A) and the case scope
(K), and it is formally described as a 3-tuple:

case = (P, A, K). (6)

The problem description P corresponds to the situation in which the
case can be used. For example, for a Robotic Soccer problem, the
description of a case can include the robot position, the ball’s position
and the positions of the other robots in the game. For a game with n
robots (teammates and opponents), P can be:

P = {xB , yB , xR1 , yR1 , . . . , xRn , yRn}. (7)

The solution description is composed by the sequence of actions
that each robot must perform to solve the problem, and can be defined
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as:

A = {R1 : [a11 , a12 , ..., a1p1
], . . . , Rm : [am1 , am2 , ..., ampm

]},

where m is the number of robots in the team, aij is an individual
or joint action that robot Ri must perform and pi corresponds the
number of actions the robot Ri performs.

The case scope defines the applicability boundaries of the cases, to
be used in the retrieval step. For example, Ros [25] defines it as “the
regions of the field within which the ball and the opponents should be
positioned in order to retrieve that case”. In the case of a robot soccer
problem, K can be represented as circles or ellipsoids centered on the
ball’s and opponents’ positions indicated in the problem description.
It can be defined as:

K = {τB , τR1 , . . . , τRn}, (8)

where τB is the radius of the region around the ball and τR1 . . . τRn

the radius of the regions around the n robots in the game (teammates
and opponents). The case retrieval process consists in obtaining from
the base the most similar case, the retrieved case. Therefore, it is
necessary to compute the similarity between the current problem and
the cases in the base. The similarity function indicates how similar a
problem and a case are. In most cases, the function is defined by the
distance between the ball and the robots in the problem and in the
case.

Sim(p, c) = dist(Bc, Bp) +
nX

i=1

dist(Ri
c, Ri

p), (9)

where Bc is the position of the ball in the case and Bp its position
in the problem, Ri

c the position of the Robot i in the case and Ri
p

its position in the problem, and dist(a, b) is the gaussian distance
between object a and b. This distance is computed as follows:

dist(a, b) = e−((ax−bx)2+(ay−by)2)/2τ2
, (10)

where τ is the radius of the scope around the object. In this work, τ
is the same for the ball and robots positions. The Gaussian distance
is used because the larger the distance between two points, the lower
the similarity between them. Finally, τ is used as a threshold that
defines a maximum distance allowed for two points to have some
degree of similarity: if dist(a, b) > τ , Sim(a, b) = 0.

Before a case can be reused, it might be necessary to adapt it to
the present situation. Adaptation of a case means that the retrieved
solution is modified, by translation, rotation or the addition of steps
to the sequence of actions in the solution before it can be used. In this
work, we assume that rotation and translation costs are small when
compared to the cost of the additional steps, because the first two
are trivial computations, while the performance of additional steps
by the robots are actions that must be executed (in the simulator or
in the real world), taking more time. Therefore, we define the cost as
the number of steps added to the adapted solution. In this work, the
case that will be reused is the one that maximizes the similarity while
minimizing the adaptation cost.

In recent years, CBR has been used by several researchers in the
Robotic Soccer domain. By far, the Robocup 2D Simulation League
is the domain where most work has been done. To mention a few, Lin,
Liu and Chen [19] presented a hybrid architecture for soccer players
where the deliberative layer corresponds to a CBR system, Ahmadi
et al. [2] presented a two-layered CBR system for prediction for the
coach and Berger and Lämmel [5] proposed the use of a CBR system
to decide whether a pass should be performed.

Table 2. The CB-HAMMQ algorithm.

Initialize Q̂t(s, a, o) and Ht(s, a, o) arbitrarily.
Repeat (for each episode):

Initialize s.
Repeat (for each step):

Compute similarity and cost.
If there is a case that can be reused:

Retrieve and Adapt if necessary.
Compute Ht(s, a, o) using Equation 5 with the

actions suggested by the case selected.
Select an action a using Equation 4.
Execute the action a, observe r(s, a, o), s′.
Update the values of Q(s, a, o) according to Equation 1.
s ← s′.

Until s is terminal.
Until some stopping criterion is reached.

CBR has been also used in other Robocup Leagues. In the Small
Size League, Srinivasan et al. [28] proposed a CBR planning for both
offense and defense team behavior, for a team of two soccer play-
ing robots; in the work by Marling et al. [23], CBR is used to help
planning individual moves and team strategies. In the Four-Legged
League, Karol et al. [17] presented high level planning strategies in-
cluding a CBR system. Finally, the works of Ros et al. [26] presented
the most ample use of CBR techniques in the Robotic Soccer do-
main, proposing the use of CBR techniques to handle retrieval, reuse
and acquisition of a case base for the action selection problem of a
team for the Four-Legged League. A more extensive review of the
use of CBR in Robotic Soccer can be found in works by Burkhard
and Berger [9] and by Ros [25].

4 Combining Case-Based Reasoning and
Multiagent Reinforcement Learning

Bianchi, Ribeiro and Costa [6] state that there should be many meth-
ods that can be used to define a heuristic function for a HARL
algorithm. For example, the same work makes use of information
from the learning process itself to infer a heuristic at execution time,
proposing a technique that derives a crude estimate of the transition
probabilities, and then it propagates – from a final state – the correct
policies which lead to that state. Bianchi, Ribeiro and Costa [7] em-
ployed prior domain knowledge to establish a very simple ad-hoc
heuristic for speeding up learning in a Multiagent Reinforcement
Learning domain.

In order to provide HAMRL algorithms with the capability of
reusing previous knowledge from a domain, we propose a new al-
gorithm, the Case-Based HAMMQ, that extends the HAMMQ algo-
rithm, being capable of retrieving a case stored in a base, adapting it
to the current situation, and building a heuristic function that corre-
sponds to the case.

As the problem description P corresponds to one defined state of
the set of states S in an MDP, an algorithm that uses the RL loop can
be implemented. Inside this loop, before action selection, we added
steps to compute the similarity of the cases in the base with the cur-
rent state and the cost of adaptation of these cases. A case is retrieved
if the similarity is above a certain threshold, and the adaptation cost
is low. After a case is retrieved, a heuristic is computed using Equa-
tion 5 and the actions suggested by the case selected. The complete
CB-HAMMQ algorithm is presented in Table 2.

Although this is the first work that combines CBR with RL using
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an explicit heuristic function, this is not the first work on combining
the both fields. Drummond [11] was probably the first to use CBR
to speed up RL, proposing to accelerate RL by transferring parts of
previously learned solutions to a new problem. Sharma et al. [27]
made use of CBR as a function approximator for RL, and RL as
a revision algorithm for CBR in a hybrid architecture system; Juell
and Paulson [15] exploited the use of RL to learn similarity metrics
in response to feedback from the environment; Auslander et al. [3]
used CBR to adapt quickly an RL agent to changing conditions of the
environment by the use of previously stored policies and Li, Zonghai
and Feng [18] proposed an algorithm that makes use of knowledge
acquired by Reinforcement Learning to construct and extend a case
base. Gabel and Riedmiller [12] makes uses of CBR to represent
the learning function (the state value function V) in RL, having an
attribute-value based state/case representation and using K-Nearest
Neighbor to predict the cases’ solution. Using the same idea, these
authors [13] extend an algorithm for multi-agent learning into a CBR
framework, in an approach that makes easier the distributed learning
of policies in cooperative multi-agent domains.

Our approach differs from all previous works combining CBR and
MRL because of the heuristic use of the retrieved case. Bianchi,
Ribeiro and Costa [7] proved that if the heuristic used is an admissi-
ble one, there will be a speed up in convergence time, if not, the use
of the heuristic will not impede the RL method to converge to the op-
timal policy. As we use the case base as a heuristic, if the case base
corresponds to an admissible heuristic there will be a speed up in the
convergence time. But if the case base does not contain any useful
case – or even if it contains cases that implement wrong solutions
to the problem, the agent will learn the optimal solution anyway, by
using the RL component of the algorithm [7]. Another difference of
this proposal to previous works, such as the one presented in [8], is
that a Multiagent RL algorithm is used, while others combined CBR
with single-agent RL.

5 Experiments in the Robotic Soccer Domain

A set of empirical evaluations of the CB-HAMMQ approach were
carried out in a proposed simulator for the robot soccer domain that
extends the one proposed by Littman [20]. In this domain, called
“Expanded Littman’s Soccer”, two teams, A and B, of three players
each compete in a 10 x 15 grid presented in figure 1. Each team is
composed by the goalie (g), the defender (d) and the attacker (a).
Each cell can be occupied by only one player. The actions that are al-
lowed are: keep the agent still, move – north, south, east and west – or
pass the ball to another agent. The action “pass the ball” from agent
ai to aj is successful if there is no opponent in between them. If there
is an opponent, it will catch the ball and the action will fail. Actions
are taken in turns: all actions from one team’s agents are executed at
the same instant, and then the opponents’ actions are executed. The
ball is always with one of the players. When a player executes an ac-
tion that would finish in a cell occupied by the opponent, it loses the
ball and stays in the same cell. If an action taken by one agent leads
it out the board, the agent stands still. When a player with the ball
gets into the opponent’s goal, the trial ends and its team scores one
point. The starting positions of all players are random, and the ball is
given to one of the agents in a random fashion at the beginning of a
trial.

To solve this problem, three algorithms were used: the Minimax–
Q, described in section 2, the HAMMQ, described in section 2 and
the CB-HAMMQ, proposed in section 4. Although this domain is
still a simplified one, it is more complex than the original one pro-

Ag

Ad

Aa

Ba

Bd

Bg

Figure 1. The “Expanded Littman’s Soccer” environment proposed.

posed by Littman: due to the size of the state space, it is not possi-
ble to use a lookup table containing all the states of the problem. In
this work a variable resolution table similar to the one proposed by
Munos and Moore [24] is used.

The heuristic used in the HAMMQ algorithm was defined using a
simple rule: if holding the ball, go to the opponents’ goal, not tak-
ing into account the teammates’ and opponents’ positions, leaving
tasks such as learning to pass the ball or to divert the opponent to the
learning process.

The heuristic value used in the CB-HAMMQ is computed during
the games, as described in section 4. The case base used contains a
set of basic cases that can be used without adaptation costs. The case
base used in this experiment is composed of 5 basic cases, which
cover the most significant situations that are observed during a game
in the expanded Littman’s Soccer environment. These cases can be
described as:

1. If the agent is with the ball and there is no opponent blocking it,
then move to the goal.

2. If the agent is with the ball and there is an opponent blocking it,
then move up.

3. If the agent is with the ball and there is an opponent blocking it,
then move down.

4. If the agent is with the ball and a teammate is closer to the goal,
then pass the ball to the other agent.

5. If the ball is with an opponent and the agent is close to the oppo-
nent, then stay in front of the opponent.

Is important to notice that this case base does not correspond to the
optimal solution of the problem.

The reward the agents receive are the same for all algorithms: the
agent that is holding the ball receives +100 every time it reaches the
goal. This is a very simple reward scheme, but we decided to use it
in this work to avoid the creation of a mismatch between the reward
function used in training and the performance measure examined,
which is the number of goals scored. Other reward schemes could
be used, for example, one that gives rewards to intercepting the ball,
losing the ball or correctly passing the ball, such as the one used by
Kalyanakrishnan, Liu and Stone [16].

Thirty training sessions were run for the three algorithms, with
each session consisting of 20,000 games of 10 trials. Figure 2 shows
the learning curves for all algorithms when the learning team plays
against an opponent moving randomly, and presents the average goal
balance, which is the difference between goals scored and goals re-
ceived by the learning team in each match. It is possible to verify
that at the beginning of the learning phase Minimax–Q has worse
performance than HAMMQ, and that this has a worse performance
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Figure 2. Goals balance for the CBR, Minimax–Q, the HAMMQ and the
CB-HAMMQ algorithms against a random opponent for the Expanded

Littman’s Robotic Soccer.

Table 3. Results for games against Random opponent.

Algorithm Goals made × goals conceded

Minimax–Q (140207 ± 174) × (38498 ± 164)
HAMMQ (166208 ± 150) × (22065 ± 153)

CB-HAMMQ (188168 ± 155) × (11292 ± 140)
Games won × games lost

Minimax–Q (18297 ± 33) × (1037 ± 28)
HAMMQ (19469 ± 9) × (27 ± 4)

CB-HAMMQ (19997 ± 1) × (0 ± 0)

than CB-HAMMQ. As the matches proceed, the performance of the
three algorithms become similar, as expected. As it can be seen in
this figure, the Minimax–Q is still learning after 20,000 games: as it
is slower than the other two algorithms, it will only reach the opti-
mal solution after 100,000 games. In this figure the performance of a
team of agents using only the case base can also be observed: a line
with values close to 7. As the case base does not contain the optimal
solution to the problem, the agents have a performance that is worse
than the one presented by the other teams at the end of the learning
process.

Figure 3 presents the learning curves ( the average goal balance
at the end of a game) for the three algorithms when learning while
playing against a learning opponent using Minimax–Q. It can be seen
that CB-HAMMQ is better than HAMMQ and Minimax–Q at the
beginning of the learning process. Student’s t–test was used to ver-
ify the hypothesis that the use of heuristics speeds up the learning
process. The result is that the CB-HAMMQ is better than HAMMQ
until the 7,000th game when playing against a random opponent, and
until the 500th game when playing against the Minimax–Q, with a
level of confidence greater than 5%. The same test can be made com-
paring the CB-HAMMQ and the Minimax–Q: in this case, the first
outperform the latter until the 20,000th game, when both are play-
ing against a random opponent, and until the 1,000th game when the
CB-HAMMQ is playing against the Minimax–Q. After these num-
ber of games the results of the algorithms are comparable, since the
three algorithms converge to equilibrium.

Finally, Table 3 shows the average number of goals and the aver-
age number of games won at the end of 20,000 games while play-
ing against a random opponent, and Table 4 presents the same data
for games played against a Minimax–Q opponent, at the end of
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Figure 3. Goals balance for Minimax–Q, the HAMMQ and the
CB-HAMMQ algorithms against an opponent using Minimax–Q for the

Expanded Littman’s Robotic Soccer.

Table 4. Results for games against Minimax–Q opponent.

Algorithm Goals made × goals conceded

Minimax–Q (10299 ± 234) × (9933 ± 240)
HAMMQ (10467 ± 197) × (9347 ± 197)

CB-HAMMQ (11109 ± 152) × (8845 ± 153)
Games won × games lost

Minimax–Q (848 ± 60) × (696 ± 55)
HAMMQ (998 ± 50) × (530 ± 43)

CB-HAMMQ (1145 ± 37) × (426 ± 32)

2,000 games. It can be seen in Table 4 that when Minimax–Q agents
are playing against other Minimax–Q agents, the number of goals
made and games won are approximately the same, while when CB-
HAMMQ agents played against Minimax–Q ones, CB-HAMMQ
team made more goals and won more games. CB-HAMMQ also won
more games (1145, losing 425) and made more goals (11109) than
the HAMMQ algorithm.

The parameters used in the experiments were the same for all the
algorithms. The learning rate is α = 0, 9, the exploration/ exploita-
tion rate was defined as being equal to 0.2 and the discount factor
γ = 0.9 (these parameters are similar to those used by Littman [20]).
The value of η was set to 1. Values in the Q table were randomly ini-
tialized, with 0 ≤ Q(st, at, ot) ≤ 1.

6 Conclusion

This work presented a new algorithm, called Case-Based Heuristi-
cally Accelerated Minimax–Q (CB-HAMMQ), which allows the use
of a case base to define heuristics to speed up the well-known Multia-
gent Reinforcement Learning algorithm Minimax–Q. This approach
builds upon an emerging technique, the Heuristic Accelerated Rein-
forcement Multiagent Learning, in which MRL methods are acceler-
ated by making use of heuristic information.

The experimental results obtained using a new domain proposed
for the Robotic Soccer games showed that CB-HAMMQ attained
better results than HAMMQ and Minimax–Q alone. For example,
after playing 1000 learning trials against a random opponent (Figure
2), the Minimax-Q, still could not produce policies that scored many
goals on the opponent, while the HAMMQ was able to score some
goals but less than the CBR alone and the CB-HAMMQ. Another
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interesting finding is that the number of goals scored by the CB-
HAMMQ after 1000 trials was even higher than the number of goals
scored by the CBR approach alone, indicating that the combination
of the Reinforcement Learning and the case base out-performs the
use of the case base on its own.

Finally, heuristic functions allow RL algorithms to solve problems
where the convergence time is critical, as in many real time applica-
tions. Future works includes incorporating CBR in other well known
Multiagent RL algorithms, like Minimax-SARSA [4], Minimax–
Q(λ) [20] and expanding this framework to deal with General Sum
Markov Games [20] using algorithms such as Nash-Q [14] and
Friend-or-Foe Q-Learning [21]. Performing a game-theoretic anal-
ysis to determine if CB-HAMMQ is dominant against other strate-
gies or if a mixed-strategy equilibrium is reached, using an approach
based on [29], is also left as a future task.
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