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Abstract. In this paper we address the problem of active query
selection for clustering with constraints. The objective is to deter-
mine automatically a set of user queries to define a set of must-link
or cannot-link constraints. Some works on active constraint learning
have already been proposed but they are mainly applied to K-Means
like clustering algorithms which are known to be limited to spher-
ical clusters, while we are interested in clusters of arbitrary sizes
and shapes. The novelty of our approach relies on the use of a k-
nearest neighbor graph to determine candidate constraints coupled
with a new constraint utility function. Comparative experiments con-
ducted on real datasets from machine learning repository show that
our approach significantly improves the results of constraints based
clustering algorithms.

1 INTRODUCTION

In recent years, clustering with constraints (also known as clustering
with side information) has become a topic of significant interest for
many researchers because these methods allow to take into account
a user’s knowledge (called oracle or teacher in this case) - expressed
as a set of constraints - to improve the clustering results. There exist
several families of constraints but the most used are: must-link (ML)
and cannot-link (CL) constraints [25]. ML constraints indicate that
two points of the dataset have to be partitioned in the same cluster
while CL constraints impose that the points belong to different clus-
ters.

We can divide previous work on clustering with constraints into
two main families: either 1) the constraints help the algorithm to
learn a metric/objective function [3, 8, 15, 21, 18, 6, 20] or 2) the
constraints are used as hints to guide the algorithm to a useful solu-
tion [7, 23, 25, 22].

The motivation of our work focuses on two open questions that
follow:

1. How can we determine the utility of a given constraint set, prior
to clustering [24]? The need for a constraint set utility mea-
sure has become imperative with the recent observation that some
poorly defined constraint sets can decrease clustering perfor-
mances [9, 24]. We will propose a new measure to evaluate a con-
straint utility. This measure evaluates the ability of a constraint to
help the clustering algorithm to distinguish the points in the per-
turbation regions, e.g. sparse regions or transition regions. We use
this measure to develop an active constraint selection algorithm.

2. How can we minimize the effort required to the user, by only so-
liciting her(him) for the most useful constraints [13, 24]? Many
researches have been conducted on the problem of clustering with
constraints [3, 7, 22, 23, 18, 2, 6, 20, 12] but most of the time the
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user is supposed to provide the algorithm with good constraints in
a passive manner (see Figure 1). One alternative is to let the user
actively choose the constraints. However, as some poorly chosen
constraints can lead to a bad convergence of the algorithms [9] and
as there is possibly n×(n−1)

2
ML or CL constraints in a datasets

with n points, the choice of the constraints appears to be a crucial
problem. Some works are proposed on this topic but they only
focus on K-Means clustering [1, 19].

This paper presents a new active constraint selection algorithm to
collect a constraint set which can be suitable for constrained cluster-
ing algorithms that apply to clusters with different sizes and arbitrary
shapes (Constrained-DBSCAN [22], Constrained Hierarchical Clus-
tering [7], and Constrained Spectral Clustering [27]). Our method
relies on a k-nearest neighbor graph to estimate sparse regions of the
data where queries about constraints are most likely to be asked.

Figure 1. Illustration of passive definition of constraints (top) and active
constraints learning (bottom)

The rest of the paper is organized as follows: Section 2 discusses
the related work. Section 3 presents our new framework for active
constraint selection, while section 4 describes the experiments that
have been conducted on benchmark datasets. Finally, section 5 con-
cludes and discusses future research.

2 RELATED WORKS

There are few works on active constraint selection for clustering. In
[1], an algorithm for active constraint selection for K-means using
farthest-first strategy was proposed. This algorithm is referred to as
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the Farthest First Query Selection (FFQS) [19]. The FFQS algorithm
has two phases: Explore and Consolidate.

The Explore phase defines a set of CL constraints under the strong
hypothesis that, at the end of this phase, at least one point has been
drawn in each cluster; the set of CL constraints is called the skele-
ton of the clusters. At each iteration, the farthest point from existing
skeleton is chosen as a candidate for a CL query.

The second phase Consolidate randomly picks a point not in the
skeleton and queries it against each point in the skeleton, until a ML
constraint is obtained from the user.

In [19], an improved version of FFQS using a min-max approach
is proposed. In the Consolidate phase, instead of randomly selecting
the point, the idea consists of selecting the data point whose largest
similarity to the skeleton is the smallest. By this way, the data point
with largest uncertainty in cluster membership is chosen earliest to
express the queries. However, both previous methods do not work
well in the case of a data set with a large number of clusters or un-
balanced data sets with small clusters.

Finally, in [27], Xu et al. propose active constraint selection for
spectral clustering. The key idea of this work is to use the theory of
spectral decomposition to identify data items that are likely to be lo-
cated on the boundaries of clusters. However, the authors only focus
on two-cluster problem.

3 ACTIVE CONSTRAINT SELECTION
FRAMEWORK

In order to collect a suitable constraint set, our algorithm first builds
a set of candidate constraints from a k-Nearest Neighbor Graph (k-
NNG). Second, our approach makes use of a new constraint set utility
measure to rank the candidate constraints according to their ability to
separate clusters.

3.1 The k-nearest neighbor graph

We define the k-NNG as a weighted undirected graph, in which each
vertex represents a data point, and possesses at most k edges to its
k-nearest neighbors. An edge is created between a pair of points, xi

and xj , if and only if xi and xj have each other in their k-nearest
neighbors set. The weight ω(xi, xj) of the edge (the similarity) be-
tween two points xi and xj is defined as the number of common
nearest neighbor the two points share, as shown in equation 1 [10].

ω(xi, xj) =| NN(xi) ∩NN(xj) | (1)

where NN(.) denotes the set of k-nearest neighbors of the specified
point. The important property of this similarity measure is its own
built-in automatic scaling, which makes it adapted to treat datasets
with distinct cluster densities.

3.2 A new measure of constraints utility

Given a k-NNG, the Local Density Score (LDS) of a vertex xi ∈
k-NNG is defined by equation 2 [16]:

LDS(xi) =

∑
q∈NN(xi)

ω(xi, q)

k
(2)

The LDS score of a point in [0, k − 1] is the average distance to its
k-nearest neighbors. LDS is defined in such a way that a high value
indicates a strong association between the point xi and its neighbors,
i.e. xi belongs to a dense region. In contrast, a low value of LDS

(high value of 1
1+LDS

) means that xi belongs to a sparse region or
transition region between clusters. In addition, in the k-NNG defined
above, edges with small weight values of ω (high value of (k − ω))
are also in the sparse regions or transition regions.

From these properties, we see that a constraint will be valuable if it
can help the clustering algorithms to separate the points in the sparse
regions or transition regions, that is to say where it is difficult for the
algorithms like DBSCAN [11] or Hierarchical clustering to distin-
guish between different clusters. We define a new utility measure of
a constraint between two points xi and xj as its Ability to Separate
between Clusters (ASC) as shown in equation 3:

ASC(xi, xj) =
k − ω(xi, xj) +

1
1+min{LDS(xi),LDS(xj)}
k + 1

(3)

The utility of a constraint depends on two aspects: the weight
ω(xi, xj) and the density of the region it belongs to. We define the
density of a constraint between two points xi and xj as the minimum
between LDS(xi) and LDS(xj) which means that if one of the two
points is in sparse region then the density of the constraint is likely
to be small.

The value of ASC ranges in [ 1
k
, 1]. We make the hypothesis that a

constraint with high ASC score is more likely to provide performance
gains.

3.3 Identification of candidate constraints

Following the principle of active learning [17], we choose the data
points to express our queries in the sparse regions or transition re-
gions, i.e. where the ω values are the smallest. In these cases, the
cluster membership is the most uncertain. In order to limit the num-
ber of constraint candidates for the set of candidates C (see equation
4), we filter the edges in the k-NNG according to a threshold θ as part
of the queries selection process. The set of candidates C is defined
as follows.

C = {(u, v) | weight(u, v) < θ} (4)

To generate the user queries, we can randomly choose the can-
didates from C, or we can rank the candidates in descending order
according the ASC score so that the candidates that maximizes the
ASC score are considered first in the queries selection process.

3.4 Active constraint selection algorithm

As stated before, our approach builds the first set of candidate con-
straints as the set of all edges in the k-NNG whose weights are under
the threshold value θ. The active constraint selection is expressed as
a loop until the entire candidate set is examined or the user stops. At
each iteration, the algorithm picks a candidate constraint between
points u and v from the set of remaining candidates following the
condition in the section 3.3 and asks the user about the nature of the
relation: ML, CL constraint or “I don’t know”. If the answer is ML
or CL, it defines a new constraint of that type between points u and
v named Label(u,v) and stores it in the set of final constraints (see
algorithm 1).

Given a set of candidate constraints C and a set of constraints Y ,
the Propagation procedure aims at discovering new constraints in C
from the information stored in Y . We first need to define the notion
of strong path.
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Definition 1 Given a k-nearest neighbor graph (k-NNG) for a data
set X and a threshold θ, a path from vertex u to vertex v is de-
fined as strong path SP (u, v, θ) iff there exists a sequence of vertex
(z1, z2, ..., zt) such that u = z1, v = zt and ∀i = 1 . . . t − 1:
ω(zi, zi+1) ≥ θ.

Two main rules are then applied to propagate new constraints in Y
from candidates C:

1. given a constraint (u, v) in Y and a candidate (t, l) in C,
if there exists strong paths: SP (u, t, θ) and SP (v, l, θ) or
SP (u, l, θ) and SP (v, t, θ) then constraint (t, l) is added to Y
and Label(t, l) = Label(u, v) (see Figure 2).

2. given two constraints (u, v) and (v, w) in Y , we have [19]:
(i) ML(u, v) ∧ ML(v, w) ⇒ ML(u,w); (ii) ML(u, v) ∧
CL(v, w) ⇒ CL(u,w). These new generated constraints are
added to Y .

Figure 2. Illustration of the propagation mechanism: Label(t, l) is
propagated as Label(u, v) because of the presence of strong paths

SP (u, t, θ) and SP (v, l, θ) between them

Finally, the Refinement procedure is called to filter candidates
that could be linked by a strong path: all the edges (u, v) such that
there exists a strong path SP (u, v, θ) between u and v are removed
from the candidate constraints set. The objective is to identify points
that are indirectly connected through a dense region (a similar prin-
ciple is found in the problem of propagation of labeled data for semi-
supervised classification [28]). This procedure is crucial for the per-
formance of our approach since it allows to decrease considerably
the size of the candidate constraints set.

The main steps of our algorithm are summed up in Algorithm 1

and Algorithm 2.
The complexity of our algorithm depends on the complexity of the

building of a k-NNG and the Refinement procedure. The complexity
of building the k-NNG is O(n*time for a k-nearest neighbors query).
Following Breunig et al. [5], for k-nearest neighbors queries, we
have a choice among different methods. For low-dimensional data,
we can use a grid based approach which can answer k-nearest neigh-
bors queries in constant time, leading to a complexity of O(n) to
build the k-NNG. For medium to medium high-dimensional data,
we can use an index, which provides an average complexity of
O(logn) for k-nearest neighbors queries, leading to a complexity
of O(n∗ logn) to build the k-NNG. For extremely high-dimensional
data, we need to use a sequential scan or some variant of it, e.g. the
VA-file [26], with a complexity of O(n), leading to a complexity of
O(n2) to build the k-NNG. The complexity of Refinement proce-
dure is O(n ∗ k) (scan all the edges of k-NNG).

Algorithm 1 Active constraint selection
Input: Data set X = {xi}ni=1, k and threshold θ
Output: Set of collected constraints Y
Process:

1: Y = ∅
2: Construct a k-NNG of X
3: C = {(u, v) | weight(u, v) < θ}
4: Refinement(C, θ)
5: while (UserStop = False) and (C 
= ∅) do

6: Pick a (u, v) ∈ C following the section 3.3
7: Query the user about the Label of (u, v) ?
8: if Label is ML or CL then

9: Y = Y ∪ {Label(u, v)}
10: Propagation(C, Y, θ)
11: Refinement(C, θ)
12: else

13: Save (u, v) and that query is not asked again later
14: end if

15: end while

Algorithm 2 Refinement(C, θ)
Process:

1: for all (u,v) ∈ C do

2: if ∃ SP(u,v, θ) then

3: C = C − {(u, v)}
4: end if

5: end for

So, the complexity of our algorithm is O(n ∗ k), O(n ∗ logn) or
O(n2) when the dimension of data is respectively low, medium or
extremely high.

4 EXPERIMENT RESULTS

4.1 Experimental Protocol

We use 8 real datasets from the Machine Learning Repository [4]
named: Iris, Soybean, Wine, Pima, Glass, Spectf, Ecoli, and Breast
to evaluate our algorithm. The detail of datasets are shown in Table
1.

We use the Agglomerative Hierarchical Clustering with Con-
straints [7] algorithm to evaluate the efficiency of our active selection
constraints framework. We refer to this algorithm as AHCC algo-
rithm. We also note that the AHCC is one of the three important types
of clustering algorithm in practice according to the research of Jain et
al. [14]. AHCC inputs a set of constraints (ML and CL) and returns a
dendrogram which satisfies all the constraints. For each dendrogram,
we choose the best output partition for the evaluation of results. Natu-
rally, our framework can be easily adapted to other constraint-based
clustering algorithm like Constrained-DBSCAN, constrained spec-
tral clustering . . .

4.2 Evaluation method

The data set used for the evaluation includes a “correct answer” or
label for each data point. We use the labels in a post-processing step
to evaluate the performance of our approach.

We use the Rand Index (RI) measure [25], as it is widely used in
evaluation of clustering results.
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Table 1. Main characteristics of the real datasets

ID Data #Objects #Attributes #Clusters

1 Iris 150 4 3

2 Soybean 47 35 4

3 Wine 178 13 3

4 Pima 768 8 2

5 Glass 214 9 6

6 Spectf 267 22 2

7 Ecoli 336 8 8

8 Breast 569 30 2

The RI measure computes the agreement between the theoretical
partition of each dataset and the output partition of evaluated algo-
rithms. This measure is based on n(n−1)

2
pairwise comparisons be-

tween the n points of a data set X . For each pair of points xi and xj

in X , a partition assigns them either to the same cluster or to different
clusters.

Let us consider two partitions P1 and P2, and let a be the number
of decisions where the point xi is in the same cluster as xj in P1 and
P2. Let b be the number of decisions where the two points are placed
in different clusters in both partitions. A total agreement can then be
calculated as shown in equation 5.

RI(P1, P2) =
2(a+ b)

n(n− 1)
(5)

RI takes values between 0 and 1; RI = 1 when the result is the same
as the ground-truth. The larger the RI, the better the result.

4.3 Choosing the parameters

Our active selection framework uses two parameters: the number of
nearest neighbors k and the threshold θ. As shown in Figure 3, the
value of k cannot be generalized for all datasets because it depends
on the structure and the size of the datasets. For example, in the Iris
dataset, the changes in the value of k to some local optimum that
are due to overlapping clusters. However, we have observed exper-
imentally that, for all datasets, the best results are obtained when
parameter θ is fixed in [ k

2
− 2, k

2
+ 2].

4.4 Results

To evaluate our active query selection algorithm and our measure of
constraint utility ASC, we used the three following algorithms:

1. AHCC with our active constraint selection algorithm in which the
candidates are selected according to the ASC score (see section
3.3). This method is deterministic, so we only need to perform it
once.

2. AHCC with our active constraint selection algorithm, but the can-
didates are randomly chosen from candidates set to ask the users.
We conducted 50 runs for each dataset and the results were aver-
aged.

3. AHCC with random selection of constraints from data, this
method generates a set of ML and CL constraints based on the
comparison of the labels of randomly chosen pairs of objects. If
two labels are in the same cluster, we generate a ML constraint,
and else, we generate a CL constraint. As this approach is non
deterministic, the results are averaged over 50 trials.
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Figure 3. Rand Index measure of our approach with ASC score for some
datasets using 50 queries vs. the number of neighbors k in the k-NNG

Figure 4 shows that our method based on the ASC measure gen-
erally performs better than the method based on a random choice of
constraints, which shows the usefulness and the efficiency of the ASC
measure. However, some complementary observations can be made
from these results.

In the case of Pima and Spectf data, the performance of the
AHCC significantly decreases when adding the constraints (in the
case where the constraints are randomly chosen from labels). It can
be explained by the fact that when the data set consists in multiple
overlapping clusters, the performance of the constrained clustering
algorithms may decrease when constraints are not properly chosen.

In the case of Ecoli dataset for 20 queries, the random generated
constraints performs better than the ASC approach while after, when
the number of queries increases, ASC approach gives better results.
This result may be due to the use of a hierarchical clustering algo-
rithm whose performances can change drastically for a small number
of constraints.

The Table 2 presents the number of queries asked to the users and
the number of constraints that are propagated by our algorithm. It
is important to notice that, in the approach that selects at random
the constraints from the data labels, each selection of a pair of ob-
jects simulates one user query whose answer corresponds to one
constraint, whereas in both other approaches (based on ASC score
or random selection of candidates from k-NNG) each query can lead
to several constraints according to the Propagation procedure. Ta-
ble 2 shows that the second method, in which constraints are cho-
sen randomly from the set of candidates, propagates more constraints
than the method based on ASC score. However Figure 4 shows that
the method based on ASC score performs better than the others,
which may indicates that this approach generates better candidate
constraints.

5 CONCLUSION

A new active query selection framework for constrained clustering
algorithm is proposed. Contrary to other approaches, our method
aims at generating constraints that are useful for clustering algo-
rithms like C-DBSCAN, that discover clusters of arbitrary shapes
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Figure 4. Results of the 8 real datasets using Rand Index measure. As it can be clearly seen, the method based on ASC measure performs better than the
approach with a random choice of candidates. However, both approaches significantly improve the results compared to the approach with a random choice of

candidates from data.
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Table 2. Number of queries and number of collected constraints. #C1 is
the number of constraints propagated by our algorithm with the ASC
measure while #C2 is the number (the average value) of constraints

propagated with random choice of candidates over 50 trials and σcf is
standard deviation of #C2.

#Queries 10 20 30 40 60Iris
#C1 13 26 37 53 81

#C2[σcf ] 13[2.2] 24[3.1] 38[3.5] 54.4[3.1] 78[4.7]
#Queries 10 20 30 40 50Soy-

#C1 10 25 42 55 71
bean #C2[σcf ] 13[2.2] 24[2.1] 41[2.1] 56[2.5] 68[5.1]

#Queries 10 20 40 60 80Wine
#C1 13 28 56 106 123

#C2[σcf ] 19[3.8] 39[8.4] 78[8.3] 120[9.5] 155[9.8]
#Queries 10 20 30 40 50Pima

#C1 10 23 33 45 56
#C2[σcf ] 13[2.8] 25[4.0] 38[4.0] 50[4.1] 59[3.5]
#Queries 10 20 30 40 60Glass

#C1 10 22 34 45 65
#C2[σcf ] 12[1.2] 24[2.5] 37[4.2] 48[1.5] 71[2.9]
#Queries 70 80 100 120 140Spectf

#C1 73 84 107 129 151
#C2[σcf ] 74[4.2] 87[6.1] 109[3.9] 132[5.5] 154[5.2]
#Queries 20 40 60 80 100Ecoli

#C1 20 40 61 86 107
#C2[σcf ] 22[1.5] 44[2.6] 68[1.7] 90[2.6] 113[1.5]
#Queries 10 20 30 40 50Breast

#C1 15 31 44 71 87
#C2[σcf ] 17[3.6] 37[4.8] 45[4.7] 70[4.2] 82[3.9]

and sizes. The novelty of the method relies on three aspects: (1)
a k-nearest neighbor graph is used to determine the best candidate
queries in the sparse regions of the dataset between the clusters where
traditional clustering algorithms perform poorly, (2) a new measure
of constraint utility is used in the queries selection process and (3)
a propagation procedure allows each user query to generate several
constraints which limits the number of user interactions. Experiments
show that our algorithm outperforms a method based on random
queries generation on a set of real datasets, and that the queries and
their associated constraints appear to be more suitable for clusters of
various shapes and sizes.

Future works include the analysis of the dynamic of propagation
of constraints and the development of a visualization interface to im-
prove the interaction between our algorithm and the users. Finally,
the problem of active constraint selection when the dataset consists of
multiple overlapping clusters will be examined in future researches.
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