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Abstract. In the last decades enormous advances have been made
possible for modelling complex (physical) systems by mathematical
equations and computer algorithms. To deal with very long running
times of such models a promising approach has been to replace them
by stochastic approximations based on a few model evaluations. In
this paper we focus on the often occuring case that the system mod-
elled has two types of inputs x = (xc, xe) with xc representing
control variables and xe representing environmental variables. Typ-
ically, xc needs to be optimised, whereas xe are uncontrollable but
are assumed to adhere to some distribution. In this paper we use a
Bayesian approach to address this problem: we specify a prior distri-
bution on the underlying function using a Gaussian process and use
Bayesian Monte Carlo to obtain the objective function by integrating
out environmental variables. Furthermore, we empirically evaluate
several active learning criteria that were developed for the determin-
istic case (i.e., no environmental variables) and show that the ALC
criterion appears significantly better than expected improvement and
random selection.

1 Introduction

Optimisation of expensive functions is one of the core problems in
many of the most challenging problems in computing. Mathemati-
cal computer models are frequently used to explore the design space
to reduce the need for expensive hardware prototypes, but are often
hampered by very long running times. Much emphasis has therefore
been on optimising a model using as few function evaluations as pos-
sible. A very promising approach has been to develop a stochastic
approximation of the expensive function to optimise – a surrogate
model – and use that approximation as replacement in optimisation
and to determine the next best function value to evaluate according
to some criteria in model fitting. This approach is well known as re-
sponse surface modelling [11, 9].

In this paper we consider a situation often observed in practice in
which there are two types of input variables: x = (xc, xe) with xc a
set of control variables and xe a set of environmental variables. The
control variables are the variables that we can control whereas the en-
vironmental variables are assumed to have values governed by some
distribution that we cannot manipulate. For example, in [3, 2] a hip
prosthesis is designed where the control variables specify its shape
and the environmental variables account for the variability in patient
population like bone density and activity. In [29] a VLSI circuit is
designed where the control variables are the widths of six transistors
and the environmental variables are qualitative indicators. In [12]
a compressor blade design is improved where the control variables
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specify the geometry of the blade and the environmental variables
are manufacturing variations in chord, camber, and thickness.

In this article we focus on optimising a real-valued objective func-
tion that only depends on the control variables, but its value for each
setting of the control variables is the mean over the distribution of
the environmental variables. Hence, we seek to optimise the control
variables in order to obtain the best average response of the objective
function over the distribution of environmental variables

x∗
c = argmax

xc

�(xc) = argmax
xc

Z
xe

f(xc, xe)p(xe) dxe (1)

with f some real-valued utility function and p(·) some known mea-
sure over the environmental variables xe. In particular, we focus on
the problem of active learning in this context – how to choose the ith
sample point as a function of the sample points seen so far in order
to obtain a good prediction for x∗

c using as few function evaluations
of f as possible.

Our contribution is a computational framework for optimising
functions that depend on both control and environmental variables.
We describe in detail how the problem can be addressed by integrat-
ing Gaussian processes, Bayesian Monte Carlo, and active learning
criteria. Additionally, we empirically validate several well-known ac-
tive learning criteria on a cake mix case study and show that the ALC
criterion appears significantly better than expected improvement and
random selection.

The rest of the paper is structured as follows. Section 2 describes
some background. Section 3 describes the framework we use to
address the problem formulated in Eq. (1) step-by-step: integrating
out environmental variables using Bayesian Monte Carlo to obtain
a stochastic approximation to the objective function (Section 3.1),
reformulating the optimisation problem in term of the stochas-
tic approximation (Section 3.2), and active learning criteria for
efficiently finding the maximum of the stochastic approximation
(Section 3.3). Section 4 gives empirical results of our approach.
Section 5 describes related work. Section 6 gives conclusions.

Notation. Boldface notation is used for vectors and matrices. Normal
fonts and subscripts are used for the components of vectors and ma-
trices or scalars. The notation N (θ|μ,Σ) is used for a multivariate
Gaussian with mean μ and variance Σ. The transpose of a matrix M
is denoted by M T . The zero vector and identity matrix are denoted
by 0 and I , respectively. We use f to denote a function that depends
on both control and environmental variables, and h to denote a deter-
ministic function, i.e., it only depends on control variables.
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2 Background

Section 2.1 describes Gaussian process regression. Section 2.2 de-
scribes Bayesian Monte Carlo, which is a Bayesian approach for
evaluating integrals using a Gaussian process to specify a prior dis-
tribution over functions.

2.1 Gaussian process regression

To simplify notation, we don’t make a distinction between control
and environmental variables at this point. Let x ∈ R

N be an input
point, y ∈ R an output point. Let Dn = {(x1, y1), . . . , (xn, yn)}
be a set of n input-output pairs. Let X = {x1, . . . , xn} and let
Y = {y1, . . . , yn} be the set of inputs and outputs, respectively,
occurring in Dn. We assume that Dn is generated by an unknown
function h : R

N → R and the goal is to learn h given Dn.
To learn h we model h using a zero mean Gaussian process (GP),

h ∼ GP(0, K), which defines a prior distribution over functions.
The covariance matrix K is given by a kernel function k. For exam-
ple, the quadratic exponential covariance function is defined as

Kij = cov(h(xi), h(xj)) = k(xi, xj)

= w0 exp

„
−1

2
(xi − xj)

T A−1(xi − xj)

« (2)

with A = diag(w2
1, . . . , w2

N ) and wi hyperparameters. Given a GP
prior over functions h ∼ GP(0, K) and a set of observations Dn,
a posterior distribution p(h|Dn) can computed that can be used to
make predictions at new test points x, x′. The standard predictive
equations for GP regression are given by [24]:

hDn(x) = k(x, X)Q−1Y

covDn(h(x), h(x′)) = k(x, x′) − k(x, X)Q−1k(X, x′)
(3)

with Q = (K + σ2
nI) the kernel matrix with a tiny constant added

to its diagonal in order to improve numerical stability.
A 1-D illustration of GP regression is shown in Figure 1, left panel.

The true function h(x) = sin(x)+ 1
3
x (dashed line) is approximated

with a GP using four sample observations (dots). The solid line is the
GP mean function hDn and the two standard pointwise error bars are
obtained from covDn(h) given in Eq. (3).

2.2 Bayesian Monte Carlo

In practice, evaluating a function h is often expensive, meaning that
we are able to only obtain a small number of function evaluations.
This leads to uncertainty about h because of incomplete knowledge.
Furthermore, often we are not interested in h, but in evaluating the
integral H =

R
x

h(x)p(x) dx (with respect to some measure p(x)
denoting the importance of the inputs). Because of the uncertainty in
h, determining H can be considered an inference problem [20].

The Bayesian Monte Carlo (BMC) method is a Bayesian approach
for evaluating integrals [23]. BMC starts with defining a prior distri-
bution over h and updates this distribution using a set of n obser-
vations Dn = {(xi, yi)}i=1,...,n to obtain a posterior distribution
p(h|Dn). When h is modelled with a GP prior and the posterior
p(h|Dn) is or can be approximated with an (infinite-dimensional
joint) Gaussian, the distribution of H has a Gaussian distribution,
H ∼ N (H, cov(H)), and is fully characterised by its mean and

variance [23]

H =

Z
x

hDn(x)p(x) dx

cov(H) =

Z
x

Z
x′

cov(hDn(x), hDn(x′))p(x)p(x′) dx dx′
(4)

with hDn(x) and cov(hDn(x), hDn(x′)) the posterior mean and
posterior variance, respectively, as given in Eq. (3). The integrals in
Eq. (4) can be reformulated as follows

H = zQ−1Y, cov(H) = c − zQ−1zT (5)

where we used the following integrals

c =

Z
x

p(x)

Z
x′

p(x′)k(x, x′) dx dx′

zl =

Z
x

p(x)k(x, xl) dx

(6)

with k the kernel function and xl ∈ X the l-th input point in the data
set. Both c and zl depend on the data as the kernel function k can
have a number of hyperparameters that are optimised with respect to
the data (cf. Eq. (2)).

In some cases these multi-dimensional integrals can be reduced
to products of one dimensional integrals, which are usually easier to
solve. If the density p(x) and the kernel function are both Gaussian
we obtain analytic expressions. In particular, when p(x) ∼ N (b, B)
and when using the common quadratic exponential covariance func-
tion in Eq. (2) we obtain the following analytical expressions [23]:

c = w0|2A−1B + I |−1/2

zl = w0|A−1B + I |−1/2·

exp

„
−1

2
(xl − b)T (A + B)−1(xl − b)

« (7)

Some other choices that lead to analytical expressions are Gaussian
mixtures for p(x) and polynomial kernels.
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Figure 1. Left: Gaussian process regression. The GP mean prediction
(solid line) of the function h(x) = sin(x) + 1

3
x (dashed line) with two

standard error pointwise error bars after four observations (dots). Right:
Bayesian Monte Carlo. The normal distribution representingR

x h(x)p(x) dx with p(x) ∼ N (1, 1) and the true integral value
represented by a dashed line.

A 1-D illustration of BMC is shown in Figure 1. On the left we
have a GP fit of the function h(x) = sin(x) + 1

3
x. On the right

we have the corresponding Gaussian distribution for
R

x
h(x)p(x) dx

with p(x) ∼ N (1, 1) calculated using BMC. True values are shown
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with a dashed line, approximations with a solid line. By obtaining
more function evaluations for h, the GP fit will improve and the
Gaussian predictive distribution for the integral will become more
peaked and will converge to the true value.

3 Framework

Below we describe our approach step-by-step to address the problem
formulated in Eq. (1).

3.1 Integrating out environmental variables

In the rest of the paper we reintroduce the distinction between con-
trol and noise variables x = (xc, xe). We consider the case where
we only integrate out xe from f(xc, xe) using the BMC method de-
scribed above. Because of uncertainty about f , we model f(xc, xe)
with a Gaussian process (Section 2.1) and given data Dn will write
it as f(xc, xe|Dn). Using BMC (Section 2.2) to integrate out xe

from f(xc, xe|Dn) we obtain a stochastic approximation L to our
objective function � (Eq. (1)). The stochastic objective function L is
described by a collection of random variables L(xc):

L(xc|Dn) =

Z
xe

f(xc, xe|Dn)p(xe) dxe (8)

for which we assume a Gaussian measure p(xe) ∼ N (xe|b, B)
on inputs xe. When we model f using a GP with a kernel function
defined in Eq. (2) it follows from Eq. (5) that L is a GP with a mean
and covariance function defined by

L(xc) = z(xc)Q
−1Y

cov(L(xc), L(x′
c)) = c(xc, x

′
c) − z(xc)Q

−1z(x′
c)

T
(9)

where we omitted the dependence on Dn for readability and used the
shorthand notation z(xc)l = w−1

0 kc(xc, xc,l)zl and c(xc, x
′
c) =

w−1
0 kc(xc, x

′
c)c, which follows from Eq. (6) and the fact that the

kernel function k factorises, i.e.,

k((xc, xe), (x
′
c, x

′
e)) = w−1

0 kc(xc, x
′
c)ke(xe, x

′
e) (10)

with kc, ke the kernel function k restricted to the domain of xc and
xe, respectively.

Figure 2. Left: GP mean prediction of the function
f(xc, xe) = sin(xe) + 1

3
xe + sin(5xc) + 1

3
xc − 1 given a small number

of observations (dots). Right: GP prediction of
R

xe
f(xc, xe)p(xe) dxe

with p(x) ∼ N (x; 1, 1) and the true function shown by a dashed line
computed using numerical integration.

A 2-D illustration of integrating out environmental variables using
the BMC approach is shown in Figure 2. On the left we have the
mean GP fit of f(xc, xe) = sin(xe) + 1

3
xe + sin(5xc) + 1

3
xc − 1

with 1 ≤ xc ≤ 3 and −5 ≤ xe ≤ 5. On the right we have the GP fit
for
R

xe
f(xc, xe)p(xe) dxe using BMC. By obtaining more function

evaluations for f , the GP fit shown on the left and right will improve.

3.2 Optimisation

So far, we have modelled our objective function � with a Gaussian
process L. The goal, however, is to find the value x∗

c such that �(x∗
c)

is maximised (cf. Eq. (1)) as illustrated by the small cross in Figure 2,
right panel. The idea is to request more information about the true
objective function � (through f ), update our stochastic approximation
L, and use the resulting model to make a prediction:

x̃∗
c = argmax

xc

L(xc|Dn)

= argmax
xc

Z
xe

f(xc, xe|Dn)p(xe) dxe. (11)

This problem formulation is quite different from earlier work on
optimising expensive functions. Previous work is typically of the
form shown in Figure 1, left panel. Our work is of the form shown
in Figure 2, right panel. There are two key aspects that distinguishes
our problem formulation from previous work. First, we do not opti-
mise f , but the average that f takes over a distribution of the envi-
ronment variables (i.e., the difference between left and right panels
in Figures 1 and 2). Second, our objective function L is a collec-
tion of stochastic variables which is only observed indirectly through
f(xc, xe) whereas previous work almost exclusively focusses on op-
timising a deterministic function h that is directly observed through
observations h(x) (i.e., the difference between Figures 1 and 2).

Since f is expensive to evaluate, we would like to select function
evaluations of f in such a way that the x̃∗

c obtained in Eq. (11) re-
sults in a value �(x̃∗

c) that is close to the global optimum �(x∗
c) using

as few function evaluations as possible. This is known in the litera-
ture as active learning or infill sampling criteria. Below we describe
several active learning criteria.

3.3 Active learning

Much work has already been done on optimising expensive functions
by optimising a Gaussian process based surrogate model (see [28, 15]
for a detailed overview). Below we describe some well-known crite-
ria for active learning that are applicable to our problem formulation
before empirically validating them in Section 4. The criteria can be
split into two categories: (1) criteria that are specifically geared to-
wards finding a maximum of a function, but not necessarily a good
global model fit, and (2) criteria that improve the global model fit and
thereby indirectly also the predicted maximum value, which we de-
scribe in Sections 3.3.1 and 3.3.2, respectively. Furthermore, in Sec-
tion 3.3.3, we propose extensions of these criteria that are applicable
to our problem formulation.

3.3.1 Criteria for obtaining a maximum

Expected Improvement. One of the early influential papers is the
work by Jones et al. [11] who studied the problem of finding a
maximum of a deterministic function using a GP (i.e., finding the
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maximum of the true underlying function as shown in Figure 1, left
panel, by a dashed line). Based on the currently best observed value
ymax = max{h(x1), . . . , h(xn)} given n observed function evalu-
ations {h(xi)}i=1,...,n Jones et al. define the improvement I(x̂) at
a new input x̂ as

I(x̂) = max{0, h(x̂) − ymax} (12)

Of course, this value cannot be computed as h is unknown, but
the expected improvement E[I(x̂)] can be computed using the GP
model for h. The expected improvement can be used as infill criteria
by requesting a new observation at the location where the E[I(x̂)]
obtains its maximum value. When compared with work on expected
improvement, in our work the known value ymax is replaced by a
probabilistic value obtained from L.

Generalised Expected Improvement. As the expected improve-
ment criteria was found to often get stuck in local optima, a generali-
sation was proposed in [26] that introduces a parameter that controls
the local-global balance. Let Ln

max = maxxc{L(xc|Dn)} be the
maximum (over the means) of the predicted values of our objective
function given the n data samples collected so far.2 As the objective
function is a Gaussian process, the predictive distribution in a new
point is Gaussian distributed, i.e., L(x̂c) ∼ N (m(x̂c), s

2(x̂c)). For
readability the dependence on x̂c is left out, denoting m(x̂c) as m
and s2(x̂c) as s2. The generalised improvement [26] over the current
best value is defined as

I(x̂c)
g =

j
(�(x̂c) − Ln

max)
g if �(x̂c) > Ln

max

0 otherwise
(13)

with g a non-negative parameter controlling the local-global balance.
Analogously to the improvement function of Jones et al. (cf. Sec-

tion 3.3), this value cannot be computed as � is unknown, but the
expectation of the generalised improvement can be computed by us-
ing the GP predictive distribution at L(x̂c) for �(x̂c). The expected
generalised improvement can be shown to take the following form

E[I(x̂c)
g] =

gX
k=0

 
g

k

!
sg(−u)g−kTk (14)

with u = (Ln
max − m)/s and where

T0 = 1 − Φ(u) and T1 = φ(u) (15)

with Φ the standard normal cumulative distribution function and φ
the standard normal probability density function. Each Tk for k > 1
can be computed recursively from

Tk = uk−1φ(u) + (k − 1)Tk−2 (16)

Higher values of g result in more global search. The standard (ex-
pected) improvement function uses g = 1.

3.3.2 Criteria for obtaining a global model fit

Variance reduction. We consider two other active learning criteria
based on variance reduction. The first method denoted ALM, de-
veloped by MacKay [16], maximises the expected information gain
about parameter values of the model by selecting data where the pre-
dictor has maximum variance. This is directly applicable to a Gaus-
sian process as it provides a variance estimate for each test point (cf.

2 In [26] the criteria is defined for a deterministic function and Ln
max is de-

fined to be the maximum over the known n observed values.

Eq. (3)). The second method denoted ALC, developed by Cohn [4],
is motivated from the goal of minimising the generalisation error. It
computes how the output variance of the predictor changes (averaged
over a set of reference data points Λ) when a new test point x̂ would
be added to the data set. Formally,

Δσ2
λ(x̂) =

(K(X, λ)K−1m − K(x̂, λ))2

K(x̂, x̂) − mT K−1m
(17)

with m = K(X, x̂), K−1 = K(X, X)−1, and λ ∈ Λ. In [27], both
methods are compared on the average variance and mean-squared
error and ALC was found to consistently perform better (but much
harder to evaluate) than ALM and random selection.

Latin Hypercube Sampling. A k-dimensional Latin Hypercube De-
sign (LHD) [17, 8] is a design of n points {x1, . . . , xn} with
xi = (xi1, . . . , xik) such that for each dimension j, 1 ≤ j ≤ k, all
xij , i = 1, . . . , n are distinct. In the literature, LHDs are typically
used to initialise the statistical model, before switching to an active
learning criterion. Note that LHDs choose a design beforehand, with-
out using any information about the acquired samples so far.

3.3.3 Combined criteria

The generalised expected improvement criterion will result in a new
point x̂c, to be used to request more observations about the objective
function �. Observations about �, however, can only be obtained by
evaluating f(xc, xe). Hence, in the context of this paper, the gener-
alised expected improvement criterion needs to be extended to obtain
a pair (x̂c, x̂e) for the function f to be evaluated at. In this paper, we
combine the generalised improvement criterion with the ALC crite-
rion of Section 3.3.2: we apply the generalised expected improve-
ment on L(xc) to obtain x̂c followed by ALC on f(x̂c, xe), i.e.,
with x̂c fixed, to obtain x̂e.3 This extends the generalised expected
improvement, which aims at finding a maximum, to our case of func-
tions dependent on both control and environmental variables. Analo-
gously, any of the global criteria of Section 3.3.2 can be used on the
integrated objective function �(xc) to obtain x̂c and then combined
with another criterion on the function f(x̂c, xe) with fixed x̂c. In
this paper, we only consider the ALC criterion combined with itself,
denoted ALC-ALC. Thus, ALC uses Eq. (17) with the covariance
function K as defined in Eq. (2) whereas ALC-ALC uses Eq. (17)
with the covariance function K as defined in Eq. (9), resulting in a
x̂c, followed by the ALC criterion on f(x̂c, xe).

4 Experiments

The following case study is taken from [1]. Suppose we were to in-
troduce a new cake mix into the consumer market that we like to be
robust against inaccurate settings of oven temperature (T ) and bak-
ing time (t). We would like to design experiments varying the control
variables – the amount of flour (F ), the amount of sugar (S), and the
amount of egg powder (E) – and environmental variables (oven tem-
perature and baking time) to see if we could create a cake mix that is
better with respect to the environmental variables than the standard
recipe so far produced by the product development laboratory.

Given a number of data samples we fitted a Gaussian process and
used its mean function as the true underlying model. We used the

3 In this paper we only combine with ALC as this criterion turned out to give
better performance than the ALM and random criteria.
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same hyperparameters of this model in the experiments. We set

p ∼ N (b, B), b =

»
0
0

–
, B =

»
2/3 −1/3
−1/3 2/3

–
(18)

based on the variance observed in the data and assuming a neg-
ative correlation between oven temperature and baking time. We
used the divided rectangles (DIRECT) algorithm [6, 10] as global
optimiser and the maximum value of the corresponding function �
as defined in Eq. (1) was found to be 5.5330 and was obtained at
x∗

c = (F ∗, S∗, E∗) = (1.1852,−0.7407, 1.1084), which implies
an improved cake mix by using a higher amount of flour, a lower
amount of sugar, and a higher amount of egg powder than the stan-
dard recipe set at (0, 0, 0).

The goal of the various active learning criteria is to find the value
x∗

c that maximises � as quickly as possible using properties of the
stochastic approximation L. Therefore, let x̃∗

c be the value that max-
imises L the current mean GP estimate of �. We take as error measure
ε the distance between the true maximum value and the true value at
the predicted location x̃∗

c :4

ε = |max
xc

�(xc) − �(x̃∗
c)|, x̃∗

c = argmax
xc

L(xc) (19)

We first evaluated the random, ALM, ALC, and LHD criterion
on the cake mix case study. Besides LHD, we started for each active
learning criteria from a random initial sample and iteratively selected
new samples according to the criteria. At each iteration we updated
the model and computed the error measure given in Eq. (19). We it-
eratively selected up to 50 samples and averaged the results over 50
runs. The set of random initial starting points were the same for each
of the random, ALM, and ALC active learning criteria. Because of
the computational complexity of the ALC criterion we limited the
set Λ to 500 reference samples that were drawn according to the dis-
tribution specified by p on the environmental variables and uniform
distribution on the control variables.

The results are shown in Figure 3 in which we plot the error mea-
sure from Eq. (19) and the standard deviation of the mean over 50
runs. Clearly, the ALM method performs is even worse than ran-
dom sampling. The LHD approach performs better than ALM, but
its performance is initially very similar to random sampling and af-
ter about 25 samples it is even outperformed by random sampling.
Although LHDs are typically used as initialisation method in the lit-
erature these results suggest that an LHD is unnecessary and may
lead to worse performance. Similar results for LHDs and determin-
istic functions have also been reported recently in [15]. The ALC
criterion performs very well on the cake mix study. The downside,
however, is that ALC is computationally more challenging and tries
to optimise the global model fit, but not specifically the predicted
maximum of the objective function. The ALC-ALC criterion is a bit
worse than the ALC criterion, but performs quite well. It has the ad-
vantage that optimisation in a high dimensional space of both control
and environmental variables can be split into two sequential optimi-
sation steps in two lower dimensional spaces.

Besides evaluating the active learning criteria that are aimed at
improving the global model fit we also evaluated the generalised ex-
pected improvement criterion which aims at finding the maximum.
As already mentioned in Section 3.3.1 we used the generalised ex-
pected improvement to obtain an x̂c which was then kept fixed in
one of the criteria that aim for a global fit to obtain a pair (x̂c, x̂e)

4 Alternatively, if there is only one dominating global optimum, one can take
as error measure the distance ‖x∗

c − x̃∗
c‖. In our case study, however, there

are multiple local optima that are almost as good as the global optimum.
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Figure 3. For each active learning criteria we computed a sequence of
samples and observations to be added. At each step we computed the

distance between the true maximum value and the value at the location
where we predict the maximum value to be. We computed the mean

performance and standard deviation of the mean of each active learning
criterion over 50 runs. The bottom right subfigure superimposes the means.
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Figure 4. The results of the generalised expectation criterion combined
with the ALC variance reduction strategy. For each active learning criteria
we computed a sequence of samples and observations to be added. At each
step we computed the distance between the true maximum value and the

value at the location where we predict the maximum value to be. We
computed the mean performance and standard deviation of the mean of each

active learning criteria over 50 runs. The bottom right subfigure
superimposes the means.

for further evaluation. We only investigated the combination of the
generalised expected improvement criterion with the ALC criterion
as ALC clearly outperformed the random, ALM, and LHD criteria.

The results are shown in Figure 4. For the cake mix case study, the
results of the generalised expected improvement criterion are pretty
bad when compared to the results shown in Figure 3. In all cases
evaluated, the generalised expected improvement criterion is outper-
formed by random sampling. The generalised expected improvement
criterion has originally been developed for deterministic functions
and these results show that the criterion cannot easily be augmented
to be used for the optimisation of functions that are dependent on
both control variables and environmental variables.
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5 Related work

Optimisation of expensive deterministic functions (which may in-
clude noisy observations) using response surfaces is an active field of
research. Recently, further developments of the theory have appeared
(e.g., multi-step lookahead, use of derivative information [21]) as
well as some new domains of application (e.g., robotics [14, 13] and
controllers [7]). Designing better infill criteria is also still an active
topic, e.g., [26, 25, 22, 5].

Less work has been done in the area of optimizing functions de-
pendent on both control and environmental variables. The earliest
ideas can be contributed to Genichi Taguchi in the 1980s who coined
the term robust parameter design, but their inefficiency have often
been criticised [18]. Recently, some progress has been made using
response surfaces applied to integrated objective functions, but re-
stricted to finite measures on the environmental variables [19, 30].
The current paper extends this work to Gaussian measures.

We showed that the well-known generalized expected improve-
ment criterion performed badly on the case study investigated and
that the ALC criterion performed quite well. Nevertheless, there is
room for further improvement. The authors are unaware of active
learning criteria specifically designed for the type of problems con-
sidered in this paper.

6 Conclusions and future work

In this paper we demonstrated a step-by-step approach for optimising
functions that depend on both control and environmental variables.
We described in detail how the problem can be addressed by integrat-
ing Gaussian processes, Bayesian Monte Carlo, and active learning
criteria. Furthermore, we empirically validated several well-known
active learning criteria on a cake mix case study.

An issue for further research is the design of better active learning
criteria as the expected improvement criteria, which is often advo-
cated in this field for deterministic functions, performed quite badly.
For example, we could and probably should take into account the
variance of Ln

max in the generalised expected improvement criterion.
Other issues wanting further investigation is the scalability of the ap-
proach in terms of control and environmental input dimensions as
well as the use of Gaussian mixtures as distributions over environ-
mental variables.
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