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Abstract. We consider the problem of learning a user’s ordinal pref-
erences on a multiattribute domain, assuming that her preferences are
lexicographic. We introduce a general graphical representation called
LP-trees which captures various natural classes of such preference
relations, depending on whether the importance order between at-
tributes and/or the local preferences on the domain of each attribute
is conditional on the values of other attributes. For each class we
determine the Vapnik-Chernovenkis dimension, the communication
complexity of preference elicitation, and the complexity of identify-
ing a model in the class consistent with a set of user-provided exam-
ples.

1 Introduction

In many applications, especially electronic commerce, it is impor-
tant to be able to learn the preferences of a user on a set of alterna-
tives that has a combinatorial (or multiattribute) structure: each al-
ternative is a tuple of values for each of a given number of variables
(or attributes). Whereas learning numerical preferences (i.e., utility
functions) on multiattribute domains has been considered in various
places, learning ordinal preferences (i.e., order relations) on multiat-
tribute domains has been given less attention. Two streams of work
are worth mentioning.

First, a series of very recent works focus on the learning of prefer-
ence relations enjoying some preferential independencies conditions.
Passive learning of separable preferences is considered by Lang &
Mengin (2009), whereas passive (resp. active) learning of acyclic
CP-nets is considered by Dimopoulos et al. (2009) (resp. Koriche
& Zanuttini, 2009).

The second stream of work, on which we focus in this paper, is
the class of lexicographic preferences, considered in Schmitt & Mar-
tignon (2006); Dombi et al. (2007); Yaman et al. (2008). These
works only consider very simple classes of lexicographic prefer-
ences, in which both the importance order of attributes and the local
preference relations on the attributes are unconditional. In this pa-
per we build on these papers, and go considerably beyond, since we
consider conditionally lexicographic preference relations.

Consider a user who wants to buy a computer and who has a lim-
ited amount of money, and a web site whose objective is to find the
best computer she can afford. She prefers a laptop to a desktop, and
this preference overrides everything else. There are two other at-
tributes: colour, and type of optical drive (whether it has a simple
DVD-reader or a powerful DVD-writer). Now, for a laptop, the next
most important attribute is colour (because she does not want to be
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3 IRIT, Université de Toulouse, France. mengin@irit.fr
4 Mahasarakham University, Thailand. chattrakul.s@msu.ac.th

seen at a meeting with the usual bland, black laptop) and she prefers
a flashy yellow laptop to a black one; whereas for a desktop, she
prefers black to flashy yellow, and also, colour is less important than
the type of optical drive. In this example, both the importance of the
attributes and the local preference on the values of some attributes
may be conditioned by the values of some other attributes: the rel-
ative importance of colour and type of optical drive depends on the
type of computer, and the preferred colour depends on the type of
computer as well.

In this paper we consider various classes of lexicographic prefer-
ence models, where the importance relation between attributes and/or
the local preference on an attribute may depend on the values of some
more important attributes. In Section 2 we give a general model for
lexicographic preference relations, and define six classes of lexico-
graphic preference relations, only two of which have already been
considered from a learning perspective. Then each of the following
sections focuses on a specific kind of learning problem: in Section
3 we consider preference elicitation, a.k.a. active learning, in Sec-
tion 4 we address the sample complexity of learning lexicographic
preferences, and in Section 5 we consider passive learning, and more
specifically model identification and approximation.

2 Lexicographic preference relations: a general
model

2.1 Lexicographic preferences trees

We consider a set A of n attributes. For the sake of simplicity, all
attributes we consider are binary (however, our notions and results
would still hold in the more general case of attributes with finite value
domains). The domain of attribute X ∈ A is X = {x, x}. If U ⊆ A,
then U is the Cartesian product of the domains of the attributes in U .
Attributes and sets of attributes are denoted by upper-case Roman
letters (X , Xi, A etc.). An outcome is an element of A; outcomes
are denoted by lower case Greek letters (α, β, etc.). Given a (partial)
assignment u ∈ U for some U ⊆ A, and V ⊆ A, we denote by
u(V ) the assignment made by u to the attributes in U ∩ V .

In our learning setting, we assume that, when asked to compare
two outcomes, the user, whose preferences we wish to learn, is al-
ways able to choose one of them. Formally, we assume that the (un-
known) user’s preference relation on A is a linear order, which is a
rather classical assumption in learning preferences on multi-attribute
domains (see, e.g., Koriche & Zanuttini (2009); Lang & Mengin
(2009); Dimopoulos et al. (2009); Dombi et al. (2007)). Allowing
for indifference in our model would not be difficult, and most results
would extend, but would require heavier notations and more details.

Lexicographic comparisons order pairs of outcomes (α, β) by
looking at the attributes in sequence, according to their importance,
until we reach an attribute X such that α(X) �= β(X); α and β are
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then ordered according to the local preference relation over the val-
ues of X . For such lexicographic preference relations we need both
an importance relation, between attributes, and local preference rela-
tions over the domains of the attributes. Both the importance between
attributes and the local preferences may be conditioned by the values
of more important attributes. This conditionality can be expressed
with the following class of trees:

Definition 1 A Lexicographic Preference Tree (or LP-tree) over A
is a tree such that:

• every node n is labelled with an attribute Att(n) and a conditional
preference table CT(n) (details follow);

• every attribute appears once, and only once, on every branch;
• every non-leaf node labelled with attribute Att(n) = X has ei-

ther one outgoing edge, labelled by {x, x}, or two outgoing edges,
labelled respectively by x and x.

Domin(n) denotes the set of attributes labelling the ancestor nodes
of n, called dominating attributes for n. Domin(n) is partitioned be-
tween instantiated attributes and non-instantiated attributes: Inst(n)
(resp. NonInst(n)) is the set of attributes in Domin(n) that have two
children (resp. that have only one child). The conditional preference
table associated with n consists of a subset U ⊆ NonInst(n) (the at-
tributes on which the preferences on X depend) and for each u ∈ U ,
a conditional preference entry of the form u :>, where > is a linear
order over the domain of Att(n). In our case, because the domains
are binary, these rules will be of the form u : x > x or u : x > x. If
U is empty, then the preference table is said to be maximally general
and contains a single rule of the form � :>. If U = NonInst(n),
then the preference table is said to be maximally specific.

Note that since the preferences on a variable X can vary between
branches, the preference on X at a given node n with Att(n) = X
implicitly depends on the values of the variables in Inst(n). The only
variables on which the preferences at node n do not depend are the
ones that are less important that X .5

Example 1 Consider three binary attributes: C ( colour), with two
values c (yellow) and c (black); D (dvd device) with two values d
(writer) and d (read-only); and T (type) with values t (laptop) and t
(deskop). On the first LP-tree depicted next page, T is the most im-
portant attribute, with laptops unconditionally preferred to desktops;
the second most important attribute is C in the case of laptops, with
yellow laptops preferred to black ones, and D in the case of desk-
tops. In all cases, a writer is always preferred to a read-only drive.
The least important attribute is D for laptops, and C for desktops,
black being preferred to yellow in this case.

If n is for instance the bottom leftmost leaf node, then Att(n)=D,
Domin(n) = {T, C}, Inst(n) = {T} and NonInst(n) = {C}. �

Definition 2 Given distinct outcomes α and β, and a node n of some
LP-tree σ with X = Att(n), we say that n decides (α, β) if n is the
(unique) node of σ such that α(X) �= β(X) and for every attribute
Y in Domin(n), we have α(Y ) = β(Y ).

We define α �σ β if the node n that decides (α, β), is such that
CT(n) contains a rule u :> with α(U) = β(U) = u and α(X) >
β(X), where u ∈ U for some U ⊆ NonInst(n) and X = Att(n).

Proposition 1 Given a LP-tree σ, �σ is a linear order.

5 Relaxing this condition could be interesting, but can lead to a weak relation
�σ (see Def. 2): for instance, if we had attribute X more important than
Y , and local preferences on X depend on Y , e.g. y : x > x̄ ; ȳ : x̄ > x,
one would not know how to compare xy and x̄ȳ.

Example 1 (continued) According to σ, the most preferred com-
puters are yellow laptops with a DVD-writer, because cdt �σ α
for any other outcome α �= cdt; for any x ∈ C and any z ∈ D
xzt �σ xzt̄, that is, any laptop is preferred to any desktop com-
puter. And cdt̄ �σ c̄d̄t̄, that is, a yellow deskop with DVD-writer
is preferred to a black one with DVD-reader because, although for
desktops black is preferred to yellow, the type of optical reader is
more important than the colour for desktop computers. �

LP-trees are closely connected to Wilson’s “Pre-Order Search
Trees” (or POST) (2006). One difference is that in POSTs, local pref-
erence relations can be nonstrict, whereas here we impose linear or-
ders, mainly to ease the presentation. More importantly, whereas in
POSTs each edge is labelled by a single value, we allow more com-
pact trees where an edge can be labelled with several values of the
same variable; we need this because in a learning setting, the size of
the representation that one learns is important.

2.2 Classes of lexicographic preference trees

Some interesting classes of LP-trees can be obtained by imposing
a restriction on the local preference relations and/or on the condi-
tional importance relation. The local preference relations can be con-
ditional (general case), but can also be unconditional (the prefer-
ence relation on the value of any attribute is independent from the
value of all other attributes), and can also be fixed, which means that
not only is it unconditional, but that it is known from the beginning
and doesn’t have to be learnt (this corresponds to the distinction in
Schmitt & Martignon (2006) between lexicographic strategies with
or without cue inversion). Likewise, the attribute importance relation
can be conditional (general case), or unconditional (for the sake of
completeness, it could also be fixed, but this case is not very interest-
ing and we won’t consider it any further). Without loss of generality,
in the case of fixed local preferences, we assume that the local pref-
erence on Xi is xi > xi.

Definition 3 (conditional/unconditional/fixed local preferences)

• The class of LP-trees with unconditional local preferences (UP) is
the set of all LP-trees such that for every attribute Xi there exists
a preference relation >i (either xi > xi or xi > xi) such that for
every node n with Att(n) = Xi, the local preference table at n is
� :>i.

• The class of LP-trees with fixed local preferences (FP) is the set
of all LP-trees such that for every attribute Xi and every node n
such that Att(n) = Xi, the local preference at n is xi > xi.

In the general case, local preferences can be conditional (CP).

Obviously, FP ⊂ UP.

Definition 4 (conditional/unconditional importance) The class of
LP-trees with an unconditional importance relation (UI) is the set of
all linear LP-trees, i.e., for which every node n has only one child.
In the general case, the importance relation can be conditional (CI).

We stress that the class FP should not be confused with the class
UP. FP consists of all trees where the local preference relation on
each Xi is xi � xi, while UP consists of all trees where the local
preference relation on each Xi is the same in all branches of the tree
(xi � xi or xi � xi). For instance, if we have two variables X1, X2

and require the importance relation to be unconditional (UI) then we
have only two LP-trees in FP-UI, whereas we have 8 in UP-UI.
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Figure 1. Examples of LP-trees

We can now combine a restriction on local preferences and a re-
striction on the importance relation. We thus obtain six classes of
LP-trees, namely, CP-CI, CP-UI, UP-CI, UP-UI, FP-CI and FP-UI.
For instance, CP-UI is defined as the class of all LP-trees with condi-
tional preferences and an unconditional importance relation. The lex-
icographic preferences considered in Schmitt & Martignon (2006);
Dombi et al. (2007); Yaman et al. (2008) are all of the FP-UI or
UP-UI type. Note that the LP-tree on Example 1 is of the CP-CI
type. Examples of LP-trees of other types are depicted above.

3 Exact learning with queries

Our aim in this paper is to study how we can learn a LP-tree that
fits well a collection of examples. We first consider preference elic-
itation, a.k.a. active learning, or learning by queries. This issue has
been considered by Dombi et al. (2007) in the FP-UI case (see also
Koriche & Zanuttini (2009) who consider the active learning of CP-
nets). The setting is as follows: there is some unknown target pref-
erence relation >, and a learner wants to learn a representation of
it by means of a lexicographic preference tree. There is a teacher, a
kind of oracle to which the learner can submit queries of the form
(α, β) where α and β are two outcomes: the teacher will then re-
ply whether α > β or β > α is the case. An important question in
this setting is: how many queries does the learner need in order to
completely identify the target relation >? More precisely, we want
to find the communication complexity of preference elicitation, i.e.,
the worst-case number of requests to the teacher to ask so as to be
able to elicit the preference relation completely, assuming the target
can be represented by a model in a given class. The question has al-
ready been answered in Dombi et al. (2007) for the FP-UI case. Here
we identify the communication complexity of eliciting lexicographic
preferences trees in all five other cases, when all attributes are binary.
(We restrict to the case of binary attributes for the sake of simplic-
ity. The results for nonbinary attributes would be similar.) We know
that a lower bound of the communication complexity is the log of the
number of preference relations in the class. In fact, this lower bound
is reached in all 6 cases:

Proposition 2 The communication complexities of the six problems
above are as follows, when all attributes are binary:

FP UP CP
UI Θ(n log n) Dombi et al. (2007) Θ(n log n) Θ(2n)
CI Θ(2n) Θ(2n) Θ(2n)

Proof (Sketch) In the four cases FP-UI, UP-UI, FP-CI and UP-
CI, the local preference tables are independent of the structure of

the importance tree. There are n! unconditional importance trees,
and

Qn−1
k=0 (n − k)2

k

conditional ones. Moreover, when prefer-
ences are not fixed, there are 2n possible unconditional prefer-
ence tables. For the CP-CI case, a complete conditional importance
tree contains

Pn−1
k=0 2k = 2n − 1 nodes, and at each node there

are two possible conditional preference rules. The elicitation pro-
tocols of Dombi et al. (2007) for the UI-FP case can easily be
extended to prove that the lower bounds are reached in the five
other cases. For instance, for the FP-CI case, a binary search, us-
ing log2 n queries, determines the most important variable – for
example, with four attributes A, B, C, D the first query could be
(abc̄d̄, āb̄cd), if the answer were > we would know the most im-
portant attribute is A or B; then for each of its possible values
we apply the protocol for determining the second most important
variable using log2(n − 1) queries, etc. When the local prefer-
ences are not fixed, at each node a single preliminary query gives
a possible preference over the domain of every remaining vari-
able. We then get the following exact communication complexities:

FP UP CP
UI log(n!) n + log(n!) 2n − 1 + log(n!)

CI g(n) =
n−1P

k=0

2k log(n − k) n + g(n) 2n − 1 + g(n)

Finally, log(n!) = Θ(n log n) and g(n) = Θ(2n), from which the
table follows. �

4 Sample complexity of some classes of LP-trees

We now turn to supervised learning of preferences. First, it is interest-
ing to cast our problem as a classification problem, where the training
data is a set of pairs of distinct outcomes (α, β), each labelled either
> or < by a user: ((α, β), >) and ((α, β), <) respectively mean that
the user prefers α to β, or β to α. (Recall that we assume that the user
is always able to choose between two outcomes.). We want to learn
a LP-tree σ that orders well the examples, e.g. such that α �σ β for
every example ((α, β), >), and such that β �σ α for every example
((α, β), <). In this setting, the Vapnik-Chernovenkis (VC) dimen-
sion of a class of LP-trees is the size of the largest set of pairs (α, β)
that can be ordered correctly by some LP-tree in the class, whatever
the labels (> or <) associated with each pair. In general, the higher
this dimension, the more examples will be needed to correctly iden-
tify a LP-tree.

Proposition 3 The VC dimension of any class of irreflexive, transi-
tive relations over a set of n binary attributes is strictly less than 2n.
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Proof (Sketch) Consider a set E of 2n pairs of outcomes over A,
and the corresponding undirected graph over A: it has as many edges
as vertices, so it has at least one cycle; if all edges of this cycle are
directed so as to obtain a directed cycle, the transitive closure of the
corresponding relation over A will not be irreflexive. Hence E cannot
be shattered with transitive irreflexive relations. �

Proposition 4 The VC dimension of the class of CP-CI LP-trees and
of CP-UI LP-trees over n binary attributes, is equal to 2n − 1.

Proof (Sketch) It is possible to build a LP-tree over n attributes with
2k nodes at the k− th level, for 0 ≤ i ≤ n− 1: this is a tree for CP-
CI trees, it has 2n − 1 nodes. Such a tree can shatter a set of 2n − 1
examples: take one example for each node, the local preference rela-
tion that is applicable at each node can be used to give both labels to
the corresponding example. The upper bound follows from Prop. 3.
�

This result is rather negative, since it indicates that a huge number
of examples would in general be necessary to have a good chance
of closely approximating an unknown target relation. This important
number of necessary examples also means that it would not be pos-
sible to learn in reasonable - that is, polynomial - time. However,
learning CP-CI LP-trees is not hopeless in practice: decision trees
have a VC dimension of the same order of magnitude, yet learning
them has had great success experimentally.

As for trees with unconditional preferences, Schmitt & Martignon
(2006) have shown that the VC dimension of UP-UI trees over n
binary attributes is exactly n. Since every UP-UI tree is equivalent
to a CP-UI tree, the VC dimension of UP-UI trees over n binary
attributes is at least n.

5 Model identifiability

We now turn to the problem of identifying a model of a given class C,
given a set E of examples. As before, an example is an ordered pair
(α, β), meaning that the user prefers α to β – this is not restrictive
since we assume that the user’s preference relation is a linear order.

Definition 5 A LP-tree σ is said to be consistent with example (α, β)
if α �σ β. Given a set of examples E , σ is consistent with E if it is
consistent with every example of E .

The aim of the learner is to find some LP-tree in C consistent with
E . Dombi et al. (2007) have shown that this problem can be solved in
polynomial time for the class of binary LP-trees with unconditional
importance and unconditional, fixed local preferences (FP-UI). In or-
der to prove this, they exhibit a simple greedy algorithm that, given a
set of examples E and a set P of unconditional local preferences for
all attributes, outputs an importance relation on variables (that is, an
LP-tree of the FP-UI class) consistent with E , provided there exists
one. We will prove in this section that the result still holds for most
of our classes of LP-trees, except one.

5.1 A greedy algorithm

We now present a generic algorithm able to generate LP-trees of
various types. Given a set E of examples, algorithm 1 constructs a
tree that satisfies the examples if such a tree exists, iteratively adding
nodes from the root to the leaves. Depending on how the two func-
tions chooseAttribute(n) and generateLabels(n, X) are defined,

Algorithm 1 GenerateLPTree

INPUT: A: set of attributes; E : set of examples over A;
OUTPUT: LP-tree consistent with E , or FAILURE;

1. T ← {unlabelled root node};
2. while T contains some unlabelled node:

(a) choose unlabelled node n of T ;
(b) (X, CT ) ← chooseAttribute(n);
(c) if X = FAILURE then STOP and return FAILURE;
(d) label n with X and CT ;
(e) L ← generateLabels(n, X); (labels for edges below n)
(f) for each l ∈ L:

add new unlabelled node to T , attached to n with edge labelled
with l;

3. return T .

the output tree will have conditional/unconditional/fixed preference
tables, and conditional/unconditional attribute importance.

At a given currently unlabelled node n, step 2b considers the set
E(n) = {(α, β) ∈ E | α(Domin(n)) = β(Domin(n))}, that
is, the set of all examples in E for which α and β coincide on
all variables above Att(n) in the branch from the root to n. E(n)
is the set of examples that correspond to the assignments made in
the branch so far and that are still undecided. The helper function
chooseAttribute(n) returns an attribute X /∈ Domin(n) and a con-
ditional table CT . Informally, the attribute and the local preferences
are chosen so that they do not contradict any example of E(n): for
every (α, β) ∈ E(n), if α(X) �= β(X) then CT must contain a rule
of the form u : α(X) > β(X), with u ∈ U , U ⊆ NonInst(n)
and α(U) = β(U) = u. If we allow the algorithm to generate
conditional preference tables, the function chooseAttribute(n) may
output any (X, CT ) satisfying the above condition. However, if we
want to learn a tree with unconditional or fixed preferences we need
to impose appropriate further conditions; we will say (X, CT ) is:

UP-choosable if CT is of the form � :> (a single unconditional
rule);

FP-choosable if CT is of the form � : x > x̄.

If no attribute can be chosen with an appropriate table without contra-
dicting one of the examples, chooseAttribute(n) returns FAILURE
and the algorithm stops at step 2c.

Otherwise, the tree is expanded below n with the help of the func-
tion generateLabels, unless Domin(n) ∪ {X} = A, in which case
n is a leaf and generateLabels(n, X) = ∅. If this is not the case,
generateLabels(n, X) returns labels for the edges below the node
just created: it can return two labels {{x} and {x̄}} if we want to
split with two branches below X , or one label {x, x̄} when we do
not want to split. If we want to learn a tree of the UI class, clearly we
never split. If we want to learn a tree with possible conditional im-
portance, we create two branches, unless the examples in E(n) that
are not decided at n all have the same value for X , in which case we
do not split. An important consequence of this is that the number of
leaves of the tree built by our algorithm never exceeds |E|.

5.2 Some examples of GenerateLPTree

Throughout this subsection we assume the algorithm checks the at-
tributes for choosability in the order T → C → D.

Example 2 Suppose E consists of the following five examples:
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1:(tcd, tc̄d); 2: (t̄c̄d, t̄cd); 3: (tcd̄, tc̄d̄); 4: (t̄c̄d̄, t̄cd̄); 5: (t̄c̄d, t̄cd̄)

Let’s try using the algorithm to construct a UP-UI tree consistent
with E . At the root node n0 of the tree we first check if there is table
CT such that (T, CT ) is UP-choosable. By the definition of UP-
choosability, CT must be of the form {� :>} for some total order
> of {t, t̄}. Now since α(T ) = β(T ) for all (α, β) ∈ E(n0) = E ,
(T, {� :>}) is choosable for any > over {t, t̄}. Thus we label n0

with e.g. T and � : t > t̄ (we could have chosen � : t̄ > t instead).
Since we are working in the UI-case the algorithm generates a single
edge from n0 labelled with {t, t̄} and leading to a new unlabelled
node n1. We have E(n1) = E(n0) since no example is decided at n0.
So C is not UP-choosable at n1, owing to the opposing preferences
over C exhibited for instance in examples 1,2. However (D, {� :
d > d̄}) is UP-choosable, thus the algorithm labels n1 with D and
{� : d > d̄}. Example 5 is decided at n1. At the next node the only
remaining attribute C is not UP-choosable because for instance we
still have 1,2 ∈ E(n2). Thus the algorithm returns FAILURE. Hence
there is no UP-UI tree consistent with E .

However, if we allow conditional preferences, the algorithm does
successfully return the CP-UI tree depicted on Fig. 1, because C is
choosable at node n1, with the conditional table {t :c>c̄ ; t̄ : c̄>c}.
All examples are decided at n0 or n1, and the algorithms terminates
with an arbitrary choice of table for the last node, labelled with D. �

This example raises a couple of remarks. Note first that the choice
of T for the root node is really a completely uninformative choice
in the UP-UI case, since it does not decide any of the examples. In
the CP-UI case, the greater importance of T makes it possible to
have the local preference over C depend on the values of T . Second,
in the CP-UI case, the algorithm finishes the tree with an arbitrary
choice of table for the leaf node, since all examples have been de-
cided above that node; this way, the ordering associated with the tree
is complete, which makes the presentation of our results easier. In
a practical implementation, we may stop building a branch as soon
as all corresponding examples have been decided, thus obtaining an
incomplete relation.

Example 3 Consider now the following examples:

1:(tcd, tc̄d); 2b: (tcd, tcd̄); 3b: (t̄cd, t̄c̄d̄); 4: (t̄c̄d̄, t̄cd̄); 5: (t̄c̄d, t̄cd̄)

We will describe how the algorithm can return the CP-CI tree of
Ex. 1, depicted on Fig. 1, if we allow conditional importance and
preferences. As in the previous example, T is CP-choosable at the
root node n0 with a preference table {� : t > t̄}. Since we are
now in the CI-case, generateLabels generates an edge-label for each
value t and t̄ of T . Thus two edges from n0 are created, labelled with
t, t̄ resp., leading to two new unlabelled nodes m1 and n1.

We have E(m1) = {(α, β) ∈ E | α(T ) = β(T ) = t} = {1, 2b},
so chooseAttribute returns (C, {� : c > c̄}), and m1 is labelled
with C and � : c > c̄. Since only example 2b remains undecided at
m1, no split is needed, one edge is generated, labelled with {c, c̄},
leading to new node m2 with E(m2) = {2b}. The algorithm suc-
cessfully terminates here, labelling m2 with D and � : d > d̄.

On the other branch from n0, we have E(n1) = {3b, 4, 5}. Due
to the opposing preferences on their restriction to C exhibited by
examples 3b,5, C is not choosable. Thus we have to consider D
instead. Here we see that (D, {� : d > d̄}) can be returned by
chooseAttribute thus n1 is labelled with D, and � : d > d̄. The only
undecided example that remains on this branch is 4, so the branch is
finished with a node labelled with C and � : c̄ > c. �

5.3 Complexity of model identification

The greedy algorithm above solves five learning problems. In fact,
the only problem that cannot be solved with this algorithm, as will
be shown below, is the learning of a UP-CI tree without initial knowl-
edge of the preferences.

Proposition 5 Using the right type of labels and the right choosabi-
lity condition, the algorithm returns, when called on a given set E of
examples, a tree of the expected type, as described in the table below,
consistent with E , if such a tree exists:

learning problem chooseAttribute generateLabels

CP-CI no restriction split possible
CP-UI no restriction no split
UP-UI UP-choosable no split
FP-CI FP-choosable split possible
FP-UI FP-choosable no split

Proof (Sketch) The fact that the tree returned by the algorithm has
the right type, depending on the parameters, and that it is consistent
with the set of examples is quite straightforward. We now give the
main steps of the proof of the fact that the algorithm will not return
failure when there exists a tree of a given type consistent with E .

Note first that given any node n of some LP-tree σ, labelled with
X and the table CT, then (X, CT ) is candidate to be returned by
chooseAttribute. So if we know in advance some LP-tree σ consis-
tent with a set E of examples, we can always construct it using the
greedy algorithm, by choosing the “right” labels at each step.

Importantly, it can also be proved that if at some node n
chooseAttribute chooses another attribute Y , then there is some
other LP-tree σ′, of the same type as σ, that is consistent with E
and extends the current one; more precisely, σ′ is obtained by mod-
ifying the subtree of σ rooted at n, taking up Y to the root of this
subtree. Hence the algorithm cannot run into a dead end. �

This result does not hold in the UP-CI case, because taking an
attribute upwards in the tree may require using a distinct preference
rule, which may not be correct in other branches of the LP-tree.

Example 4 Consider now the following examples:

1b: (tcd, tc̄d̄); 2b: (tcd, tcd̄); 4b: (t̄c̄d̄, t̄cd); 5: (t̄c̄d, t̄cd̄)

The UP-CI tree depicted on Fig. 1 is consistent with {1b, 2b, 4b, 5}.
However, if we run the greedy algorithm again, trying this time to en-
force unconditional preferences, it may, after labelling the root node
with T again, build the t branch first: it will choose C with prefer-
ence � : c > c̄ and finish this branch with (D,� : d > d̄); when
building the t̄ branch, it cannot choose C first, because the preference
has already been chosen in the t branch and would wrongly decide
5; but D cannot be chosen either, because 4b and 5 have opposing
preferences on their restrictions to D. �

Proposition 6 The problems of deciding if there exists a LP-tree of
a given class consistent with a given set of examples over binary
attributes have the following complexities:

FP UP CP
UI P(Dombi et al. , 2007) P P
CI P NP-complete P

Proof (Sketch) For the CP-CI, CP-UI, FP-CI, FP-UI and UP-UI
cases, the algorithm runs in polynomial time because it does not have
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more than |E| leaves, and each leaf cannot be at depth greater than
n; and every step of the loop except (2b) is executed in linear time,
whereas in order to choose an attribute, we can, for each remaining
attribute X , consider the relation {(α(X), β(X)) | (α, β) ∈ E(n)}
on X: we can check in polynomial time if it has cycles, and, if not,
extend it to a total strict relation over X .

For the UP-CI case, one can guess a set of unconditional local
preference rules P , of size linear in n, and then check in polyno-
mial time (FP-CI case) if there exists a tree T such that (T, P ) is
consistent with E ; thus the problem is in NP. Hardness comes from
a reduction from WEAK SEPARABILITY – the problem of checking
if there is a CP-net without dependencies weakly consistent with a
given set of examples – shown to be NP-complete by Lang & Men-
gin (2009). More precisely, a set of examples E is weakly separable
if and only if there exists a (non ambiguous) set of unconditional
preference rules that contains, for every (α, β) ∈ E , a rule X,� :>
such that α(X) > β(X). To prove the reduction, given a set of ex-
amples E = {(α1, β1), . . . , (αm, βm)}, built on a set of attributes
{X1, . . . , Xn}, we introduce m new attributes P1, . . . , Pm. For each
example ei = (αi, βi) ∈ E we create a new example
e′i = (αip1 . . . pi−1pipi+1 . . . pm , βip1 . . . pi−1pipi+1 . . . pm).

If E is weakly separable, we can build a UP-CI LP-tree consistent
with E ′ = {e′i | ei ∈ E}: the m top levels of the tree are labelled
with the Pis; below that there remains no more that one example on
each branch, and the importance order on that branch can be chosen
to decide well the corresponding example. For the converse, it is not
hard to see that the restriction to X1, . . . , Xn of the tables of a UP-CI
tree consistant with E ′ is weakly compatible with E . �

5.4 Complexity of model approximation

In practice, it is often the case that no structure of a given type is con-
sistent with all the examples at the same time. It is then interesting to
find a structure that is consistent with as many examples as possible.
In the machine learning community, the associated learning problem
is often refered to as agnostic learning. Schmitt & Martignon (2006)
have shown that finding a UI-UP LP-tree, with a fixed set of local
preferences, that satisfies as many examples from a given set as pos-
sible, is NP-complete, in the case where all attributes are binary. We
extend these results here.

Proposition 7 The complexities of finding a LP-tree in a given class,
which wrongly classifies at most k examples of a given set E of ex-
amples over binary attributes, for a given k, are as follows:

FP UP CP
UI NP-c. (Schmitt & Martignon (2006)) NP-c. NP-c.
CI NP-c. NP-c. NP-c.

Proof (Sketch) These problems are in NP because in each case a
witness is the LP-tree that has the right property, and such a tree need
not have more nodes than there are examples. For the UP-CI case,
the problem is already NP-complete for k = 0, so it is NP-hard. NP-
hardness of the other cases follow from successive reductions from
the case proved by Schmitt & Martignon (2006). �

6 Conclusion and future work

We have proposed a general, lexicographic type of models for repre-
senting a large family of preference relations. We have defined six in-
teresting classes of models where the attribute importance as well as
the local preferences can be conditional, or not. Two of these classes

correspond to the usual unconditional lexicographic orderings. Inter-
estingly, classes where preferences are conditional have an exponen-
tional VC dimension.

We have identified the communication complexity of the five
classes for which it was not previously known, thereby generalizing
a previous result by Dombi et al. (2007).

As for passive learning, we have proved that a greedy algorithm
like the ones proposed by Schmitt & Martignon (2006); Dombi et al.
(2007) for the class of unconditional preferences can identify a model
in another four classes, thereby showing that the model identification
problem is polynomial for these classes. We have also proved that the
problem is NP-complete for the class of models with conditional at-
tribute importance but unconditional local preferences. On the other
hand, finding a model that minimizes the number of mistakes turns
out to be NP-complete in all cases.

Our LP-trees are closely connected to decision trees. In fact, one
can prove that the problem of learning a decision tree consistent with
a set of examples can be reduced to a problem of learning a CP-CI LP
tree. It remains to be seen if CP-CI trees can be as efficiently learnt
in practice as decision trees.

In the context of machine learning, usually the set of examples
to learn from is not free of errors in the data. Our greedy algorithm
is quite error-sensitive and therefore not robust in this sense; it will
even fail in the case of a collapsed version space. Robustness toward
errors in the training data is clearly an important property of real
world applications.

As future work, we intend to test our algorithms, with appropri-
ate heuristics to guide the choice of variables a each stage. A possi-
ble heuristics would be the mistake rate if some unconditional tree
is built below a given node (which can be very quickly done). An-
other interesting aspect would be to study mixtures of conditional
and unconditional trees, with e.g. the first two levels of the tree being
conditional ones, the remaining ones being unconditional (since it is
well-known that learning decision trees with only few levels can be
as good as learning trees with more levels).
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