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Abstract. We introduce a top-down compilation algorithm for con-

structing structured DNNF for any Boolean function. With appropri-

ate restrictions, the algorithm can produce various subsets of DNNF

such as deterministic DNNF and OBDD. We derive a size upper

bound for structured DNNF based on this algorithm and use the re-

sult to generalize similar upper bounds known for several Boolean

functions in the case of OBDD. We then discuss two realizations of

the algorithm that work on CNF formulas. We show that these algo-

rithms have time and space complexities that are exponential in the

treewidth and the dual treewidth of the input.

1 Introduction

Decomposability is a property that underlies many well-known com-

pilation languages. Languages such as OBDD [1], AOMDD [7],

and deterministic DNNF [4] can be obtained by imposing additional

properties on top of decomposability. Recently, it was shown that a

refinement of this property known as structured decomposability al-

lows for an efficient conjoin operation between formulas satisfying

such a property [8].

A bottom-up algorithm for constructing structured DNNFs was

conceived based on this conjoin operation [8]. Such an algorithm

works by first converting each clause of the input (usually given in

CNF) into a structured DNNF, then repeatedly conjoin them to form a

whole formula. This bottom-up algorithm may yield some very large

intermediate formulas, thus preventing it from compiling certain for-

mulas with compact structured DNNF representations (see [6] for a

study on the relative merits of top-down versus bottom-up compila-

tion in the case of OBDD).

In this paper, we present a top-down algorithm that constructs

structured DNNF form for any Boolean function. This is a gen-

eral algorithm that can be used to produce DNNFs, deterministic

DNNFs, AOMDDs (Boolean domains), and even OBDDs. The pro-

posed algorithm provides a unified framework for establishing upper

bounds for various compilation languages and forms a basis for prac-

tical knowledge compilation algorithms. We demonstrate the value

of this algorithm in the following ways. On the theoretical side, we

derive a general upper bound for structured DNNF based on the al-

gorithm. We show that our result, when interpreted in a certain con-

text, subsumes the influential upper bound given by Sieling and We-

gener for OBDD [12]. Moreover, we apply our result to prove upper

bounds for various Boolean functions, generalizing some known up-

per bounds for OBDD. On the practical side, we present two concrete

top-down algorithms for compiling formulas in conjunctive normal

form (CNF) into structured DNNFs. We analyze their time and space
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complexities and show that, in one case, the algorithm is exponential

in the treewidth of the CNF, while, on the other case, it is exponential

in the dual treewidth. These are the first bounds of this type on the

time and space complexity of constructing structured DNNFs. We

provide the proofs of some of our results in this paper, leaving others

to the full version for space limitations.

2 Basic Definitions

In this section, we present basic notations and definitions that will be

used throughout the paper. We use an upper case letter to denote a

variable (e.g., X) and a lower case letter to denote its instantiation

(e.g., x). Moreover, we use a bold upper case letter to denote a set

of variables (e.g., X) and a bold lower case letter to denote their

instantiations (e.g., x).

A Boolean function (or simply function) over a set of variables

Z is a function that maps each complete assignment of variables Z

to either true or false. The conditioning of function f on variable

assignment x (of variables X) is defined as f |x = ∃X(f ∧ x). If

f is represented by a propositional formula, we can obtain f |x by

replacing each occurrence of variable X ∈ X by its value in x.

We also refer to x as an instantiation of variables X. A function f
depends only on variables Z iff for any variable X /∈ Z, we have

f |X = f |¬X . We will write f(Z) to mean that f is a function

that depends only on variables Z. Note that f(Z) may not necessary

depend on every variable in Z.

A conjunction is decomposable if each pair of its conjuncts share

no variables. A disjunction is deterministic if any two of its disjuncts

are inconsistent with each other. A negation normal form (NNF) is

a DAG whose internal nodes are labelled with disjunctions and con-

junctions and whose leaf nodes are labeled with literals or the con-

stants true and false; see Figure 2. An NNF is decomposable (called a

DNNF) iff each of its conjunctions is decomposable; see Figure 2(a).

A DNNF is deterministic (called a d-DNNF) iff each of its disjunc-

tions is deterministic; see Figure 2(b). We use vars(N) to denote the

set of variables mentioned by an NNF node N .

3 OBDDs and the Sieling and Wegener Bound

An OBDD is a DAG whose non-leaf nodes are labeled with vari-

ables, and whose leaf nodes are labeled with Boolean constants; see

Figure 1(a). Every non-leaf node in an OBDD has exactly one high

child (pointed to by a solid edge) and one low child (pointed to by

a dotted edge). An OBDD respects a variable ordering if the order

of variables on any path from the root to a leaf is consistent with the

given order.

One key concept that underlies OBDD is the Shannon decompo-

sition, which states that every function f can always be written as
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Figure 1. (a) an OBDD in the conventional representation (b) the same
OBDD in the NNF representation.

f = (X ∧ f |X) ∨ (¬X ∧ f |¬X), where X is any variable. Since

f |X and f |¬X no longer depend on X , the conjunctions of the

Shannon decomposition must be decomposable. Any OBDD can be

viewed as the result of applying this decomposition recursively on

some Boolean function according to a given variable ordering.

An OBDD can also be interpreted as an NNF as shown in Fig-

ure 1(b). Every OBDD node labeled with X is expanded into the

form (X ∧ h) ∨ (¬X ∧ l), where h and l are the results of expand-

ing the high and low children of the node. The resulting NNF are

decomposable and deterministic (see [4] for more details).

An OBDD is an attractive representation of Boolean functions be-

cause of its ability to represent some functions compactly and its

polytime support for many logical operations (see [1]). Since most

applications of OBDDs rely on the compactness of the representa-

tion, much work exists on bounding the size of OBDDs for various

Boolean functions. The following (paraphrased) result by Sieling and

Wegener provides a basis for numerous work in this direction. Cen-

tral to this result is the notion of a sub-function f |x, which is a func-

tion that is obtained by conditioning the given function f on a vari-

able instantiation x.

Theorem 1 ([12]) Let f be a function over X1, . . . , Xn and m be

the number of distinct sub-functions of f obtained by conditioning

on X1, . . . , Xi−1 that depend on Xi. A reduced2 OBDD for f us-

ing variable ordering X1, . . . , Xn contains exactly m nodes labeled

with Xi.

The main use of the Sieling and Wegener’s result is in show-

ing which variable orderings lead to efficient OBDD representations

(upper bound), and which ones lead to exponential OBDDs (lower

bound). Consider the Boolean function f = (X1∧Y1)∨ . . .∨(Xn∧
Yn), for example. If we use variable ordering X1, Y1, . . . , Xn, Yn,

we find that the number of distinct sub-functions that depend on

Xi or Yi (by conditioning f on all preceding variables) is no more

than 2 for any i. Hence, this variable order will lead to an effi-

cient OBDD representation. However, if we use the variable or-

dering X1, . . . , Xn, Y1, . . . , Yn, we find that we have Ω(2n) dis-

tinct sub-functions that depend on variable Y1, when we condition

2 An OBDD is reduced iff no two distinct nodes in the OBDD represent the
same Boolean function.
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Figure 3(a)
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Figure 3. A vtree in (a) and a linear vtree in (b).

f on X1, . . . , Xn. Hence, this variable ordering will lead to an

exponentially-sized OBDD.

4 Structured DNNFs

Our goal is to derive an analogue of the upper bound in the Sieling

and Wegener result, but for a more general class of representations

that include OBDDs. In particular, our focus is on structured DNNFs.

A structured DNNF is a DNNF that respects a vtree [8].

Definition 1 (Vtree) A vtree for a set of variables Z is a full, rooted

binary tree whose leaves are in one-to-one correspondence with the

variables in Z.

Figure 3 depicts two example vtrees for the same set of variables.

Given an internal node v in a vtree for variables Z, we use vl and vr

to refer to its left and right children, use vars(v) to denote the set of

variables at or below v in the tree. We can now define what it means

for a DNNF to respect a vtree.

Definition 2 A DNNF respects a vtree iff every and-node has exactly

two children N l and Nr , and we have vars(N l) ⊆ vars(vl) and

vars(Nr) ⊆ vars(vr) for some vtree node v.

The DNNF in Figure 2(a) and the d-DNNF in Figure 2(b) respect

the vtree in Figure 3(a). The language of structured DNNF simply

contains all DNNFs that respects some vtree.3

3 Some DNNFs, such as (((a ∧ b) ∧ (¬c ∧ d)) ∨ ((¬a ∧ c) ∧ (b ∧ ¬d))),
do not respect any vtree.
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Note that a variable ordering corresponds to a linear vtree as

shown in Figure 3(b).Moreover, every OBDD is a DNNF that re-

spects the corresponding linear vtree. We later present an algorithm

for constructing DNNFs that respects the given vtrees and derive

an upper bound on the time and space complexity of the algorithm.

When applied to an OBDD, our bound can be shown to subsume the

Sieling and Wegener bound.

5 Decompositions of Boolean Functions

We now review a key notion, called a decomposition, which can be

used to characterize various subsets of DNNF. This notion was intro-

duced previously in [9] for the purpose of establishing lower bounds

on DNNFs and we shall use it in this paper for establishing upper

bounds. In the rest of the paper, we will assume that variables X and

Y form a partition of variables Z.

Definition 3 An X-decomposition of function f(Z) is a collection

of functions (a.k.a. elements) f1(Z), . . . , fm(Z) such that (i) f =
f1 ∨ . . . ∨ fm and (ii) each f i can be expressed as follows:

f i(Z) = gi(X) ∧ hi(Y).

The number m is called the size of the decomposition in this case.

A decomposition is minimal if no other decomposition has a smaller

size. A decomposition is deterministic if f i ∧ f j is inconsistent for

all i �= j.

Note that an X-decomposition for f(Z) is also a Y-

decomposition for f(Z). We will typically just say “decomposition”

when variables X and Y are clear from the context.

Consider the Boolean function f = (X1 ∧ Y1) ∨ (X2 ∧ Y2) ∨
(X2∧Y3) and the partition X = {X1, X2},Y = {Y1, Y2, Y3}. The

following are two decompositions of this function:

g(X) h(Y)

X1 Y1

X2 Y2 ∨ Y3

g(X) h(Y)

X1 Y1

¬X1 ∧ X2 Y2 ∨ Y3

X1 ∧ X2 ¬Y1 ∧ (Y2 ∨ Y3)

Each row corresponds to an element of the decomposition. More-

over, we present each element in terms of its X and Y components;

the element can be recovered by simply conjoining these components

together. Note that the left decomposition is non-deterministic, while

the right decomposition is deterministic. One can always find an X-

decomposition for any function f(Z) if one is not concerned about

the size of the decomposition. In particular, the models of f(Z) can

be the basis for a rather trivial X-decomposition (for any partition

X,Y of Z).

The notion of a decomposition generalizes the Shannon decom-

position as used in the OBDD literature. According to the Shan-

non decomposition, every function f(Z) can be expressed as f =
(X ∧ f |X)∨ (¬X ∧ f |¬X). If we let X = {X},Y = Z\X, then

this can be thought of as the following decomposition:

g(X) h(Y)

X f |X
¬X f |¬X

The Shannon decomposition is always of size two, deterministic,

and is completely determined by the choice of variable X .

Algorithm 1: DNNF (v, f): keeps a cache cache(., .) where

the first argument is a vtree node and the second argument is a

function. The cache is initialized to nil.
input:

v: vtree node

f : function that depends only on vars(v)

output: DNNF for function f respecting vtree rooted at node v

main:

1: If f = true or f = false or v is a leaf node, return f
2: If cache(v, f) �= nil, return cache(v, f)
3: X← variables in the vtree rooted at vl

4: Y← variables in the vtree rooted at vr

5: g1(X) ∧ h1(Y), . . . , gm(X) ∧ hm(Y)← a decomposition

of f
6: α←false

7: for i = 1 to m do

8: α←α ∨ (DNNF (vl, gi(X)) ∧ DNNF (vr, hi(Y)))
9: end for

10: cache(v, f)←α
11: return α

6 An Algorithm for Constructing DNNF

In this section, we present a top-down algorithm for construct-

ing DNNFs that respect a given vtree (Algorithm 1). This algorithm

works by applying a decomposition to the input Boolean function

(Lines 3-5). Then, it invokes itself recursively to decompose each

function used in the decomposition (Line 8). The disjunction of all

elements of the decomposition (α) is then returned. In the base cases

(Line 1), the input function must be equivalent to either a truth con-

stant or a literal. We return such a value. Note that caching is used

in this algorithm to avoid decomposing the same function more than

once at a given vtree node (Lines 2, 10). In each function call, if

there is no cache hit, a total of m and-nodes and one or-node will

be constructed by the algorithm (m is the size of the decomposition

used).4 Note that this version of the algorithm uses the input Boolean

function as a cache key. This caching scheme is not practical, but it

suffices for our discussion in the next two sections. We will present

more practical caching schemes when we discuss more concrete ver-

sions of the algorithm in Section 9.

The value of this algorithm is two-fold. First, it provides, a top-

down algorithm for constructing structured DNNF that does not com-

mit to any particular vtree or any particular type of decomposition.

Thus, by varying the type of vtree and the type of decompositions

used on Line 5, formulas from various languages including DNNF,

deterministic DNNF and OBDD can be constructed. Secondly, it can

be used as a tool for deriving upper bounds on the size of structured

DNNFs. We will demonstrate this usage later. We now state the cor-

rectness of the algorithm.

Proposition 1 Algorithm 1 returns a DNNF for function f that re-

spects the vtree rooted at node v. If the decompositions computed on

Line 5 are deterministic, the returned DNNF will be deterministic.

In the rest of the paper, we implicitly assume that DNNF (v,F)
is the first call to Algorithm 1 and use DNNF (v, .) to refer to a

(recursive) call to Algorithm 1 made with vtree node v as the first ar-

gument. We say that the and-nodes and or-nodes constructed during

a call DNNF (v, .) are computed at node v. Lastly, we use the term

4 The number of edges constructed in each function call is bounded by 3m.
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number of distinct calls at node v to denote the number of recursive

calls DNNF (v, f) made with distinct functions as the second argu-

ment. Once a call DNNF (v, f) has been made, all subsequent calls

with the same vtree node and function yield no work because of the

cache. Therefore, the number of distinct calls is an indicator of how

much time (and space) is used by the algorithm.

7 An Upper Bound

In this section, we present our main result, which is an upper bound

on the size of structured DNNF based on Algorithm 1.

Theorem 2 Consider calling Algorithm 1 on a function with n vari-

ables. Let v be a node in the vtree used, kv be the number of distinct

calls DNNF (v, f) and let mv be the size of largest decomposi-

tion computed at node v. The number of nodes computed at node v is

O(kvmv). Moreover, the size of the DNNF returned by the algorithm

is in O(Kn), where K = maxv kv, mv .

This result shows that the amount of work done (and the size of

the resulting DNNF) with respect to a particular vtree node can be

upper bounded by the product of (i) how many times recursive calls

(on distinct functions) are made on a particular vtree node and (ii)

how large the decompositions computed at node v are. Moreover, we

can use this result to bound the size of the whole DNNF returned by

the algorithm. We point out that this version of the upper bound is

not as specific as the upper bound given in Theorem 1, because this

general result does not make any assumption on the type of vtree or

the type of decompositions used in the algorithm. The upper bound

of Theorem 1 is obtained when one uses Shannon decompositions

and linear vtrees.5

Consider Algorithm 1 again. After all the recursive calls are made

on Line 8, α (which is an or-node) may contain disjuncts of the fol-

lowing form: (gi ∧ hi) ∨ (gj ∧ hj) where gi = gj . One can gen-

erate smaller DNNFs by factoring this expression to yield the more

compact expression gi ∧ (hi ∨ hj). The following two propositions

assume this type of factorization. The cost of applying this technique

is irrelevant to these propositions as they are only concerned with

bounding the size of resulting DNNFs. Yet, this factorization allows

us to bound the size of the DNNF fragment constructed at vtree node

v in terms of the number of distinct calls made to the children of node

v, therefore, removing the need to reference the size of decomposi-

tions computed at vtree node v. The next result utilizes this fact to

provide a special upper bound for functions with certain properties.

Proposition 2 Consider calling Algorithm 1 on a function over n
variables. If, for every internal vtree node v, the number of distinct

calls at node v is bounded by K, then the size of the output DNNF is

in O(K2n).

Another interesting scenario is when the number of distinct calls at

each vtree node v is linear in the number of variables in the sub-vtree

rooted at v. Even though the number of distinct calls is not bounded

5 We provide a proof sketch here and leave the details for the full version
of the paper, because of space limitations. When Shannon decompositions
and linear vtrees are used, we can show that the distinct calls made at node
v induce an X-decomposition (X = vars(v)) whose size can be bounded
by the number of sub-functions F|y, where Y is the set of variables out-
side of vars(v). Here, Y corresponds to the variables X1, . . . , Xi−1 in
Theorem 1. Each distinct call made at node v returns an or-node that corre-
sponds to an OBDD node labeled with the first variable in v (nearest to the
root).This variable corresponds to Xi in Theorem 1. As a result, we obtain
the upper bound result of Theorem 1.

by a constant in this case, we can still obtain an interesting bound on

the overall DNNF size.

Proposition 3 Consider calling Algorithm 1 on a function over n
variables. If, for every internal vtree node v, the number of distinct

calls at node v is in O(|vars(v)|), then the size of the output DNNF

is in O(n2).

Note that the claim made by this proposition is stronger than the

O(n3) bound that is immediate from Proposition 2. We will uti-

lize these results to bound the size of structured DNNFs for certain

Boolean functions in the next section.

8 Example Applications of the Upper Bound

In this section, we demonstrate several example applications of our

upper bound results presented in the previous section. The bounds

presented here do not require any assumption on the format of the

input functions. We take advantage of the knowledge about the

Boolean functions considered to tailor appropriate decompositions

for deriving the bounds. In each example, we present the decompo-

sitions to be used (by Algorithm 1). Then, we derive a bound by

reasoning about the sizes of these decompositions and the number of

distinct calls at each vtree node. All of the results presented in this

section generalize well-known OBDD upper bounds for the corre-

sponding Boolean functions.

8.1 Total Symmetric Boolean Functions

We start by deriving an upper bound on the DNNF size of a well-

known class of Boolean functions. A Boolean function F is said to

be total symmetric if exchanging the values of any variables does not

affect the value of F . It is well-known that the size of any OBDD

(any ordering) representing a total symmetric Boolean function is

upper bounded by O(n2), where n is the number of variables [14].

We will generalize this result for structured DNNF respecting any

vtree (i.e., any tree structure, any placement of variables). We first

state this result.

Proposition 4 Let F be any total symmetric function over n vari-

ables. For any given vtree, there exists a deterministic DNNF for F
that respects the vtree with size in O(n2).

Proof. Let a vtree be given. Because F is total symmetric, for any

variable partition X,Y, we can always apply the following decom-

position: f=0(X) ∧ h0(Y), . . . , f=|X|(X) ∧ h|X|(Y), where f=i

is the exactly i function (f=i(z) = true iff z sets exactly i variables

to true) and hi is such that y |= hi iff y ∧ f=i(X) |= F , where y

is an instantiation of Y. 6 Note that each f=i is also total symmet-

ric. Moreover, because f is total symmetric, each hi must be total

symmetric as well. This implies that this decomposition can be re-

cursively applied to each f=i and each hi. It is not hard to see that,

at each vtree node v, we need at most |vars(v)|+1 distinct function

calls (either f=0, . . . , f=|vars(v)| or h0, . . . , h|vars(v)|). Clearly, the

number of distinct function calls at each vtree node is linear in the

number of variables in that sub-vtree. Therefore, by Proposition 3,

the size of structured DNNF for this function can be upper bounded

by O(n2). Notice that, since the decompositions used in the above

proof are deterministic, the resulting DNNF is also deterministic. �

6 This decomposition is valid only because f is total symmetric. It is possible
for some hi to be false.
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This result has an important implication. It shows that we can al-

ways conjoin a structured DNNF representation of any function with

that of a total symmetric function in polytime. Given a structured

DNNF representation of a function using any vtree, we can use the

above construction to create a structured DNNF representation of the

considered total symmetric function and conjoin it with the function

(conjoin is a quadratic time operation for structured DNNFs that re-

spect the same vtree [8]).

In the next two examples, we consider specific functions in this

class and show that even tighter upper bounds can be derived for

structured DNNF.

8.2 Odd/Even Parity Functions

In this example, we will prove a result that generalizes the linear

OBDD upper bound for the parity functions [13].

Proposition 5 Given any vtree, there exist DNNFs for the odd and

even parity functions over n variables that respect the vtree with size

in O(n).

Proof. Consider the odd parity (fo) and the even parity (fe) func-

tions. Let X and Y be the variable partition at the vtree node consid-

ered. We adopt the following decompositions:

For fo(Z) : fo(X) ∧ fe(Y), fe(X) ∧ fo(Y)

For fe(Z) : fe(X) ∧ fe(Y), fo(X) ∧ fo(Y)

Since these decompositions utilize only the odd and even parity func-

tions, they can be applied recursively. As a result, we have that,

at each vtree node v, (i) only two distinct functions (fo, fe over

vars(v)) are needed and (ii) the size of any decomposition is exactly

two. Therefore, by Theorem 2, for every vtree node v, Algorithm 1

only constructs a constant number of DNNF nodes. Moreover, by

Corollary 1 the total size of the DNNF is in O(n). �

Again, this bound applies to any vtree. Notice also that, since the

decompositions used are deterministic, the constructed DNNF is also

deterministic. This result generalizes the well-known OBDD upper

bound for parity functions in [13].

8.3 Threshold Functions

In this last example, we present an upper bound for threshold func-

tions. A threshold function f≥k evaluates to true iff at least k of its

inputs are true.

Proposition 6 Let f≥k be a threshold function over n variables. For

any vtree, there exists a DNNF for f≥k that respects the vtree with

size in O(k2n).

Proof. Let f=k be the exactly k function. Now, consider any vtree.

We adopt the following decomposition on Line 5 of Algorithm 1:

• If f = f≥k(Z) and assuming |X| ≤ |Y|, choose the de-

composition f=0(X) ∧ f≥k(Y), f=1(X) ∧ f≥k−1(Y), . . . ,

f=k−1(X) ∧ f≥1(Y), f≥k(X).

• If f = f=k(Z), choose the decomposition f=0(X) ∧ f=k(Y),

f=1(X) ∧ f=k−1(Y), . . . , f=k(X) ∧ f=0(Y).

Note that f=k(Z) = false and f≥k(Z) = false when |Z| < k.

It is not hard to see that the number of distinct function calls at

each vtree node is ≤ k + 1. By invoking Proposition 2, we obtain

that the size of the resulting DNNF must be in O(k2n), where n is

the total number of variables. �

Again, the resulting DNNF is deterministic. The bound presented

above is applicable to any vtree. Yet, the bound can be tightened even

further for certain types of vtrees. For example, if the vtree is linear,

the proposed decompositions will reduce to the following:

• If f = f≥k(Z), choose the decomposition f=0(X) ∧ f≥k(Y),

f=1(X) ∧ f≥k−1(Y).

• If f = f=k(Z), choose the decomposition f=0(X) ∧ f=k(Y),

f=1(X) ∧ f=k−1(Y).

Notice that f=0(X) = ¬X and f=1(X) = X . Hence, these de-

compositions are in fact Shannon decompositions. Since the size of

each decomposition is two and the number of distinct calls at each

vtree node is ≤ k + 1, we get a bound of O(kn) for the total size of

the DNNF, which is also in the same order as the bound known for

OBDD [11].7

9 Practical Compilation Algorithms and Their
Complexities

We now present two practical versions of Algorithm 1 and address

their time and space complexities. In particular, we consider the cases

when the inputs are expressed in conjunctive normal form (CNF).

We present two types of decompositions for CNF inputs along with

concrete caching schemes. Base on these choices, we present results

on the time and space complexities of the resulting algorithms using

treewidth [10]. Due to space constraints, we leave the proofs of the

claims made here to the full paper.

In the first case, we show that the time and space complexities of

the algorithm is exponential in the treewidth of the constraint graph

of the given CNF. A related result was stated in [8], but concerned

only the size of a structured DNNF. Here, we provide an algorithm

with this time and space guarantee. In the second case, we present

a compilation algorithm that establishes (structured) decomposabil-

ity without imposing determinism. We will show that the presented

algorithm has time and space complexity that is exponential only in

the treewidth of the dual constraint graph of the CNF (a.k.a. the dual

treewidth). The dual constraint graph is a graph in which each clause

of the CNF corresponds to a distinct vertex and an edge exists be-

tween two vertices iff their clauses share a variable [5]. In general,

neither the treewidth of the constraint graph nor the treewidth of the

dual constraint graph dominates each other (i.e., there exists a CNF

whose treewidth is smaller than the dual treewidth and vice versa). In

what follows, given a partition of variables X,Y, we write each CNF

Δ as a conjunction of three components: (i) Δ(X), the clauses over

X, (ii) Δ(Y), the clauses over Y, and (iii) Δ(X,Y), the clauses

that mention variables in X and Y. We refer to Δ(X,Y) as the cut-

set clauses of the CNF (with respect to the partition). Moreover, we

use |Δ| to refer to the number of clauses in the CNF Δ.

9.1 An Algorithm with a Treewidth Bound

We now describe a variation on Algorithm 1 with a treewidth guar-

antee. This variation is defined by a specific class of decompositions

and a specific caching scheme that we shall describe next. The re-

sulting algorithm, which is based on the ideas underlying [2], will be

referred to as Algorithm 1(TW).

7 A more refined bound of kn−k2 +k can be obtained with a more detailed
analysis.
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Definition 4 Consider a CNF Δ(Z) = Δ(X)∧Δ(Y)∧Δ(X,Y).

The set of cutset-variables is the subset of variables X mentioned

by Δ(X,Y). We define the cutset-variable decomposition to be

g1(X) ∧ h1(Y), . . . , gm(X) ∧ hm(Y), where, for each instanti-

ation vi of the cutset-variables, gi = (vi ∧ Δ(X)|vi) and hi =
(Δ(Y) ∧ Δ(X,Y)|vi).8

Since we consider only CNF inputs, the functions gi and hi in this

decomposition must be given in CNF as well. We can obtain CNF

representations of Δ(X)|vi and Δ(X,Y)|vi in time that is linear

in the sizes of these formulas. Therefore, the time complexity for

producing a cutset-variable decomposition is proportional to the de-

composition size and the size of CNF Δ.

To fully specify our new algorithm, we need to specify the cache

key. For this purpose, we assume that a third argument, which is an

instantiation, is passed to each function call (in addition to vtree node

v and the CNF f ). Considering Definition 4, the third argument for

DNNF (vl, gi, .) is defined to be the third argument of the current

function call, while the third argument for DNNF (vr, hi, .) is de-

fined to be the third argument of the current function call conjoined

with the instantiation vi. For each vtree node v, we can pre-compute

the set of context variables, which are variables outside of vars(v)
that appear in the same clause (of F ) as some variable in vars(v).

Then, during actual call DNNF (v, f, .), the cache key is then sim-

ply the values of the context variables of v according to the third

argument. The following proposition provides time and space guar-

antee for this algorithm.

Proposition 7 Given a CNF Δ over n variables and an elimination

order of Δ with width w, we can construct a vtree such that a call

to Algorithm 1(TW) on Δ using the vtree can have a time and space

complexity in O(n|Δ|2w).

Hence, given an appropriate elimination order of the input CNF, Al-

gorithm 1(TW) produces a DNNF in time and space that are only

exponential in the treewidth of the CNF (see [3] for a review of elim-

ination orders and treewidth).

9.2 An Algorithm with a Dual Treewidth Bound

We now describe another variation on Algorithm 1 with a dual

treewidth guarantee. This variation is defined again by a specific

class of decompositions and a specific caching scheme that we shall

describe next. The resulting algorithm will be referred to as Algo-

rithm 1(DTW).

Definition 5 Consider a CNF Δ(Z) = Δ(X) ∧ Δ(Y) ∧
(
∧k

i=1(αi(X) ∨ βi(Y))), where αi, βi are clauses over X and Y.

The cutset-clause decomposition of Δ is defined as⎧⎨
⎩

(
Δ(X) ∧ (

∧
i∈S

αi)

)
∧

⎛
⎝Δ(Y) ∧ (

∧
j /∈S

βj)

⎞
⎠ S ⊆ [k]

⎫⎬
⎭ ,

where [k] is defined to be {1, 2, . . . , k}.

In this definition, the cutset clauses are viewed as disjunctions of

sub-clauses over X and over Y. Each element of the decomposi-

tion is a CNF consisting of Δ(X), Δ(Y), and an element of the

8 When Δ(X,Y) = true, we simply adopt the decomposition Δ(X) ∧
Δ(Y). There are other definitions of cutset-variables which could lead to
smaller decompositions. We chose this one for simplicity.

cross-product of the cutset clauses. The size of this decomposition

is exponential in the number of cutset clauses. The time needed to

compute each clause-cutset decomposition is proportional to the size

of the decomposition and |Δ|. It is important to note that the decom-

position described above may not be deterministic in general. This

variation on Algorithm 1 uses the input CNF as a cache key.

Proposition 8 Given a CNF Δ over n variables and an elimination

order of its dual constraint graph with width w, we can construct a

vtree such that a call to Algorithm 1(DTW) on Δ using the vtree can

have a time and space complexity in O(n|Δ|3w).

With the right elimination order, Algorithm 1(DTW) produces a

DNNF in time and space exponential in the dual treewidth of the

CNF.

10 Conclusion

We presented a top-down algorithm for constructing structured

DNNF. We then derived a general upper bound for structured DNNF

based on this algorithm. We showed that this result, when considered

in the right context, subsumed the Siegling and Wegener OBDD up-

per bound. Then, we demonstrated how our result could be used to

upper bound the size of structured DNNF for various Boolean func-

tions, generalizing the known OBDD upper bounds for these func-

tions. We then presented practical variations of the proposed algo-

rithm. We showed that, in one variation, we could obtain a treewidth

guarantee on both time and space, and, in the other variation, the time

and space complexities were exponential in the treewidth of the dual

constraint graph.
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