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Abstract.

We investigate the complexity of axiom pinpointing for different
members of the DL-Lite family of Description Logics. More pre-
cisely, we consider the problem of enumerating all minimal sub-
sets of a given DL-Lite knowledge base that have a given conse-
quence. We show that for the DL-LiteHcore, DL-LiteHkrom and DL-
LiteHN

horn fragments such minimal subsets are efficiently enumerable
with polynomial delay, but for the DL-Litebool fragment they can-
not be enumerated in output polynomial time unless P = NP. We also
show that interestingly, for the DL-LiteHN

horn fragment such minimal
sets can be enumerated in reverse lexicographic order with polyno-
mial delay, but it is not possible in the forward lexicographic order
since computing the first one is already coNP-hard.

1 Introduction

In real world applications where ontologies are employed, often the
knowledge engineer not only wants to know whether her ontology
has a certain (unwanted) consequence or not, but also wants to know
why it has this consequence. Even for ontologies of moderate sizes,
finding explanations for a given a consequence is not an easy task
without getting support from an automated tool. The task of finding
explanations for a given consequence, i.e., minimal subsets of the
original ontology that have the given consequence is called axiom
pinpointing in the literature.

Existing work on axiom pinpointing in DLs can be classified under
two main categories, namely the glass-box approach, and the black-
box approach. The idea underlying the glass-box approach is to ex-
tend the existing reasoning algorithms such that while doing reason-
ing, at the same time they can keep track of the axioms used, and
detect which of the axioms in the knowledge base (KB) are respon-
sible for a given consequence. In [24] a pinpointing extension of the
tableau-based satisfiability algorithm for the DL ALC has been in-
troduced. Later in [19], this approach has been further extended to
DLs that are more expressive than ALC. In [17] a pinpointing al-
gorithm for ALC with general concept inclusions (GCIs) has been
presented by following the approach in [2]. In order to overcome the
problem of developing a pinpointing extension for every particular
tableau-based algorithm, a general pinpointing extension for tableau
algorithms has been developed in [4]. Similarly, an automata-based
general approach for obtaining glass-box pinpointing algorithms has
been introduced in [3].
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In contrast to the glass-box approach, the idea underlying the
black-box approach is to make use of the existing highly optimized
reasoning algorithms wihout having to modify them. The most naı̈ve
black-box approach would of course be to generate every subset of
the originial TBox, and ask a DL reasoner whether this subset has
the given consequence or not, which obviously is very inefficient.
In [16] more efficient approaches based on Reiter’s hitting set tree
algorithm [23] have been presented. The experimental resuts in [16]
demonstrate that this approach behaves quite well in practice on real-
istic TBoxes written in expressive DLs. A similar approach has suc-
cessfully been used in [14] for explaining inconsistencies in OWL
ontologies. The main advantages of the black-box approach are that
one can use existing DL reasoners, and that it is independent of the
DL reasoner being used. In [13] the black-box approach has been
used for computing more fine grained explanations, i.e., not just the
set of relevant axioms in the TBox but parts of these axioms that
actually lead to the given consequence.

Although various methods and aspects of axiom pinpointing have
been considered in the literature, its computational complexity has
not been investigated in detail yet. Obviously, axiom pinpointing is
at least as hard as standard reasoning. Nevertheless, especially for
tractable DLs it makes sense to investigate whether explanations for
a consequence can efficiently be enumerated or not. In [5] it has been
shown that a given consequence can have exponentially many expla-
nations (there called MinAs, which stands for minimal axiom sets),
and checking the existence of a MinA within a cardinality bound is
NP-hard even for a fragment of EL that only allows for conjunction
on both sides of a GCI. In [20, 21] we have investigated the com-
plexity of axiom pinpointing in the propositional Horn fragment, and
in the tractable DL EL. We have presented a polynomial delay algo-
rithm for enumerating MinAs in the propositional Horn setting that
works even if the MinAs are required to be enumerated in reverse
lexicographic order. We have also shown that in the dual-Horn set-
ting where the axioms have only one negative literal, this problem is
at least as hard as the hypergraph transversal enumeration problem,
whose exact complexity is a prominent open problem [12]. More-
over, we have shown that for EL TBoxes MinAs cannot be enumer-
ated in output-polynomial time unless P = NP. In [25] a promising
method that uses modern conflict-driven SAT solvers for axiom pin-
pointing in EL has been presented. The method generates proposi-
tional Horn formulas representing the deduction steps performed by
a classification algorithm, and manipulates them with the help of a
SAT solver for computing MinAs.

In the present work we investigate the complexity of axiom pin-
pointing in the other prominent family of tractable DLs, namely the
DL-Lite family, which has been very popular due to its success in
efficiently accessing large data and answering complex queries on
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this data [8, 1]. For this family various aspects of finding explana-
tions have already been considered in [7, 6]. There the main focus is
on the problem of explaining query answering and ABox reasoning,
which are the most standard types of reasoning problems in the DL-
Lite family. In particular the authors investigate in detail the problem
of determining why a value is returned as an answer to a conjunc-
tive query posed to a DL-Lite ABox, why a conjunctive query is
unsatifiable, and why a particular value is not returned as answer to a
conjunctive query. Complementary to the work in [7, 6] here we con-
sider the problem of explaining TBox reasoning. We investigate in
detail the complexity of enumerating MinAs in a DL-Lite TBox for
a given consequence of this TBox. We show that for DL-LiteHcore,
DL-LiteHkrom and DL-LiteHN

horn TBoxes MinAs are efficiently enu-
merable with polynomial delay, but for DL-Litebool they cannot be
enumerated in output-polynomial time unless P = NP. We also show
that interestingly, for DL-LiteHN

horn TBoxes MinAs can be enumer-
ated in reverse lexicographic order with polynomial delay, but it is
not possible in the forward lexicographic order since computing the
first MinA w.r.t. this ordering is already coNP-hard. Some of our re-
sults here have appeared in a shorter version [22] of the present paper.

2 Preliminaries

We briefly introduce the syntax of the DL-Lite family following
the notation in [1]. DL-Lite concepts and roles are constructed as
follows: r := p | p−, B := ⊥ | A | ≥ q r, C :=
B | ¬C | C1 � C2, where A is a concept name, p is a role name,
and q is a natural number. Concepts of the form B are called basic,
and those of form C are called general concepts.

A DL-LiteNbool TBox is a set of axioms of the form C1 � C2,
where C1, C2 are general concepts. A TBox is called core, de-
noted as DL-LiteNcore, if its axioms are of the form B1 � B2, or
B1 � ¬B2 , where B1, B2 are basic concepts. Krom TBoxes gen-
eralize core ones by allowing also axioms of the form ¬B1 � B2.
These TBoxes are denoted as DL-LiteNkrom. Finally, a Horn TBox
DL-LiteNhorn is composed only of axioms of the form

�
k Bk � B.

We can drop the superscript N from the knowledge bases by allow-
ing only number restrictions of the form ≥ 1 r for constructing
basic concepts. We will sometimes use the expression ∃r to rep-
resent ≥ 1 r. To any of the previously defined TBoxes, we can
add role inclusion axioms of the form r1 � r2. This will be de-
noted using the superscript H in the name; e.g. DL-LiteHN

bool . Since
we are not dealing with individuals in the present work, role inclu-
sion axioms do not add any expressivity to DL-LiteHα TBoxes for
α ∈ {core, horn, krom}. Indeed, a basic concept B will only make
use of a role r if B is an existential restriction ∃r. As we are only
interested in concept subsumption, we can represent the role inclu-
sion axiom r1 � r2 by the concept inclusion ∃r1 � ∃r2. Thus,
the complexity results we present here for for DL-Liteα TBoxes
also hold for DL-LiteHα TBoxes. Note that this may not be true if
number restrictions are allowed; that is, the complexity results for
DL−LiteNα may not transfer to DL−LiteHN

α . For sake of simplic-
ity, in the present work we do not consider inverse roles.

Finally we recall basic notions from complexity of enumeration
algorithms. For analyzing the performance of algorithms where the
size of the output can be exponential in the size of the input, we
consider other measures of efficiency. We say that an algorithm runs
with polynomial delay [15] if the time until the first output is gen-
erated, and thereafter the time between any two consecutive outputs
is bounded by a polynomial in the size of the input. We say that it
runs in output polynomial time [15] if it outputs all solutions in time

polynomial in the size of the input and the output.

3 Complexity of Enumerating all MinAs

The main problem we consider in the present work is, given a DL-
Lite TBox and a consequence that follows from it, compute all Mi-
nAs for this consequence in the given TBox.

Definition 1 (MinA). Let T be a DL-Lite TBox and ϕ a DL-Lite
axiom that follows from it, i.e., T |= ϕ. We call a set M ⊆ T a
minimal axiom set or MinA for ϕ in T if M |= ϕ and it is minimal
w.r.t. set inclusion.

We define our problem without mentioning a particular DL-Lite
fragment but investigate its computational complexity for different
fragments in the coming sections separately.

Problem: MINA-ENUM

Input: A DL-Lite TBox T , and a DL-Lite axiom ϕ such that T |= ϕ.
Output: The set of all MinAs for ϕ in T .

3.1 MinAs in DL-Litecore and DL-Litekrom
TBoxes

We start with a basic observation. In the simplest setting where we
can consider MINA-ENUM, T is a DL-Litecore TBox whose concept
inclusion axioms are all of the form A1 � A2 for atomic concepts
A1, A2. Note that in his setting T becomes just a directed graph, and
a MinA for An � Am is just a simple path, i.e., a path with no re-
peated vertices, between the nodes An and Am. That is, MINA-ENUM

boils down to enumerating the simple paths between two vertices in a
given directed graph. This problem is well-known, and can be solved
with polynomial delay, even if the simple paths are required to be
output in the increasing order of their lengths [26]. This observation
has already been mentioned in the works [7, 6], which mainly con-
centrate on explaining query answering.

In DL-Litecore TBoxes, additionally we need to deal with un-
qualified existential restriction, and also with inclusion axioms that
have negated basic concepts on the right hand side. Since unqualified
existential restrictions cannot interact and give rise to additional Mi-
nAs in a DL-Litecore TBox, we can treat them as atomic concepts.
We need to deal with the axioms with a negated simple concept as
head separately since they can lead to additional MinAs due to con-
traposition. We demonstrate this with an example.

Example 2. Consider the DL-Litecore TBox T = {A � ¬∃r1,
∃r2 � ∃r1, D � ∃r2, D � ∃r1, A � D} and the axiom ϕ : A �
¬D which follows from T . We can treat ∃r1 and ∃r2 just like atomic
concepts since without role inclusion axioms they cannot interact and
lead to additional MinAs. That is we have the MinAs M1 = {A �
¬∃r1, ∃r2 � ∃r1, D � ∃r2}, and M2 = {A � ¬∃r1, D � ∃r1}.

Note that A is actually unsatisfiable, i.e., it is subsumed by any
other concept. This might also be the reason why ϕ follows from
T . This means that we also need to find out the reasons why A is
unsatisfiable. The only MinA for A � ¬A in T is M = {A � ¬∃r1,
D � ∃r1, A � D}. However, it contains M2, which is a MinA for
ϕ, thus M is not a minimal axiom set, i.e., a MinA for ϕ. This means
that when we are looking for MinAs for an axiom B1 � B2 s.t. B1 is
unsatisfiable, we also need to find MinAs for B1 � ¬B1 that do not
contain any of the MinAs for the original axiom.

Our algorithm that takes all these cases into account is described
in detail in Algorithm 1 where t(ϕ) stands for the tail, i.e., the left
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Algorithm 1 Enumerating all MinAs for DL-Litekrom TBoxes
Procedure: ALL-MINAS(T ,ϕ) (T a DL-Litekrom TBox, ϕ an
axiom s.t. T |= ϕ)

1: ALL-MINAS-AUX(T , ϕ)
2: if T |= t(ϕ) � ¬t(ϕ) then

3: T ′ := {ψ ∈ T | h(ψ) 	= h(ϕ) and t(ψ) 	= ¬h(ϕ)}
4: ALL-MINAS-AUX(T ′, t(ϕ) � ¬t(ϕ)) (MinAs for

unsatisfiability of t(ϕ))
5: end if

Procedure: ALL-MINAS-AUX(T ,ϕ) (T a DL-Litekrom TBox, ϕ
an axiom, T |= ϕ)

1: if t(ϕ) = h(ϕ) then return ∅
2: end if

3: for all ψ ∈ T do

4: if t(ϕ) = t(ψ) and T \ {ψ} |= h(ψ) � h(ϕ) then

5: print{ψ} ∪ ALL-MINAS(T \ {ψ}, h(ψ) � h(ϕ))
6: end if

7: if t(ϕ) = ¬h(ψ) and T \ {ψ} |= ¬t(ψ) � h(ϕ) then

8: print{ψ} ∪ ALL-MINAS(T \ {ψ},¬t(ψ) � h(ϕ))
9: end if

10: end for

hand side, and h(ϕ) stands for the head, i.e., the right hand side, of
axiom ϕ.

Theorem 3. Algorithm 1 solves MINA-ENUM for DL-Litekrom
TBoxes with polynomial delay.

Proof. It is not difficult to see that the algorithm terminates. Ter-
mination of the procedure ALL-MINAS depends on the termination
of the procedure ALL-MINAS-AUX. ALL-MINAS-AUX terminates
since the base case of the recursion is well established, and there
are finitely many ψ in T .

The algorithm is sound. ALL-MINAS-AUX outputs an axiom ψ,
only if using it ϕ can be derived. Moreover, as soon as the head and
the tail of ϕ become equal, it terminates in line 1. That is it does not
allow ‘cycles’, or redundant axioms in the output. Hence, the outputs
of ALL-MINAS-AUX are indeed MinAs for ϕ in T . ALL-MINAS

additionally checks if the tail of ϕ is unsatisfiable, and if this is the
case also outputs the MinAs for t(ϕ) � ¬t(ϕ) that do not contain
any of the previously output MinAs.

The algorithm is complete. ALL-MINAS-AUX iterates over the ax-
ioms in T and searches for the MinAs for ϕ in a depth-first manner.
If T |= t(ϕ) � ¬t(ϕ), then ALL-MINAS additionally searches for
MinAs for t(ϕ) � ¬t(ϕ), in the same manner. These are all MinAs
for ϕ in T .

Note that in lines 4 and 7 of the procedure ALL-MINAS-AUX the
algorithm checks whether the selected axiom ψ will lead to a MinA.
Clearly, for DL-Litecore and DL-Litekrom this check is polyno-
mial. Moreover, this check avoids the algorithm picking a ‘wrong’
axiom that will result in an exponential number of recursive calls
that do not lead to a MinA. That is, it guarantees that the algorithm
outputs the next MinA, or stops, after at most a polynomial number
of steps, i.e., it is polynomial delay.

3.2 MinAs in DL-LiteNhorn TBoxes

Next we show that for DL-LiteNhorn TBoxes, MinAs can be enu-
merated with polynomial delay as well. Furthermore, we show that
this is true even if the MinAs are required to be output in a given

reverse lexicographic order. To do this, we construct, for every DL-
LiteNhorn TBox T a propositional Horn TBox GT as follows: for
every basic concept B create a propositional variable vB ; for every
axiom

�n
i=1 Bi � B add the Horn clause

∧n

i=1
vBi → vB ; and

for each pair of number restrictions ≥ q1r,≥ q2r with q1 > q2
appearing in T , add the Horn clause v≥q1r → v≥q2r . We will
call the latter ones implicit axioms. It is not difficult to see that
T |=

�n
i=1 Ai � C iff GT |=

∧n

i=1
vAi → vC . Furthermore,

MinA M in GT gives rise to a MinA in T consisting of all ax-
ioms representing non implicit axioms in M. However, different Mi-
nAs in GT can give rise to the same MinA in T . For instance let
T = {A � ≥ 2r, A � ≥ 3r,≥ 1r � B}. Clearly GT constructed
from T as described has three MinAs for vA → vB , but there are
only two MinAs for A � B in T . The reason is that the implicit
subsumption ≥ 3r � ≥ 1r is represented twice in GT : one through
the direct edge, and another with a path travelling along v≥2r . We
solve this problem by using immediate MinAs.

Definition 4 (Immediate MinA). Let T be a DL-LiteNhorn TBox.
A MinA M in GT is called immediate if for every implicit axiom
σ ∈ GT ,M |= σ implies σ ∈ M.

Note that there is a one-to-one correspondence between MinAs for�n
i=1 Ai � C in T and immediate MinAs for

∧n

i=1
vAi → vC in

GT . Thus, if we can enumerate all immediate MinAs in GT in output
polynomial time, we will be able to enumerate also all MinAs in T
within the same complexity bound. We now show how all immediate
paths can be computed. For this, we first need to introduce the notion
of a valid ordering on the axioms in a TBox.

Definition 5 (Valid Ordering). Let T be a propositional Horn TBox,
and φ =

∧n

i=1
ai → b be an axiom in T . We denote the left-handside

(lhs) of φ with T(φ), and its right-handside (rhs) with h(φ), i.e.,
T(φ) := {a1, . . . , an} and h(φ) := b. With h−1(b) we denote the set
of axioms in T whose rhs are b. Let M = {t1, . . . , tm} be a MinA
for

∧
a∈A

a → c. We call an ordering t1 < . . . < tm a valid order-
ing on M if for every 1 ≤ i ≤ m, T(ti) ⊆ A∪{h(t1), . . . , h(ti−1)}
holds.3

It is easy to see that for every immediate MinA there is always at
least one such valid ordering. In the following, we use this fact to
construct a set of sub-TBoxes that contain all and only the remaining
immediate MinAs, following the ideas in [18].

Definition 6 (Ti). Let M be an immediate MinA in GT with |M| =
m, and < be a valid ordering on M. For each 1 ≤ i ≤ m we
obtain a TBox Ti from GT as follows: if ti is an implicit axiom, then
Ti = ∅; otherwise, (i) for each j s.t. i < j ≤ m and tj is not an
implicit axiom, remove all axioms in h−1(h(tj)) except for tj , i.e.,
remove all axioms with the same rhs as tj except for tj itself, (ii)
remove ti, and (iii) add all implicit axioms.

The naı̈ve method for computing one MinA can be easily adapted
to the computation of an immediate MinA in polynomial time by
simply considering first all non-implicit axioms for removal, and or-
dering the implicit ones as follows: if t1 := (≥ q1r) � (≥ q2r),
and t2 := (≥ q′1r) � (≥ q′2r) are two implicit axioms and
q1 − q2 < q′1 − q′2, then t1 appears before t2.

Lemma 7. Let M be an immediate MinA for φ in T , and let
T1, . . . , Tm be constructed from T and M as in Definition 6. Then,

3 That is, each variable on the lhs of ti is in A, or it is the rhs of a previous
axiom.
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Algorithm 2 Enumerating all MinAs for DL-LiteNhorn TBoxes

Procedure ALL-MINAS(T ,φ) (T a DL-LiteNhorn TBox, φ an
axiom s.t. T |= φ)

1: if T 	|= φ then return

2: else

3: M := an immediate MinA in GT
4: I := {t | t is an implicit axiom}
5: output M\ I
6: for 1 ≤ i ≤ |M| do

7: compute Ti from M as in Definition 6
8: ALL-MINAS(Ti \ I,φ)
9: end for

10: end if

for every immediate MinA N for φ in T that is different from M,
there exists exactly one i, where 1 ≤ i ≤ m, such that N is a MinA
for φ in Ti.

Proof. Let t1 < . . . < tm be a valid ordering on M, and N an
immediate MinA for φ in T such that N 	= M. Then, M\N 	= ∅.
Let tk be the largest non-implicit axiom in M\N w.r.t. the ordering
<. We show that N ⊆ Tk and N 	⊆ Ti for all i 	= k, 1 ≤ i ≤ m.

Assume there is an axiom t ∈ N s.t. t 	∈ Tk. Since Tk contains all
implicit axioms, t should be one of the non-implicit axioms removed
from T either in step (i) or in step (ii) of Definition 6. It cannot be
step (ii) because tk 	∈ N since tk ∈ M \ N . Thus, it should be
step (i). This implies that there exists a j, k < j ≤ m, such that tj
satisfies h(t) = h(tj). Recall that we chose k to be the largest axiom
in M \ N w.r.t. the valid ordering < on M. Then this tj should
be in N . But then N contains two axioms with the rhs h(t), which
contradicts with the fact that N is a MinA, and thus it is minimal.
Hence, N ⊆ Tk.

Now take an i s.t. i 	= k. If i > k, then ti ∈ N but ti /∈ Ti, and
hence N 	⊆ Ti. If i < k, then there is an axiom t ∈ N such that
h(t) = h(tk) since otherwise M and N would not be MinAs. By
construction, t /∈ Ti, hence N 	⊆ Ti.

Lemma 7 gives an idea of how to compute the remaining Mi-
nAs from a given one in the DL-LiteNhorn setting. Algorithm 2 de-
scribes how we can use this lemma to enumerate all MinAs in a DL-
LiteNhorn TBox T by enumerating all immediate MinAs in GT .

Theorem 8. Algorithm 2 solves MINA-ENUM for DL-LiteNhorn
TBoxes with polynomial delay.

Proof. The algorithm terminates since T is finite. It is sound since its
outputs are MinAs for φ in T . Completeness follows from Lemma 7.

In each recursive call of the algorithm there is one consequence
check (line 1), and one MinA computation (line 3). The consequence
check can be done in polynomial time [1]. One MinA is computed in
polynomial time by iterating over the axioms in T and removing the
redundant ones. Thus the algorithm spends at most polynomial time
between each output, i.e., it is polynomial delay.

We now modify Algorithm 2 and show that it can also enumerate
MinAs in reverse lexicographic order with polynomial delay. The
lexicographic order we use is defined as follows:

Definition 9 (Lexicographic Order). Let the elements of a set S be
linearly ordered. This order induces a linear strict order on P(S),
which is called the lexicographic order. We say that a set R ⊆ S is
lexicographically smaller than a set T ⊆ S where R 	= T if the first
element at which they disagree is in R.

Algorithm 3 Enumerating all MinAs in reverse lexicographical order

Procedure ALL-MINAS-REV-ORD(T ,φ) (T a DL-LiteNhorn TBox,
φ an ax., T |= φ)

1: Q := {T }
2: while Q 	= ∅ do

3: J := maximum element of Q
4: remove J from Q
5: M := the lexicographical largest MinA in J
6: output M
7: for 1 ≤ i ≤ |M| do

8: compute Ti from M as in Definition 6
9: insert Ti into Q if Ti |= φ

10: end for

11: end while

The modified algorithm keeps a set of TBoxes in a priority queue
Q. These TBoxes are the “candidates” from which the MinAs are
going to be computed. Each TBox can contain zero or more Mi-
nAs. They are inserted into Q by the algorithm at a cost of O(|T | ·
log(M)) per insertion, where T is the original TBox and M is the
total number of TBoxes inserted. Note that M can be exponentially
bigger than |T | since there can be exponentially many MinAs. That
is the algorithm uses potentially exponential space. The other op-
eration that the algorithm performs on Q is to find and delete the
maximum element of Q. The maximum element of Q is the TBox
in Q that contains the lexicographically largest MinA among the Mi-
nAs contained in all other TBoxes in Q. This operation can also be
performed within O(|T | · log(M)) time bound. Note that given a T ,
the lexicographically largest MinA in T can be computed by start-
ing with the axiom that is the smallest one w.r.t. the linear oder on
T , iterating over the axioms and removing an axiom if the resulting
TBox still has the required consequence. Obviously this operation is
in O(|T |). This is why the time bounds for insertion and deletion
depend also on |T | and not only on M .

Theorem 10. Algorithm 3 enumerates all MinAs for a DL-LiteNhorn
TBox in reverse lexicographic order with polynomial delay.

Proof. The algorithm terminates since T is finite. Soundness is
shown as follows: Q contains initially only the original TBox T .
Thus the first output is lexicographically the last MinA in T . By
Lemma 7 the MinA that comes just before the last one is contained
in exactly one of the Tis that are computed and inserted into Q in
lines 8 and 9. In line 3 J is assigned the TBox that contains this
MinA. Thus the next output will be the MinA that comes just be-
fore the lexicographically last one. It is not difficult to see that in this
way the MinAs will be enumerated in reverse lexicographic order. By
Lemma 7 it is guaranteed that the algorithm enumerates all MinAs.

In one iteration, the algorithm performs one find operation and one
delete operation on Q, each of which takes time O(n·log(M)), and a
MinA computation that takes O(n) time, where n = |T |. In addition
it performs at most n Ti computations, and at most n insertions into
Q. Each Ti requires O(n2) time to be constructed, and each insertion
into Q takes O(n · log(M)) time. The total delay is thus O(2 · (n ·
log(M)) + n+ n · (n2 + n · log(M))) = O(n3).

However, if one is interested in obtaining the set of all MinAs in
forward lexicographical order, then there is no polynomial delay al-
gorithm that is capable of doing so for DL-Litehorn TBoxes, unless
P = NP. To do this, we show that the following problem is coNP-
complete.
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Problem: FIRST-MINA

Input: A DL-Lite TBox T , an axiom ϕ such that T |= ϕ, a MinA
M for ϕ in T and a linear order on T .
Question: Is M the first MinA w.r.t. the lexicographic order induced
by the linear order?

Theorem 11. FIRST-MINA is coNP-complete for DL-Litehorn
TBoxes.

Proof. The problem is clearly in coNP, so it remains only to be
shown that it is coNP-hard. We do this via a reduction from the fol-
lowing NP-complete problem [10].

Problem: HORN-RELEVANCE

Input: Two sets of propositional variables H and M , a set C of defi-
nite Horn clauses over H ∪M , and a propositional variable p ∈ H .
Question: Is there a minimal G ⊆ H such that G ∪ C |= M and
p ∈ G?

Let an instance of HORN-RELEVANCE be given with H,M, C and p,
and assume w.l.o.g. that H ∪ C |= M . We construct an instance of
FIRST-MINA as follows: for each propositional variable m ∈ H ∪
M , we introduce a concept name Am, and additionally, two fresh
concept names As, At, and construct the DL-Litehorn TBox

T := {As � Ah | h ∈ H} ∪

{
k�

i=1

Aqi � Ar |
k∧

i=1

qi → r ∈ C} ∪ {
�

m∈M

Am � At}.

It is easy to see that for ϕ := As � At, T |= ϕ. Let M be a
MinA for ϕ in T , such that, w.l.o.g. As � Ap /∈ M. Define a
linear ordering on the axioms in T as follows: first appears the axiom
As � Ap, then all the axioms in M in any order, and finally all the
other axioms in any order. Then T ,M, ϕ forms an instance of FIRST-
MINA, and is constructed in polynomial time. Furthermore, M is
lexicographically the first MinA w.r.t. the defined order iff there is
no G ⊆ H with p ∈ G such that G ∪ C |= M . Hence, FIRST-MINA

is coNP-hard.

Since finding lexicographically the first MinA is already in-
tractable, we cannot expect to have an algorithm that enumerates all
MinAs in lexicographical order with polynomial delay. The follow-
ing is an immediate consequence of Theorem 11.

Corollary 12. For DL-Litehorn TBoxes, MinAs cannot be enumer-
ated in lexicographical order with polynomial delay, unless P = NP.

3.3 MinAs in DL-Litebool TBoxes

The axioms that we have used so far allowed for only basic concepts
and their negations, and we were able to show that in this restricted
setting, MinAs are enumerable with polynomial delay. However, we
have not yet explored the complexity of these problems if general
concepts are allowed. As shown in [1], deciding whether an axiom
follows from a DL-Litebool TBox is already NP-hard. Since com-
puting a MinA is at least as hard as doing a consequence check, we
cannot expect to find a single MinA in polynomial time. This in par-
ticular implies that MinAs cannot be enumerated with polynomial
delay in the DL-Litebool setting. What we can ask next is whether
all MinAs are computable in output polynomial time. In order to an-
swer this, we investigate the decision version of this problem:

Problem: ALL-MINAS

Input: A DL-Lite TBox T and an axiom ϕ such that T |= ϕ, and a
set of TBoxes T ⊆ P(T ).
Question: Is T precisely the set of all MinAs for ϕ in T ?

Because, as Proposition 13 shows, if ALL-MINAS cannot be decided
in polynomial time for DL-Litebool TBoxes, then MINA-ENUM can-
not be solved in output polynomial time for DL-Litebool TBoxes.
Its proof is based on a generic argument, which can also be found
in [11] Theorem 4.5, but for the sake of completeness we present it
here once more.

Proposition 13. For DL-Litebool TBoxes, if ALL-MINAS cannot
be decided in polynomial time, then MINA-ENUM cannot be solved
in output-polynomial time.

Proof. Assume we have an algorithm A that solves MINA-ENUM for
DL-Litebool TBoxes in output-polynomial time. Let its runtime be
bounded by a polynomial p(IS,OS) where IS denotes the size of
the input TBox and OS denotes the size of the output, i.e., the set of
all MinAs.

In order to decide ALL-MINAS for an instance given by the DL-
Litebool TBox T , ϕ, and T ⊆ P(T ), we construct another algo-
rithm A′ that works as follows: it runs A on T and ϕ for at most
p(|T |, |T |)-many steps. If A terminates within this many steps, then
A′ compares the output of A with T and returns yes if and only if
they are equal. If they are not equal, A′ returns no. If A has not yet
terminated after p(|T |, |T |)-many steps, this implies that there is at
least one MinA that is not contained in T , so A′ returns no. It is
easy to see that the runtime of A′ is bounded by a polynomial in |T |
and |T |, that is A′ decides ALL-MINAS for DL-Litebool TBoxes in
polynomial time.

The proposition shows that the complexity of ALL-MINAS is in-
deed closely related to the complexity of MINA-ENUM. Next we show
that this problem is coNP-hard for DL-Litebool TBoxes.

Lemma 14. ALL-MINAS is coNP-hard for DL-Litebool TBoxes.
This already holds if the axioms in T are of the form A � C where
A is a concept name and C a general concept.

Proof. We present a reduction from the coNP-hard problem [9, 5]:

Problem: ALL-MV

Input: A monotone Boolean formula φ and a set V of minimal valu-
ations satisfying φ.
Question: Is V precisely the set of minimal valuations satisfying φ?

Let φ,V be an instance of ALL-MV. We introduce a concept name
Ap for each propositional variable p appearing in φ and two addi-
tional concept names A0, A1. From φ we construct the general con-
cep Cφ by changing each conjunction ∧ to �, each disjunction ∨ to
� and each propositional variable p to ¬Bp.4 Using these we con-
struct the TBox T := {A1 � ¬Cφ} ∪ {Bp � ¬A0 | p ∈ var(φ)}
and the set of MinAs T := {{A1 � ¬Cφ} ∪ {Bp � ¬A0 | p ∈
V} | V ∈ V }. It is easy to see that T and T indeed form an instance
of ALL-MINAS for the axiom A0 � ¬A1. Furthermore, T is the set
of all MinAs for A0 � ¬A1 iff V is the set of all minimal valuations
satisfying φ.

The following is an immediate consequence of Proposition 13 and
Lemma 14.

Corollary 15. For DL-Litebool TBoxes all MinAs cannot be com-
puted in output-polynomial time unless P = NP.
4 We use the abbreviation X � Y for ¬(¬X � ¬Y ).

R. Peñaloza and B. Sertkaya / Complexity of Axiom Pinpointing in the DL-Lite Family of Description Logics 33



FIRST- ALL- MINA-ENUM

MINA MINAS in lexicographic order unordered
forward backward

DL-LiteHcore poly poly delay
DL-LiteHkrom poly poly delay
DL-Litehorn coNP-c poly not poly delay poly delay poly delay
DL-LiteHN

horn coNP-c poly not poly delay poly delay poly delay
DL-Litebool coNP-h coNP-h not output poly

Table 1. Summary of the results

4 Concluding Remarks and Future Work

We have investigated the complexity of axiom pinpointing in the DL-
Lite family. We have shown that for DL-LiteHcore, DL-LiteHkrom
and DL-LiteHN

horn TBoxes MinAs are efficiently enumerable with
polynomial delay, but for DL-Litebool they cannot be enumerated
in output-polynomial time unless P = NP. We have also shown that
interestingly, for DL-LiteHN

horn TBoxes MinAs can be enumerated
in reverse lexicographic order with polynomial delay but, it is not
possible in the forward lexicographic order since computing the first
MinA is already coNP-hard. This hardness result holds already for
DL-Litehorn TBoxes. For simplicity we did not consider inverse
roles here, although we believe our results will hold in presence of
inverse roles. As future work we are going to investigate whether this
is the case. Table 1 shows a summary of our results.

Finding explanations for query answering and ABox reasoning has
already been considered in [7, 6]. However, these works investigate
computing only one explanation. As future work we are going to
work on the problem of computing all MinAs for explaining the rea-
soning problems considered there.
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