
Planning with Concurrency under Resources and Time
Uncertainty

Éric Beaudry and Froduald Kabanza and François Michaud1

Abstract. Planning with actions concurrency under resources and
time uncertainty has been recognized as a challenging and interest-
ing problem. Most current approaches rely on a discrete model to
represent resources and time, which contributes to the combinato-
rial explosion of the search space when dealing with both actions
concurrency and resources and time uncertainty. A recent alternative
approach uses continuous random variables to represent the uncer-
tainty on time, thus avoiding the state-space explosion caused by the
discretization of timestamps. We generalize this approach to consider
uncertainty on both resources and time. Our planner is based on a
forward chaining search in a state-space where the state representa-
tion is characterized by a set of object and numeric state variables.
Object state variables are associated with random variables tracking
the time at which the state variables’ current value has been assigned.
The search algorithm dynamically generates a Bayesian network that
models the dependency between time and numeric random variables.
The planning algorithm queries the Bayesian network to estimate the
probability that the resources (numerical state variables) remain in
a valid state, the probability of success and the expected cost of the
generated plans. Experiments were performed on a transport domain
in which we introduced uncertainty on the duration of actions and on
the fuel consumption of trucks.

1 INTRODUCTION

Planning with actions concurrency under resources and time uncer-
tainty has gained in interest over the last decade. One good illus-
tration of such planning problems is the Mars rovers domain. The
planning of daily activities for the rovers involves uncertainty on re-
sources and time [3]. For instance, since the surface of Mars is par-
tially known and locally uncertain, the duration of a navigation task
and the energy required to fulfill it are probabilistic.

Up to this date, many different approaches have been proposed
for planning with actions concurrency under uncertainty. MDP-based
approaches include CoMDP and CPTP [10]. Contingency and simu-
lation based paradigms include the Generate, Test, and Debug (GTD)
framework [11, 6]. Others include the Factory Policy Gradient plan-
ner [4] and Prottle [9] which is based on a LRTDP algorithm.

Many approaches, including the MDP ones, rely on a discrete
model for representing resources and time. Adopting a discrete
model introduces a blow up of the state-space and the number of
state transitions, which limits the size of planning problems that can
be addressed in practice. For instance, in the search process, an ac-
tion having an uncertain duration produces several successor states
having different timestamps.

1 Université de Sherbrooke, Canada, emails: eric.beaudry@usherbrooke.ca,
kabanza@usherbrooke.ca, francois.michaud@usherbrooke.ca

Simulation-based approaches like GTD generate contingent plans
to address uncertainty. It proceeds as follows: (1) a plan is generated
using a deterministic planner which ignores uncertainty; (2) the gen-
erated plan is simulated to identify potential failure points; and (3) a
conditional branch is added to robustify the plan. These three steps
are repeated a number of times to create a contingent plan. However,
this approach is not optimal because it uses simulation to identify
failure points and employs heuristic methods to decide where condi-
tional branches have to be inserted.

This paper presents another approach for planning with concur-
rency under numeric (resources and time) uncertainty. It generalizes
a previous work which addresses action concurrency and action du-
ration uncertainty [2]. The proposed approach uses a forward chain-
ing search to generate non-conditional plans which are robust to re-
sources and time uncertainty. Random variables are used to model
the current belief of resources and time.

A Bayesian network is used to maintain the dependency relation-
ships between the random variables. It is dynamically generated by
the forward chaining state-space search via the application of actions
to world states. The search process queries the Bayesian network to
estimate the probability that the resources (numerical state variables)
remain in a valid state, the probability of success and the expected
cost of the generated plans.

The remainder of this paper is organised as follows. First, the for-
malism of states and actions is presented. It is followed by the plan-
ning algorithm, experiments and a conclusion.

2 FORMALISM

2.1 State-Variable Representation

A state-variable representation is used to describe state features.
There are two types of state variables: object variables and numeric
variables. An object state variable x ∈ X describes a particular
feature of the world state which has a finite domain Dom(x). For
instance, the current location of a robot can be represented by an ob-
ject variable whose domain is the set of all locations distributed over
a map. A numeric state variable y ∈ Y describes a numeric feature
of the world state. A resource like the current energy level of a robot’s
battery is an example of a state numeric variable. Each numeric vari-
able y has a valid domain of values Dom(y) = [ymin, ymax] where
(ymin, ymax) ∈ R

2. It is assumed that no exogenous events take
place; hence only planned actions cause state changes. A world state
is an assignment of values to the state variables, while action effects
(state updates) are changes of variable values. In this paper, we con-
sider uncertainty on the value of numeric variables, but not on those
of object variables. The set of all state variables is noted Z = X∪Y .

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-217

217

2.2 Numeric and Time Random Variables

The uncertainty on the numeric state variables is modelled by random
variables. A numeric random variable n ∈ N thus models a belief
of a numeric state variable. A numeric random variable is defined
by an equation which specifies its relationship with other random
variables. For instance, let y be a numeric state variable representing
a particular resource. The current belief of y is modelled by the nu-
meric random variable n0. Let the random variable consa,y represent
the amount of resource y consumed by action a. So the execution of
action a changes the current belief of y to a new random variable n1

associated with the equation n1 = n0 − consa,y .
The uncertainty on time is also modelled by random variables. A

time random variable t ∈ T marks the occurrence of an event,
corresponding to either the start or the end of an action. An event
induces a change of the values of a subset of state variables. The time
random variable t0 ∈ T is reserved for the initial time, i.e., the time
associated to all state variables in the initial world state. Each action
a has a duration represented by a random variable da. A time random
variable t ∈ T is defined by an equation specifying the time at which
the associated event occurs. For instance, an action a which starts at
time t0 and ends at time t1 is defined by the equation t1 = t0 + da.

2.3 Formal State Definition

Formally, a state s is defined by s = (U, V, W, P) where:

• U is a total mapping function U : X → ∪x∈XDom(x) which
retrieves the current assigned value for each object variable x ∈ X
such that U(x) ∈ Dom(x).

• V is a total mapping function V : X → T which denotes the time
at which the assignations variables X have become valid.

• W is a total mapping function W : Y → N which denotes the
current belief of numeric variables Y . A belief of a numeric vari-
able is represented by a numeric random variable n ∈ N .

• P a total mapping function P : X → 2T which indicates the set
of time random variables associated to persistence conditions on
state object variables X .

Persistence conditions are used to track over all conditions of ac-
tions. Each time random variable t ∈ P (x) imposes that object state
variable x cannot be changed before time t. Time t ∈ P (x) is also
called the release time of a persistence condition on x. An object state
variable x always has an implicit persistence condition that must hold
until x becomes valid, i.e., V (x) ∈ P (x).

Hence a state is not associated with a fixed timestamp like other
approaches for action concurrency [1]. A state rather describes the
current world state using a set of state features, that is, a set of value
assignations for all state variables Z. Contrary to numeric state vari-
ables, there is no uncertainty about the values being assigned to ob-
ject state variables. The only uncertainty on object state variables is
about when their assigned values become valid. The function V (x)
models this uncertainty by mapping each object state variable to a
corresponding time random variable.

2.4 Actions

The specification of actions follows the extensions introduced in
PDDL 2.1 [7] for expressing temporal planning domains. The set
of all actions is denoted by A. Roughly, an action a ∈ A is a tuple
a=(name, cstart, coverall, estart, eend, enum, da) where

• cstart is the set of at start conditions that must be satisfied at the
beginning of the action;

• coverall is the set of persistence conditions that must be satisfied
over all the duration of the action;

• estart and eend are respectively the sets of effects at start and at
end on the state object variables;

• enum is the set of numeric effects on state numeric variables;
• and da ∈ D is the random variable which models the duration of

the action.

A condition c is a boolean expression over state variables. The
function vars(c) → 2X returns the set of all object state variables
that are referenced by the condition c. An object effect e = (x, exp)
specifies the assignation of the value resulting from the evaluation of
expression exp to the object state variable x. Expressions conds(a)
and effects(a) return respectively all conditions and all effects of
action a.

A numeric effect is either a change ec or an assignation ea. A
numeric change ec = (y, numchangea,y) specifies that the action
changes (increases or decreases) the numeric state variable y by the
belief on the random variable numchangea,y . A numeric assigna-
tion ea = (y, newvara,y) specifies that the numeric state variable y
takes as belief the random variable newvara,y .

The set of action duration random variables is defined by D =
{da|a ∈ A} where A is the set of actions. The function PDFda(u) :
R

+ → R
+ is the probability density function of the duration u of

an action a. We make the assumption that actions have independent
durations.

An action a is applicable in a state s if all the following conditions
are satisfied:

1. s satisfies all at start and over all conditions of a (denoted s |= a)
are satisfied. A condition c ∈ conds(a) is satisfied in state s if c
is satisfied by the current assigned values of state variables of s.

2. All state numeric variable y ∈ Y are in a valid state, i.e., W (y) ∈
[ymin, ymax].

Since the belief of a numeric state variable is probabilistic, the
validity of its value is also probabilistic. Hence the application of an
action may cause a numeric state variable to become invalid. We note
Pb(W (y) ∈ Dom(y)) the probability that a numeric state variable
y is in a valid state when its belief is modelled by a numeric random
variable W (y) ∈ N .

2.5 Example: Transport Domain

Consider the Transport planning domain in which trucks have to
deliver packages to different locations distributed over a map. Let
R = {r1, ..., rn} be a set of n trucks, P = {p1, ..., pm} be a set of
m packages and L = {l1, ..., lk} be a map of k locations. A package
is either at a location or loaded onto a truck. There is no limit on the
number of packages a truck can transport at the same time and on the
number of trucks that can be parked at the same location. The speci-
fication of actions is given in Table 1. The action Goto(r, la, lb) de-
scribes the movement of a truck r from location la to location lb. The
required fuel and the duration of a Goto action are modelled using
normal distributions where both the mean and the standard deviation
are proportional to the distance to be traveled. Load and Unload ac-
tions specify the loading and unloading of a package by a truck. The
duration of these actions is defined by a uniform distribution. The
set of object state variables X = {C[r]|r ∈ R} ∪ {C[p]|p ∈ P}
specifies the current location of trucks and packages. The domain

É. Beaudry et al. / Planning with Concurrency Under Resources and Time Uncertainty218

of object variables is defined as Dom(C[r]) = L (∀r ∈ R) and
Dom(C[p]) = L ∪ R (∀p ∈ P). The set of numeric state variables
Y = {F [r]|r ∈ R} specifies the current fuel level of trucks. A goal
G is a conjunction of n subgoals (pk, lk, dtk) for 0 < k ≤ n where
each subgoal specifies that package pk ∈ P must be delivered to
location lk ∈ L before due time dtk ∈ R

+.

Goto(r, la, lb)
cstart CurrentLocation[r] = la
eend CurrentLocation[r] = lb
duration Normal(dist/speed, 0.2 ∗ dist/speed)
enum Fuel[r]-=Normal(dist/rate, 0.3 ∗ dist/rate)

Load(ri, pj , lk)
cstart CurrentLocation[pj] = lk
coverall CurrentLocation[ri] = lk
eend CurrentLocation[pj] = ri

duration Uniform(30, 60)

Unload(ri, pj , lk)
cstart CurrentLocation[pj] = ri

coverall CurrentLocation[ri] = lk
eend CurrentLocation[pj] = lk
duration Uniform(30, 60)

Refuel(r, l)
coverall CurrentLocation[r] = lk
enum Fuel[r] = Fuelmax[r]
duration Uniform(30, 60)

Table 1. Actions specification of the Transport domain

3 RTU Planner

The Resources and Time Uncertainty (RTU) Planner performs a for-
ward chaining search in a space of states. The state-space explored
at any given point is a graph, with nodes corresponding to states and
transitions representing actions.

In addition to the search graph, the planner generates a Bayesian
network to track the dependency relationships between the random
variables. A Bayesian network is a directed acyclic graph B =
(M, E) where M is a set of random variables and E is a set of edges
representing dependencies between random variables. Dependencies
in the Bayesian network are derived from the equations of the nu-
meric and time random variables, which in turn are obtained from
the application of an action to the current state.

The planning algorithm handles concurrency and delayed effects
differently from a traditional model for concurrency [1]. A delayed
effect for an action takes place at a given point of time after the ex-
ecution of an action. In a traditional implementation, time is asso-
ciated to states in the state-space. There are transitions along which
time freezes to interleave simultaneous actions and transitions up-
dating the timestamp. The search process manages delayed effects
by registering them in an event queue attached to states. A special
advance-time action activates the delayed effects whenever appro-
priate.

In our approach, time is not directly attached to states; it is rather
attached to state features. Therefore there is no need for delayed ef-
fects and for the special advance time action. Time increments are
rather tracked by the time variables attached to state features. A time
variable for a feature is updated by the application of an action only
if the effect of the action changes the feature; the update thus reflects
the delayed effect on the feature.

Algorithm 1 shows the entry point of the planning algorithm. The
planner searches for a plan which, when executed, has a probability
of success higher than a given threshold, and which optimizes a given
metric formula. The choice of an action a at Line 5 is a backtrack
point. A relaxed planning graph-based heuristic [8] is involved to
guide this choice.

Algorithm 1 Plan

1. PLAN(s, G, A)
2. if Pb(s |= G) ≥ threshold
3. π ← ExtractPlan(s)
4. return π
5. nondeterministically choose a ∈ {a ∈ A | a |= s}
6. s′ ← Apply(s, a)
7. return Plan(s′, G, A)

Algorithm 2 Apply Action Function

1. function APPLY(s, a)
2. s′ ← s
3. tconds ← maxx∈vars(conds(a)) s.V (x)
4. trelease ← maxx∈vars(effects(a)) max(s.P (x))
5. tstart ← max(tconds, trelease)
6. tend ← tstart + da

7. for each c ∈ a.coverall
8. for each v ∈ vars(c)
9. s′.P (x) ← s′.P (x) ∪ {tend}

10. for each e ∈ a.estart
11. s′.U(e.x) ← eval(e.exp)
12. s′.V (e.x) ← tstart

13. s′.P (e.x) ← {tstart}
14. for each e ∈ a.eend
15. s′.U(e.x) ← eval(e.exp)
16. s′.V (e.x) ← tend
17. s′.P (e.x) ← {tend}
18. for each e ∈ a.enum
19. s′.W (e.x) ← eval(e.exp)
20. returns s′

The Apply function of Algorithm 2 details how a resulting state s′

is obtained from the application of an action a in a state s. The start
time of an action is defined as the earliest time at which its require-
ments are satisfied in the current state. Line 3 builds the time tconds

which is the earliest time at which all at start and over all condi-
tions are satisfied. This time corresponds to the maximum of all time
random variables associated to the object state variables referenced
in the action’s conditions. Line 4 builds time trelease which is the
earliest time at which all persistence conditions are released on all
object state variables modified by an effect. Then at Line 5, the time
random variable tstart is created. Indeed, its equation corresponds
to the max value of all time random variables collected in Lines 3-
4. Line 6 creates the time random variable tend with the equation
tend = tstart + da. Once created, the time random variables tstart

and tend are added to the Bayesian network if they do not already
exist. Lines 7-9 add a persistence condition which expires at tend

for each object state variable involved in an over all condition. Lines
10-17 process at start and at end effects. For each effect on an object
state variable, they assign this state variable a new value, set the valid
time to tstart and add tend to the set of persistence conditions. Line
18-19 process numeric effects.

3.1 Example

Figure 1 illustrates an example of a partial search carried out by Al-
gorithm 1 on a problem instance of the Transport domain. Expanded

É. Beaudry et al. / Planning with Concurrency Under Resources and Time Uncertainty 219

��������		
��
������		
��
��������		
��
��������
�������

�������	

���
������		
��
��������		
��
��������
�������

��������		
��
���	���	
����	�

��������		
��
��������
���	���	

��������	���	��

���������	��

�������	

���
���	���	
����	�

��������		
��
��������
���	���	

��������	���	��

���������	��

�������	
�������

������	
�����

�������	

���
��������
������

���������������

�������	
������

���	���	
����	����

�������	

���
��������
������

������������

�������	
������

���	����
���
�������		
�
��������
���	����

������������

!�

!�

!

!�

!

!"

!#

(a) State-space

��

��

��

���������	
�������

�

�����������	
���

�����	
�������

��	��������

�������	
���

��	�������

�������	
�������

��	�������

��

�����������	
�������

�����	
������

��	�������

��

���������	
������

�����	
������

��	���������

��

���������	
������

��

����	�����

��

���
��

���� �
 �

��	����$��

��	������ ��

��% �

���

(b) Bayesian network

Figure 1. Sample search with the Transport domain

states are shown in (a). Three object state variables are shown on
each state: C[r1], C[r2] and C[p1] represent respectively the current
location of trucks r1 and r2 and of package p1. Each state has two
numeric state variables, E[r1] and E[r2], representing the fuel level
of each truck. All object state variables of the initial state s0 are as-
sociated with the time random variable t0 which represents the initial
time. Trucks r1 and r2 are initially located at locations l1 and l2 re-
spectively, and each one has 10 units of fuel, which is represented by
the n0 numeric variable. The package p1 is initially loaded on truck
r1. Subfigure (b) shows the generated Bayesian network. Several el-
ements are depicted, including the equations of time and numeric
random variables, and the probability distributions followed by the
action duration random variables and by the numeric change random
variables.

State s1 is obtained by applying the action Goto(r1, l1, l2) to state
s0. The Apply function (see Algorithm 2) works as follows. The
action Goto(r1, l1, l2) has the at start condition C[r1] = l1. Be-
cause C[r1] is associated to t0, we have tconds = max(t0) = t0.
Since the action modifies C[r1] object state variable, Line 4 com-
putes the time trelease = max(t0) = t0. At Line 5, the action’s
start time is thus defined as tstart = max(tconds, trelease) = t0
which already exists. Then at Line 6, the time random variable
tend = t0 + dGoto(r1,l1,l2) is created and added to the Bayesian
network with the label t1. Next, Lines 13-16 apply effects by per-
forming the assignation C[r1] = l2 and by setting time t1 as the
valid time for C[r1]. The numeric effect creates a new numeric ran-
dom variable n1 which is associated to the belief of E[r1] in state
s1.

Applying action Refuel(r2, l2) from state s0 generates the state
s2. Since this action has an over all condition on the state variable
C[r2], a persistence condition is added until t2 (noted within [] in the
figure). The belief of E[r1] is updated to the numeric random vari-
able n2, which increases the fuel capacity to 50. Because the actions
Refuel(r2, l2) and Goto(r1, l1, l2) can be executed simultaneously,
the planner finds two paths to state s3.

Applying action Unload(r1, l2, p1) in state s3 creates state s4.
The start time of this action is max(t0, t1) which could be simplified
to t1 because t0 is an ancestor of t1. The end time is specified by
t3 = t1 + dUnload(r1,l2,p1). Since the action has an over all con-
dition, a persistence condition is added on the state variable C[r1],
which must hold until the end time t3. The action Load(r2, l2, p1)
has two at start conditions: C[r2] = l2 and C[p1] = l2. Since
state variables C[r2] and C[p1] are valid at times t2 and t3 respec-
tively, the action start time is defined by a new time random variable
t4 = max(t2, t3).

3.2 Bayesian Network Inference Algorithm

A Bayesian network inference algorithm is required to estimate the
probability of success and the expected cost of plans. The choice of
an inference algorithm for Bayesian networks is guided by the struc-
ture of the Bayesian network and by the type of random variables
it includes [5]. In our case, the Bayesian network is composed of
continuous random variables. In this case, analytical inference meth-
ods are possible if one can impose some restrictions on the allowed
probability distributions. In particular, normal distributions are often
preferred because they are defined by two parameters (mean μ and

É. Beaudry et al. / Planning with Concurrency Under Resources and Time Uncertainty220

standard deviation σ), which makes the manipulation of such distri-
butions possible with analytical approaches.

In our approach, the numeric random variables (N) and time ran-
dom variables (T) cannot be constrained to follow normal distribu-
tions since their equations may contain several instances of the max-
imum operator. Even if two random variables a and b were normally
distributed, the resulting random variable would not follow a normal
distribution in our approach because of the manipulations involved
in the generation of the variables’ equations.

Our approach rather leads to arbitrary forms of probabilistic dis-
tributions. Because there exists no exact and analytic method for
Bayesian networks having arbitrary types of distribution, approxi-
mate inference algorithms have to be used. For this reason, we use
a direct sampling algorithm for the Bayesian network inferences [5].
Let B be a Bayesian network defined as B = (M, E) where M
is a finite set of random variables and E is a finite set of depen-
dencies. The direct sampling algorithm starts by finding a topolog-
ical sort order M ′ = (v1, v2, . . . , vn) of M where n = ‖M‖ and
vj /∈ ancestors(vi),∀i, j | i < j ≤ n. Then it generates a sample
for each random variable using M ′. For random variables having no
parent, the algorithm generates a random sample using their proba-
bility distribution. For the other random variables, it generates a sam-
ple according to the parents’ generated samples. The estimation of
the belief of random variables is done by repeating this procedure m
times and by computing the average of all samples for each random
variable. The number of samples m is set empirically. The estimation
error is inversely proportional to the square root of m.

3.2.1 Incremental Belief Evaluation

The Bayesian network is constructed dynamically during the search
process. Algorithm 2 is responsible for repeatedly extending the net-
work. Once a new numeric random variable or a new time random
variable is created (see tstart and tend in the algorithm), it is added
to the Bayesian network and its belief is immediately estimated. The
belief on random variables is required by the heuristic function to
guide the planning search, and to estimate the probability that a plan
satisfies time constraints.

Because the Bayesian network is generated dynamically, we want
to avoid evaluating the whole Bayesian network each time a new ran-
dom variable is added. In the worst case, adopting this strategy would
indeed require n(n − 1)/2 evaluations for a network of n nodes. To
reduce computation time, the generated samples are kept in mem-
ory, more precisely in arrays corresponding to each random variable.
The ith sample of all random variables correspond to a simulation of
the whole Bayesian network. When adding a new random variable,
new samples are generated by considering the samples of the par-
ent variables. Thus the computation cost of incremental evaluation
of a Bayesian network is equivalent to one evaluation of the entire
network.

For small networks, keeping all samples in memory may not be
a problem. However, it is impossible to do so when dealing with
larger networks. Therefore, we rather adopt a caching mechanism
that keeps the generated samples of the most recently accessed ran-
dom variables. This strategy offers a good trade-off between effi-
ciency and memory requirement.

4 EMPIRICAL RESULTS

We experimented our algorithm on a planning domain inspired by
the International Planning Competition (IPC). Since the previous edi-

tions of the uncertainty track did not consider both concurrency and
uncertainty on resources and time, we created our own set of prob-
lems. The Transport domain we use introduces uncertainty on the
consumption of resources and on the duration of actions. The defini-
tion of actions is presented in Table 1.

A direct comparison with other approaches like CPTP [10] and
GTD [11] was not possible because these planners were not available
at writing time. To give an idea of the cost of the required overhead
for addressing uncertainty, we compared two versions of our planner:
the first one considers uncertainty (RTU Planner) and the second one
ignores it (Deterministic Planner). The RTU Planner generates plans
which have a probability of success grater than or equal to 0.9. The
Deterministic Planner ignores uncertainty by using the mean of the
probabilistic distribution of the durations and the resource usage.

Table 2 reports the empirical results obtained on randomly gen-
erated problems. The first and second columns show the size of the
problems, expressed in terms of the number of trucks and packages.
Columns under RTU Planner detail the number of states generated,
the number of random variables added to the Bayesian network, the
number of evaluations of random variables, the CPU time (in sec-
onds), the expected plan cost and the absolute error (ε) on the ex-
pected plan cost. The cost of plans is computed as a linear combina-
tion of the plan’s makespan and the total amount of fuel consumed.
The expected cost of plans is estimated by the Bayesian network and
its error (ε) is given with a confidence level of 0.95. To estimate the
belief of a random variable within the Bayesian network, 5000 sam-
ples has been generated. We keep arrays of samples in memory for at
most 10000 random variables. A few problems were not successfully
solved (marked by –) because the allocated time limit (10 minutes)
was reached. The experiments were made on an Intel Core 2 Quad
2.4 GHz computer with 2 GB of RAM. Columns under Determinis-
tic Planner give the number of states, the cost of the generated plan,
and the CPU time (in seconds). These experiments validate our hy-
pothesis that the overhead of managing random variables is largely
compensated by the state-space reduction incurred. Indeed, we avoid
the state-space blow up caused by having different timestamps for
each duration unit.

4.1 Impact of the number of samples

The necessary use of an inference algorithm to evaluate random vari-
ables in the Bayesian network imposes a computational overhead.
Direct sampling algorithms have a O(nm) runtime where n is the
number of random variables and m is the number of samples. A
higher number of generated samples produces a lower estimation
error on the belief of random variables. Figure 2 presents the plan-
ning time and the estimation error of the plans’ cost with respect to
the number of samples, for a problem with 2 trucks and 3 packages.
The planning time grows linearly with the number of samples while
the estimation error is inversely proportional to the square root of
the number of samples. For this problem, 5000 samples represents a
good trade-off between planning speed and the estimation error.

5 CONCLUSION

We presented a new planning approach that extends the forward
chaining search for dealing with action concurrency under resources
and time uncertainty. Rather than representing resources and time
with discrete numeric values, continuous random variables are used.
Each object state variable is associated to a continuous time random
variable representing the time at which the state feature has been

É. Beaudry et al. / Planning with Concurrency Under Resources and Time Uncertainty 221

Problem Instance Resources and Time Uncertainty (RTU) Planner Deterministic Planner
Trucks Packages States RV CPU (s) Cost ε States CPU (s) Cost

1 2 94 179 0.088 1631.6 3.6 61 0.031 1631.7
1 3 1560 2065 1.08 1751.5 3.5 680 0.401 1746.7
1 4 6588 7330 4.17 2147.4 3.9 899 0.129 2137.7
2 2 50 98 0.036 1032.4 3.6 50 0.001 1029.6
2 3 24147 4343 6.87 1079.7 3.7 12660 1.285 1074.6
2 4 15829 6864 4.62 1470.2 3.3 9484 0.442 1465.6
2 5 8479 7111 3.55 2068.0 4.8 5728 0.173 2061.9
3 3 142 224 0.091 962.8 3.4 142 0.004 964.4
3 4 584349 31486 600 – – 429009 80.7 1334.0
3 5 124435 13305 27.56 1478.7 3.5 77128 5.105 1472.0
3 6 200087 23570 54.05 1755.4 4.7 94942 6.162 1749.7
3 7 71332 15301 18.56 1755.1 4.7 40250 2.266 1750.0
4 3 143 208 0.086 721.8 2.2 143 0.003 716.9
4 4 273 337 0.141 984.2 3.4 273 0.006 982.2
4 5 524831 28025 600 – – 739248 600 –
4 6 243664 23018 63.6 1667.0 4.8 128836 9.511 1666.6
4 7 450474 29740 600 – – 683742 600 –

Table 2. Empirical results for Transport domain

 0

 1

 2

 3

 4

 5

 0 5000 10000 15000 20000
 0

 4

 8

 12

 16

 20

P
la

n
n
in

g
 T

im
e
 (

s
)

E
x
p
e
c
te

d
 C

o
s
t
E

s
ti
m

a
ti
o
n
 E

rr
o
r

Number of samples

Planning Time (s)
Error within 95% confidence interval

Figure 2. Impact of number of samples

assigned a value. Additionally, each numeric state variable (e.g., a
resource) is associated to a numeric random variable representing its
current belief. Random variables are organized into a Bayesian net-
work. A direct sampling algorithm is used to estimate the probability
of success and the expected quality of plans. Empirical experiments
on probabilistic versions of the Transport and Rovers domains show
that our planner is able to deal efficiently with actions concurrency
under resources and time uncertainty.

As future work, we plan to introduce contingency in our approach.
Conditional branches will be added to improve the quality of plans.
Each branch will be associated to a test condition comparing the ob-
served time to a determined time. The challenge is to find where to
insert conditional branches and which predetermined time to use. We
will analyze the probability distribution of the numeric and time ran-
dom variables associated with states reaching the goal, but only those
with a probability of success under a specific threshold. This could
give valuable insight on how much a contingency branch could im-
prove the plan’s quality.

ACKNOWLEDGEMENTS

This work was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the Fonds québécois de
la recherche sur la nature et les technologies (FQNRT). We would
like to thank the referees for their comments, which helped improve
this paper.

REFERENCES

[1] F. Bacchus and M. Ady, ‘Planning with resources and concurrency: a
forward chaining approach’, in Proc. of International Joint Conference
on Artificial Intelligence, pp. 417–424, (2001).

[2] E. Beaudry, F. Kabanza, and F. Michaud, ‘Planning for concurrent ac-
tion executions under action duration uncertainty using dynamically
generated bayesian networks’, in Proc. of International Conference on
Automated Planning and Scheduling, (2010).

[3] J. Bresina, R. Dearden, N. Meuleau, D. Smith, and R. Washington,
‘Planning under continuous time and resource uncertainty: A challenge
for AI’, in Proc. of 19th Conference on Uncertainty in AI, pp. 77–84,
(2002).

[4] O. Buffet and D. Aberdeen, ‘The factored policy-gradient planner’, Ar-
tificial Intelligence, 173(5-6), 722–747, (2009).

[5] A. Darwiche, Modeling and Reasoning with Bayesian Networks, Cam-
bridge University Press, April 2009.

[6] R. Dearden, N. Meuleau, S. Ramakrishnan, D. Smith, and R. Washing-
ton, ‘Incremental contingency planning’, in Proc. of ICAPS Workshop
on Planning under Uncertainty, (2003).

[7] M. Fox and D. Long, ‘PDDL 2.1: An extension to PDDL for express-
ing temporal planning domains’, Journal of Artificial Intelligence Re-
search, 20, 61–124, (2003).

[8] J. Hoffmann and B. Nebel, ‘The FF planning system: Fast plan gen-
eration through heuristic search’, Journal of Artificial Intelligence Re-
search, 14, 253–302, (2001).

[9] I. Little, D. Aberdeen, and S. Thiébaux, ‘Prottle: A probabilistic tempo-
ral planner’, in Proc. of National Conference on Artificial Intelligence,
(2005).

[10] Mausam and Daniel S. Weld, ‘Concurrent probabilistic temporal plan-
ning’, Journal of Artificial Intelligence Research, 31, 33–82, (2008).

[11] H. Younes and R. Simmons, ‘Policy generation for continuous-time
stochastic domains with concurrency’, in Proc. of International Con-
ference on Automated Planning and Scheduling, (2004).

É. Beaudry et al. / Planning with Concurrency Under Resources and Time Uncertainty222

