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Abstract. In systems biology, identifying vital functions like gly-

colysis from a given metabolic pathway is important to understand

living organisms. In this paper, we focus on the problem of find-

ing minimal sub-pathways producing target metabolites from source

metabolites. We translate laws of biochemical reactions into propo-

sitional formulas and compute its minimal models to solve the prob-

lem. An advantage of our method is that it can treat reversible re-

actions. Moreover the translation enables us to obtain solutions for

large pathways. We apply our method to a whole Escherichia coli

metabolic pathway. As a result, we have found the conventional gly-

colysis sub-pathway described in a biological database EcoCyc.

1 Introduction

Living organisms are kept alive by a huge number of chemical reac-

tions. In systems biology, interactions of such chemical reactions are

represented in a network called pathway. Analyses of pathways have

been active research field in the last decade and several methods have

been proposed [7, 18].

A longstanding approach is to represent pathways as systems of

differential equations. This method allows detailed analyses e.g. con-

centrations of each metabolite with time variation. However, it is not

applicable to a large network due to its difficult parameter tuning.

This is a problem because scalability is an important feature for a

macroscopical analysis of complex networks like cells, organisms

and life, which is a fundamental goal in systems biology. Therefore

other methods aiming for scalable and abstracted analyses have been

proposed [2, 13, 12, 16]. Although these methods are different from

each others in their problem formalization and solving methods, their

purpose is the same, that is, to identify biologically necessary reac-

tions from a given pathway.

One of these methods proposed by Schuster et al. is called ele-

mentary mode analyses. It focuses on a flux distribution, which is

computed by matrix calculus, corresponding to a set of reactions

in metabolic pathways [16]. This method can treat multi-molecular

reactions while taking into account stoichiometry, and its computa-

tional scalability is enough to analyze large pathways. However it

tends to generate a large number of solutions without ordering e.g.

over 20000 solutions are generated for a pathway including 100 re-

actions [8]. Even though found solutions are potentially interesting,

analyzing all of them through biological experiments would be in-

feasible task. We thus need a method which generates lower num-
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ber of solutions keeping its quality. Another approach relying on

graphs is proposed by Croes et al. [2]. They represent a pathway

in a weighted bipartite directed graph and apply a depth-first search

algorithm to find the lightest paths from a source compound to a tar-

get compound. Planes and Beasley proposed to solve the same prob-

lem using a constraint-based method [12]. An advantage of these two

methods is that an evaluation of the quality of the solution is pro-

vided. We can then choose an objective value to reduce the number

of solutions that should be provided to biologists. However, this ap-

proach can only generate paths while sub-graphs would be a more

natural representation. Moreover, this approach sometimes generates

invalid paths from a biological viewpoint because it can easily take

non-meaningful shortcuts via common metabolites, such as water,

hydrogen and adenosine triphosphate (ATP).

In this paper, we propose a new analysis method for metabolic

pathways which identifies sub-pathways, whose forms are given

as sub-graphs, producing a set of target metabolites from a set of

source metabolites. In particular, we formalize the problem of find-

ing minimal sub-pathways, which has the property of not containing

any other sub-pathways. That is, all elements of each minimal sub-

pathway are qualitatively essential to produce target metabolites. We

represent laws of biochemical multi-molecular reactions in propo-

sitional formulas and translate the problem into conjunctive normal

form (CNF) formulas. We then use a minimal model generator based

on state-of-the-art SAT solver to solve the problem efficiently. Our

translation and recent progresses in SAT domain now make it possi-

ble to apply our method to huge pathways. Realistic metabolic path-

ways include a lot of reversible reactions. Previous approaches thus

needed pre-processing or post-processing, which is possibly costly,

to deal with reversible reactions in a pathway [12, 17]. We also show

how our method treats such reversible reactions by minimal model

generation.

We compare our method with previously proposed approaches [1,

12] for a simplified pathways of E. coli consisting of 880 reactions.

We also test our method with a whole Escherichia coli (E. coli) path-

way [4] consisting of 1777 reactions. In order to evaluate computed

sub-pathways, we use conventional sub-pathways described in the

literature [1] and EcoCyc [4], which are provided by biological ex-

periments and existing knowledge. As a result, we have identified

every conventional sub-pathway of 11 pathways we used in the ex-

periments.

In the reminder of this paper, we explain propositional formulas

and its minimal models in Section 2. In Section 3, we formalize the

sub-pathway finding problem. We show the translation from the sub-

pathway finding problem into propositional formulas in Section 4.

In Section 5, we show the experimental result. In Section 6 and 7

respectively discuss related work and future work.
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2 Propositional Formulas and Minimal Model
Generation

This section reviews propositional formulas and its minimal models.

Let V = {v1, v2, . . . , vi} be a set of propositional variables. A lit-

eral is a propositional variable vi or its negation ¬vi. A clause is a

disjunction of literals. A conjunctive normal form (CNF) formula is

a conjunction of clauses and is also identified with a set of clauses.

The truth value of a propositional variable is either true (T ) or

false (F ). A (partial) truth assignment for V is a function f : V →
{T, F}. A literal vi is said to be satisfied by a truth assignment f

if its variable is mapped to T ; a literal ¬vi is satisfied by a truth

assignment f if its variable is mapped to F . A clause is satisfied if

at least one of its literals is satisfied. A model for a CNF formula Ψ
is a truth assignment f where all clauses are satisfied. Models can

also be represented in the set of propositional variables to which it

maps T . For instance, the model mapping v1 to T , v2 to F , v3 to T

is represented by the set {v1, v3}.
Niemelä report a theorem which is the basis of the computational

treatment of minimal models [11]. Koshimura et al. also report a the-

orem which is an extension of that theorem [9]. This gives a method

to compute a minimal model with respect to a set of propositional

variables. We here give a definition and a theorem by [9]:

Definition 1 Let Vp be a set of propositional variables and Ψ a CNF

formula. Amodel I is aminimal model ofΨwith respect to Vp iff I is

a model ofΨ and there is no model I ′ ofΨ such that I ′∩Vp ⊂ I∩Vp.

Theorem 1 Let Ψ be a CNF formula, I a model of Ψ, and Vp a set

of propositional variables. I is a minimal model of ψ with respect

to Vp iff a formula Ψc = Ψ ∧ ¬(x1 ∧ x2 ∧ . . . ∧ xi) ∧ ¬y1 ∧
¬y2 ∧ . . . ∧ ¬yj is unsatisfiable, where I ∩ Vp = {x1, x2, . . . , xi},
I ∩ Vp = {y1, y2, . . . , yj}.

For instance, suppose that Ψ is a propositional formula (v1∨v2)∧
(¬v1 ∨¬v2)∧ (¬v2 ∨ v3). Then all models of Ψ are {v1}, {v2, v3},
{v1, v3} and the minimal models of Ψ are {v1} and {v2, v3}.

Koshimura et al. report a minimal model generator based on a SAT

solver by utilizing above theorem (see Figure 1). In the figure, The

function Solve corresponds to a SAT solver which returns SAT and

its model when a given formula is satisfiable. The function returns

UNSAT otherwise.

3 Sub-pathway Finding Problem

This section provides the definition of the sub-pathway finding prob-

lem on which we are focusing. Let M = {m1, m2, . . . , mi} be

a set of metabolites, R = {r1, r2, . . . , rj} a set of reactions, and

A ⊆ (R×M)∪ (M ×R) a set of arcs. A pathway is represented in

a directed bipartite graph G = (M, R, A) where M and R are two

sets of nodes, A is a set of arcs. A metabolite m ∈ M is called a

reactant of a reaction r ∈ R if there is an arc (m, r) ∈ A. On the

other hand, a metabolite m ∈ M is called a product of a reaction

r ∈ R if there is an arc (r, m) ∈ A. A reaction is called a reversible

reaction if it can occur in either of two directions. We distinguish a

reversible reaction as two reactions.

Let s : R → 2M be a mapping from a set of reactions to a set

of metabolites such that s(r) = {m ∈ M |(m, r) ∈ A} represents

the set of metabolites which are needed for activating a reaction r.

Let p : R → 2M be a mapping from a set of reactions to a set of

metabolites such that p(r) = {m ∈ M |(r, m) ∈ A} represents the

set of metabolites which are produced by a reaction r. Let s−1 and

Minimal Model Generation Procedure (Ψ, Vp)

begin

Σ := ∅ ;

loop

(res, I) = Solve(Ψ) ;

if res = UNSAT then return Σ ;

else

Vx := I ∩ Vp ;

Vy := I ∩ Vp ;

Ψc := Ψ ∧
“W

xi∈Vx
¬xi

”
∧

“V
yj∈Vy

¬yj

”
;

(res, Ic) = Solve(Ψc) ;

if res = UNSAT then Σ := Σ ∪ {I} ;

Ψ := Ψ ∧
“W

xi∈Vx
¬xi

”
;

end

Figure 1. Minimal Model Generation

Figure 2. A Pathway including Reversible Reactions

p−1 be inverse mappings of s and p, respectively. Let t be an integer

variable representing a time and e be an integer value for a variable

t. Let M ′ ⊂ M be a subset of metabolites.

A metabolite m ∈ M is producible at time t = 0 from M ′ if

m ∈ M ′ holds. A reaction r ∈ R is activatable at time t = e (0 < e)
from M ′ if for every m ∈ s(r), m is producible at time t = e − 1
from M ′. A metabolite m ∈ M is producible at time t = e (0 < e)
from M ′ if m ∈ p(r) holds for at least one reaction r which is

activatable at time t = e from M ′. If r is activatable at time t = e

then r is activatable at a time t = e + 1. If m is producible at time

t = e then m is producible at time t = e + 1.
Let Mi ⊂ M be a subset of metabolites representing initial

metabolites, Ms ⊂ M a subset of metabolites representing source

metabolites and Mt ⊂ M a subset of metabolites representing target

metabolites. Note that we distinguish Ms from Mi. Every metabo-

lite m ∈ Mi represents universal metabolites which are always pro-

ducible in pathways, such as WATER, ATP and PROTON. On the

other hand, Ms and Mt represent particular source metabolites and

target metabolites in which we are interested, respectively.

Definition 2 Let π be a 6-tuple (M, R, A, Mi, Ms, Mt) and G =
(M, R, A) a bipartite directed graph. A sub-graph G′ of G is a sub-

pathway of π if G′ = (M ′, R′, A′) and it holds the following con-

ditions: (i) Ms ⊂ M ′ and Mt ⊂ M ′, (ii) for every m ∈ M ′, m is

producible from Mi ∪ Ms at time t ≥ e for some e ∈ N, (iii) for

every r ∈ R′, r is activatable from Mi ∪ Ms at time t ≥ e for some

e ∈ N and p(r) ∈ M ′. In addition, a sub-pathway G′ is called min-

imal if it holds that (vi) there is no sub-pathway G′′ of π such that

G′′ ⊂ G′.

Definition 3 Sub-pathway Finding Problem

Input A 6-tuple π = (M, R, A, Mi, Ms, Mt), where M =
{m1, m2, ..., mi} is a set of metabolites, R = {r1, r2, ..., rj},
A ⊆ (R × M) ∪ (M × R) is a set of arcs, Mi ⊂ M is a set

of initial compounds, Ms ⊂ M is a set of source compounds,

Mt ⊂ M is a set of target compounds.

Output All minimal sub-pathways of π.
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In practice, we compute more restricted solutions of the problem

since the number of all minimal sub-pathways tends to be large. We

describe how to restrict solutions in the next session.

We here describe the difference between our problem and the path

finding problem which has been studied [13, 2, 12]. While our prob-

lem can treat multiple source metabolites and its outputs are given by

sub-graphs satisfying the specific properties, the path finding prob-

lem is basically given by the problem of finding paths between a

source metabolite and a target metabolite. For instance, we con-

sider a pathway shown in Figure 2. Three sets of metabolites Ms =
{m1}, Mi = {} and Mt = {m4} are given. We find an output

G′ = (M ′, R′, A′) for the input, where M ′ = {m1, m2, m3, m4},
R′ = {r1, r3, r5} and A′ ={(m1, r1),(m1, r3),(r1, m2),(r3, m3),
(m2, r5), (m3, r5),(r5, m4)}. On the other hand, the outputs of

the path finding problem are two paths {m1, r1, m2, r5, m4} and

{m1, r3, m3, r5, m4}. The point is that the reactions r1 and r3 must

be needed to be activatable since metabolites m2 and m3 are the

reactants of the reaction r5. The output of the sub-pathway finding

problem correctly reflects the law of the reaction r5. However the

both outputs of the path finding problem represent the activation of

r5 without producing both necessary reactants. Figueiredo et al. sum-

marised problems for path finding approach [2, 13] by a specific ex-

ample [3]. Obviously, the output of the sub-pathway finding problem

correctly reflects the necessary reactions in the pathway.

4 Translation into Propositional Formulas

4.1 Translation of Reaction Laws

This section provides a translation of the sub-pathway finding prob-

lem. Let e be an integer for time t and V the set of propositional vari-

ables which are used in this translation. Let rtn,e ∈ V be a propo-

sitional variable which is true if a reaction rn ∈ R is activatable

at time t = e and later. Let mti,e ∈ V be a propositional variable

which is true if a metabolite mi ∈ M is producible at time t = e

and later. For every reaction and time, we have the supplemental for-

mula rtn,e → rtn,e+1. For every metabolites and time, we have the

supplemental formula mti,e → mti,e+1. Let ψs be a supplemental

formula representing the conjunction of those formulas.

For each reaction rn, we have the following formula representing

that if a reaction rn is activatable at time t = e then its reactants

must be producible at time t = e − 1.

rtn,e →
^

mi∈s(rn)

mti,e−1 (1)

For each reaction rn, we have the following formula representing

that if a reaction rn is activatable at time t = e then its products must

be producible at time t = e.

rtn,e →
^

mj∈p(rn)

mtj,e (2)

In a naive way, above formulas are generated for every time t

and every reaction. However it results in the expansion of translated

clauses. We thus need to reduce the size of the translated formulas. A

time t = e is called the earliest activatable time of a reaction r ∈ R

if r cannot be activatable at time 0 < t < e and can be activatable

e ≤ t. Let M ′ = Ms ∪ Mi be a set of metabolites, c and d inte-

gers, R′ the set of reactions which are activatable from M ′, T a set

of integers {1, . . . , |R′|}. Let fe : R′ → T be a mapping from a set

of reduced reactions to a set of integers representing each reaction

Assign Earliest Activatable Time (M ′)

begin

d := 0;
while (M ′ 
= ∅)

∀mi ∈ M ′, mark mi as visited;

M ′′ := ∅;
d := d + 1;
loop for mi ∈ M ′

loop for unvisited rj ∈ s−1(mi)
if ∀mk ∈ s(rj), mk is visited then

mark rj as visited;

fe := fe ∪ {(rj , d)};
loop for unvisited mk ∈ p(rj)

M ′′ := M ′′ ∪ {mk};
M ′ := M ′′;

return (fe, d);

end

Assign Unique Time (fe)

begin

u := 0;
loop for d ∈ {1, . . . , dmax}

Rsorted := sort {ri | (ri, d) ∈ fe};
loop for rj ∈ Rsorted

u := u + 1;
fu := fu ∪ {(rj , u)};

return fu;

end

Figure 3. Procedures for fe and fu

ri ∈ R′ and its earliest activatable time e ∈ T . The mapping fe can

be represented in a set of pairs (ri, e) of a reaction ri ∈ R and its

earliest activatable time e ∈ T .

We show a procedure Assign Earliest Activatable Time to form

the mapping fe in Figure 3. This procedure takes at most O(|A|).
Let dmax be a constant represents the output integer value d of the

procedure. It can also be seen a filtering method for a given π, that is,

it deletes the reactions which are not activatable from M ′. Moreover,

the earliest activatable time is useful to reduce the size of translated

formulas. If e is the earliest activatable time for a reaction r then

we obviously do not need to consider a time t < e for the reaction.

However the size of translated formulas still tends to be large.

Let fu : R′ → T be a bijection from a set of reactions to a set of

integers representing each reaction and its unique time. The mapping

fu can be represented in a set of pairs (ri, e) of a reaction ri ∈ R′

and its unique time e ∈ T . In Figure 3, we show a procedure As-

sign Unique Time to form the bijection fu. To complete the proce-

dure, we need to consider how to sort elements of a set of reactions

{ri | (ri, d) ∈ fe} for each d (see the line five in the procedure in

Figure 3). We use a mapping deg(ri) which denotes the outdegree of
a node ri. We sort a set of reactions {ri | (ri, d) ∈ fe} according to

increasing order of the value of deg(ri).
For each reaction rn and its unique time fu(rn), we have the

third formula representing that if a reaction rn is not activatable then

metabolites mj ∈ p(rn) keep its state from time fu(rn) − 1.

¬rtn,fu(rn) →
^

mj∈p(rn)

`
¬mtj,fu(rn)−1 → ¬mtj,fu(rn)

´
(3)

Note that this formula does not mean that if rn is not activatable then

metabolites mj ∈ p(rn) is not producible for any time. Some of

those metabolites can be made to producible at a different time by

some reactions since each reaction has its unique time. According
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to our translation, the cardinality of fu corresponds to |R′|. Thus,
the formulas (1), (2) and (3) are generated for only rn ∈ R′ with

its unique time. Although the size of translated formulas is enough

tractable, we sometimes cannot find objective solutions since the

translation is incomplete.

To extend this limitation, we need to have step. Let z be an integer

representing step and k an integer variable such that 1 ≤ k ≤ z. Let

ok,n be an integer such that ok,n = |R′| ∗ (k − 1) + fu(rn). We

have the conjunction of the formulas (1), (2) and (3) as the following

formula Dk
rn
:

D
k
rn

=

0
@rtn,ok,n

→
^

mi∈s(rn)

mti,ok,n−1 ∧
^

mj∈p(rn)

mtj,ok,n

1
A∧

0
@¬rtn,ok,n

→
^

mj∈p(rn)

`
¬mtj,ok,n−1 → ¬mtj,ok,n

´
1
A (4)

Then we have the formula
Vz

k=1

V|R′|
n=1

`
Dk

rn

´
which represents the

effect of the activation and the inactivation of reactions with step z. In

practice, step z = 3 is enough to obtain the objective sub-pathways

of the pathways we used this time.

4.2 Translation of the Problem

To translate the problem, we need to have an initial condition and a

target condition as follows:

C(0) =
^

mi∈Ms∪Mi

mti,0 ∧
^

mj∈M\(Ms∪Mi)

¬mtj,0 (5)

C(|R′| ∗ z) =
^

mi∈Mt

mti,|R′|∗z (6)

Finally, we have the translated formula Ψ as follows:

Ψ = C(0) ∧ C(|R′| ∗ z) ∧ ψs ∧
ẑ

k=1

|R′|^
n=1

“
D

k
rn

”
(7)

The size of the translated clause is O(|A|). Let I be a model of a

given propositional formula Ψ and Vz a set of propositional variables

such that Vz = {mti,t |mti,t ∈ V, t = |R′|∗z} ∪ {rtj,t | rtj,t ∈ V,

t = |R′| ∗ z}. Let fv : Vz → M ∪ R be a mapping such that

fv(mti,t) = mi and fv(rtj,t) = rj . An output of the sub-pathway

finding problem is given by the following.

Proposition 1 Given π = (M, R, A, Mi, Ms, Mt) and step z, let

Ψ be the translated formula as above. If I is a minimal model of

Ψ with respect to Vz then G′′ = (M ′′, R′′, A′′) is a minimal sub-

pathway of π, where M ′′ = {fv(mti,t) | mti,t ∈ I ∩ Vz}, R′′ =
{fv(rtj,t) | rtj,t ∈ I∩Vz}, and A′′ = {(mj , ri) | mj ∈ s(ri), ri ∈
R′′} ∪ {(ri, mj) | mj ∈ p(ri), ri ∈ R′′}.

Note that, by the translation, once a metabolite (resp. a reaction)

is made to be producible (resp. activatable), its producibility (resp.

activatability) must be maintained until the end due to the supple-

mental formula ψs. We thus need to decode the state of metabolites

and reactions only at time t = |R′| ∗ z.

4.3 Treating Reversible Reactions

Treatment of reversible reactions frequently becomes a problem in

pathway analyses. Some previous approaches took pre-processing

or post-processing which breaks reversible reactions in a path-

way [1, 12, 17]. Unlike those approaches, our method resolves the

problem by considering the notion of activatablity and producibility

and finding minimal models of translated formulas.

For instance, we consider the example including reversible reac-

tions shown in Figure 2. Three sets of metabolites Ms = {m1},
Mi = {} and Mt = {m4} and z = 1 are given. A set of variables

containing any elements of {rt6,8, rt7,8, rt8,8} ∪ {mt5,8, mt6,8}
cannot be a model of the translated formula due to the formula (3).

The formula (3) traces the origin of the producibility of the metabo-

lite as well as its state maintenance, that is, if a metabolite is pro-

ducible at time t = e then the formula (3) guarantees either the

metabolite is producible at a time t < e or the reaction is activatable

at time t = e. Therefore reversible reactions without feeding from

Ms ∪ Mi are not activatable. Practically, such reactions are deleted

by the procedure shown in Figure 3 and we obtain a reduced set of

reactions such that |R′| = 5. A model I1 such that I1 ∩ Vz =
{rt1,5, rt2,5, rt3,5, rt4,5, rt5,5} ∪ {mt1,5, mt2,5, mt3,5, mt4,5}
includes reversible reactions. However it cannot be a minimal model

because there is a model I2 such that I2∩Vz = {rt1,5, rt3,5, rt5,5} ∪
{mt1,5, mt2,5, mt3,5, mt4,5}. Finally, we obtain the minimal model

I2 since there is no model such that I ′ ∩ Vz ⊂ I2 ∩ Vz . The mini-

mal model I2 is decoded to a minimal sub-pathway G2 consisting of

M2 = {m1, m2, m3, m4}, R2 = {r1, r3, r5} and A2 ={(m1, r1),
(m1, r3), (r1, m2), (r3, m3), (m2, r5), (m3, r5),(r5, m4)}.

4.4 Other Biological Applications

Simulating Effects of Deletion of Enzymes. The method allows

us to simulate the difference between pathways of wild-type organ-

isms and pathways of mutants or gene knockout organisms. For in-

stance, we can obtain the effect of a gene knock out by removing the

reaction ri related to the gene we want to delete. This is achieved by

adding the following formula.

¬rti,|R′|∗z (8)

Simulating Effects of Inhibition. In metabolic pathways, each re-

action is catalyzed by enzymes. Inhibition relations in some enzymes

have been studied through biological experiments. Our method is ca-

pable to treat this relation by adding the following formula:

¬rti,|R′|∗z ∨ ¬rtj,|R′|∗z (9)

where reactions ri and rj are catalyzed by inhibited enzymes, re-

spectively. This inhibition relation refines output sub-pathways of the

method.

Forbidden Metabolites. A further potential application is in drug

design, which restricts bi-products by the effect of compounds in-

cluded in the drug. In this case, we can test by adding drug com-

pounds as sources and unexpected bi-products as forbidden metabo-

lites. This is achieved by adding the following formulas.

^
mi∈Mf

¬mti,|R′|∗z (10)

where Mf is a set of metabolites which are forbidden to be pro-

ducible. Those constraints are useful to refine outputs when we know

such forbidden metabolites in advance.
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Table 1. Results for Pathways from [1]

Pathway#
Proposal [1] [12]

#Steps #Sols. res. res. (a) res. (b) res.

1 3 1 yes yes no no
2 1 1 yes yes no yes
3 2 37 yes yes yes no
4 1 1 yes yes no no
5 3 4 yes no no yes
6 2 7 yes yes no yes
7 1 1 yes yes no yes
8 3 28 yes no yes no
9 1 4 yes yes no yes
10 1 1 yes yes no yes

Total # of yes in res. 10 8 2 6

5 Experiments and Results

To evaluate the proposed method, we use two reaction databases of

E. coli K-12. One is the reaction database from supplemental data

of the literature [1]. Another one is from a well-known biological

database EcoCyc [4] which gathers results of biological experiments

and existence knowledge of E. coli. We downloaded the latest version

13.6 of the reaction database of EcoCyc.

In the following experiments, we use conventional sub-pathways

as right solutions, which are respectively obtained from the litera-

ture [1] and the database EcoCyc [4]. We modified the Main class of

the SAT solverMinisat [5] and used it as a minimal model generator

shown in Section 2.

Each experiment has been done using a PC (2.53GHz CPU and

2GB RAM) running Ubuntu Linux 9.04. We have developed a graph-

ical user interface integrating the proposed method, which aims for

smooth evaluation. To place the nodes, we use the fast organic lay-

out in the Java library Jgraph [6]. In this layout method, vertexes

connected by edges should be drawn close to one another and other

vertexes should not be drawn to close to one another. Figures 4 and 5

are screen shots of our experimental results shown in Section 5.2 on

the interface.

5.1 Comparison with Previous Methods

We compared our method with two previous methods. One is a

method using optimization modeling for pathway analyses [1]. An

input of this method is a reaction database with stoichiometry. An-

other one is a constraint based method for path finding [12]. An input

of this method is a reaction database without stoichiometry as same

as the proposed method. The comparison between these two meth-

ods [1, 12] has also shown in the literature [12]. We use same source,

initial, and target metabolites according to the literature [1]. As right

solutions, the method by [12] used liner paths which are chosen from

the conventional sub-pathways of [1]. Similarly, we used those con-

ventional sub-pathways deleted bypass reactions as right solutions.

The results are shown in Table 1. First column shows the following

pathways: #1 gluconeogenesis, #2 glycogen, #3 glycolysis, #4 pro-

line bio-synthesis, #5 ketogluconate metabolism, #6 pentose phos-

phate, #7 salvage pathway deoxythymidine phosphate, #8 Kreb’s cy-

cle, #9 NAD biosynthesis, #10 arginine biosynthesis. Each experi-

ment has been done in a second. Second column shows the number of

steps where the conventional sub-pathway was found. Third column

shows the number of solutions found by the step shown in the sec-

ond column. Columns 4-7 show each result of whether each method

could find the sub-pathway or the path exactly corresponding to the

conventional one. In columns 5 and 6, (a) represents the objective

of minimizing the total number of reactions and (b) represents the

objective of maximizing the production of ATP in the literature [1].

Figure 4. A Glycolysis Sub-pathway on a Whole E. coli Pathway

Figure 5. A Glycolysis Sub-pathway of the E. coli Pathway

As a result, we found every sub-pathway corresponding to the

conventional sub-pathway with step z ≤ 3. Moreover, the number

of solutions are less than 10 except the pathway #3 and #8. Even

for these two pathways, we found each conventional sub-pathway in

the first 10 solutions by ordering the sub-pathways according to the

numbers of reactions. Due to the differences of each input, problem

formalization and the number of solutions, it is difficult to make a di-

rect comparison. While the optimization modeling using stoichiom-

etry information by [1] generates one solution for each pathway, it

cannot identify two sub-pathways. Constraint based path finding ap-

proach [12] outputs the best 10 paths for each pathway but it can-

not identify four sub-pathways. Among them, only proposed method

identifies all conventional sub-pathways.

5.2 Evaluation on the whole E. coliMetabolic
Pathway from EcoCyc

We also apply our method to a whole metabolic pathway of E. coli.

A bipartite directed graph representation of the pathway is shown in

Figure 4.

We choose initial metabolites, which are recognized as com-

mon metabolites, by calculating percentage of the presence of each

metabolites as same as the literature [1]. In order to decide initial

metabolites, we define the percentage of the presence of a metabolite

m as prm = (nm ÷|R|)× 100, where nm represents the number of

reactions in which the metabolite m appears.

According to the value of prm, we particularly choose metabo-
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lites which are the first 6 of 1073 metabolites: WATER, PROTON,

ATP, ADP, |pi| and NAD. In addition, GLC-6-P and PYRUVATE

are given as the source metabolite and the target metabolite, respec-

tively. We then apply the method to find a glycolysis sub-pathway in

a whole E. coli pathway. As a result, we found 4880 minimal sub-

pathways and ordered those sub-pathways according to the number

of reactions. This experiment has been done in a minute. Figure 5

shows a sub-pathway found in the best 10 solutions corresponding

to the conventional glycolysis sub-pathway described in EcoCyc [4].

We here consider the computed sub-pathway shown in Figure 5. All

reactions included in the computed sub-pathway are included in the

conventional sub-pathway. However, some reactions included in the

conventional glycolysis sub-pathway are not included in the com-

puted sub-pathway. This is because conventional sub-pathways from

EcoCyc frequently contains bypass reactions which may be needed

from a stoichiometry viewpoint. In the case of the glycolysis sub-

pathway, TRIOSEPISOMERIZATION-RXN is such a bypass reac-

tion, which consumes DIHYDROXY-ACETONE-PHOSPHATE as a

reactant and produces GAP. To support such a bypass reaction is con-

sidered to be a future work.

6 Related Work

As far as the authors are aware, the exactly same problem of the sub-

pathway finding problem has not yet been formalized. Küffer et al.

report an approach using a petri net [10]. Although their approach

considers producibility and activatability, they do not consider sub-

set minimality of the solution. Schuster et al. propose a concept of

elementary flux modes and find minimal flux distribution [16]. Al-

though their problem closes to our problem, they use stoichiometry

information to solve their problem while our problem only needs the

topology of a pathway. Croes et al. report the path finding problem

with weighted graphs. They add a weight for each metabolite node

according to its degree. The results are improved compared with the

original graph but there is still a remaining problem shown in the

Section 3.

Tiwari et al. propose a method using a weighted Max-SAT

solver [19] to analyze pathways. They translate reaction laws into

soft constraint represented in weighted clauses to compute ordered

solutions. However, its ordering is sometimes not acceptable from a

biological viewpoint since reaction laws must be held are sometimes

violated.

Ray et al. report a method using answer set programming (ASP)

to compute the steady states of a given pathway and complete lack-

ing reactions [14]. Schaub and Thiele also apply ASP to complete

pathways and to identify necessary source metabolites from target

metabolites [15]. Unlike their approach, we use minimal model gen-

eration to compute essential reactions to produce target metabolites.

7 Conclusion

In this paper, we formalized the sub-pathway finding problem which

identifies necessary reactions to produce target metabolites and pre-

sented a translation into a propositional formula. Our method uses

a SAT solver as a model generator and it has the following fea-

tures. First, our method can treat reversible reactions without pre-

processing and post-processing. Second, it is capable to treat a whole

E. coli metabolic pathway. Third, it can restrict the number of solu-

tions to be tractable. As far as the authors know, there are few meth-

ods have been reported for analyses of a whole organism pathway.

We believe that our method provides new analyses for a whole cell

and more extended pathways, such as signaling, and gene regula-

tory networks. Future topics are as follows. For more general evalu-

ation, statistical analyses with more number of pathways are needed.

We also need to consider the quality of solutions as well as rank-

ing. Translating more biological knowledge is important to find sub-

pathways of more extended pathways.
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