
Extending Clause Learning DPLL with Parity Reasoning

Tero Laitinen 1 and Tommi Junttila 1 and Ilkka Niemelä 1

Abstract. We consider a combined satisfiability problem where an
instance is given in two parts: a set of traditional clauses extended
with a set of parity (xor) constraints. To solve such problems without
translation to CNF, we develop a parity constraint reasoning method
that can be integrated to a clause learning solver. The idea is to devise
a module that offers a decision procedure and implied literal detec-
tion for parity constraints and also provides clausal explanations for
implied literals and conflicts. We have implemented the method and
integrated it to a state-of-the-art clause learning solver. The resulting
system is experimentally evaluated and compared to state-of-the-art
solvers.

1 Introduction

Solver technology for propositional satisfiability (SAT) has devel-
oped rapidly over the last decade and in many application areas such
as hardware model checking, planning, software verification, combi-
natorial designs, and automated test pattern generation SAT solvers
provide a state-of-the-art solution technique [4]. In this approach a
problem instance is solved by encoding it as a propositional formula
such that the models of the formula correspond to the solutions of
the problem instance. Then a SAT solver can be used as an efficient
search engine to find solutions to the problem instance. The most ef-
ficient SAT solvers require their input to be in conjunctive normal
form (CNF). However, in many application areas such as circuit ver-
ification, bounded model checking, and logical cryptanalysis a sub-
stantial part of the encoding are parity (xor) constraints [3].

In the basic SAT approach such xor-clauses are translated to CNF,
i.e., as traditional or-clauses, for the solver but this leads to a less
compact encoding where the structure of xor-clauses is lost. For ex-
ample, if the encoding consists of xor-clauses only, such an instance
can be solved in polynomial time using Gaussian elimination. How-
ever, if such an instance is translated to CNF, even state-of-the-art
clausal SAT solvers can scale very poorly [9].

In this paper the goal is to develop an extended SAT solver that
can work with two kinds of clauses: or-clauses and xor-clauses. The
aim is to take advantage of the state-of-the-art clausal solver tech-
nology based on conflict-driven clause learning [13] and to be able
to exploit the structure and special properties of xor-clauses. We em-
ploy a framework similar to the DPLL(T) approach to Satisfiabil-
ity Modulo Theories (SMT) (see e.g. [6, 1, 8, 14, 2]), where xor-
clauses are handled by a xor-reasoning module. As the formal basis
for the module we devise a powerful yet efficiently implementable
proof system that captures unit propagation and equivalence reason-
ing for xor-clauses and introduce a method for computing explana-

1 Aalto University, Department of Information and Computer
Science, P.O. Box 15400, FI-00076 Aalto, Finland. email:
{Tero.Laitinen,Tommi.Junttila,Ilkka.Niemela}@tkk.fi. The financial
support of the Academy of Finland (project 122399) is gratefully
acknowledged.

tions for literals derivable in the proof system. Using these results
we develop a xor-reasoning module which offers implied literal de-
tection and clausal explanations for enabling conflict-driven clause
learning techniques to be extended to xor-clauses. For integrating the
module into state-of-the-art clausal SAT solver technology we devise
a variant of the DPLL(T) framework that also handles the fact that in
our setting the or-clauses and the xor-clauses (the ”theory part”) can
have shared variables.

Related work. There is a considerable amount of previous work
on extending clausal solvers with xor (equivalence) reasoning tech-
niques. Baumgartner and Massacci [3] develop a decision method
for SAT problems where or-clauses and xor-clauses can be com-
bined. Their work is based on the standard DPLL procedure without
conflict-driven learning. EqSatz [12] recognizes binary and ternary
equivalences in a CNF formula and performs substitutions using a
set of inference rules. The equivalence reasoning is tightly integrated
in the solver and is performed after unit propagation. The solver
march eq [10] extracts equivalences from a CNF formula and uses
them in pre-processing as well as during the search. However, nei-
ther of these approaches support conflict-driven clause learning. The
solver MoRsat [5] extracts equivalences from CNF, too. Such con-
straints are stored as normal clauses and efficient unit propagation
is supported with special watched literal techniques. CryptoMini-
Sat [16] accepts a mixture of or-clauses and xor-clauses as its input.
It has special data structures for xor-clauses and performs Gaussian
elimination after a specified number of literals have been assigned
and no other propagation rules can be fired. The solver lsat [15]
performs preprocessing that reconstructs structural information (in-
cluding equivalences) from the CNF formula which is exploited dur-
ing the search. The inference rules of our proof system are similar
to those in [3] and also include a substitution rule for binary xor-
clauses as in EqSatz [12]. The main difference in our approach is
the combination of equivalence reasoning and conflict-driven clause
learning through the use of “lazy” DPLL(T) style integration of the
xor-reasoning module to a SAT solver.

2 Preliminaries

We first define some basic notation needed in the rest of the paper.
An atom is either a propositional variable or the special symbol

� which denotes the constant “true”. A literal is an atom A or its
negation ¬A; we identify ¬� with ⊥ and ¬¬A with A. A traditional,
non-exclusive or-clause is a disjunction l1 ∨ · · · ∨ ln of literals. A
xor-clause is an expression of form l1 ⊕ · · · ⊕ ln, where l1, . . . , ln
are literals and the symbol ⊕ stands for the exclusive logical or. A
clause is either an or-clause or a xor-clause.

A truth assignment π is a set of literals such that � ∈ π and
∀l ∈ π : ¬l /∈ π. We define the “satisfies” relation |= between

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-21

21

a truth assignment π and logical constructs as follows: (i) if l is a
literal, then π |= l iff l ∈ π, (ii) if C = (l1 ∨ · · · ∨ ln) is an or-
clause, then π |= C iff π |= li for some li ∈ {l1, . . . , ln}, and (iii) if
C = (l1 ⊕ · · · ⊕ ln) is a xor-clause, then π |= C iff π is total for C
(i.e. ∀1 ≤ i ≤ n : li ∈ π ∨ ¬li ∈ π) and π |= li for an odd number
of literals of C. Note that literal duplication in xor-clauses makes a
difference, e.g. {x,¬y} satisfies x ⊕ y but not x ⊕ y ⊕ x. However,
the order of the literals is insignificant and thus, e.g., (x⊕y⊕x) and
(x ⊕ x ⊕ y) are considered to be the same xor-clause. Furthermore,
observe that no truth assignment satisfies the empty or-clause () or
the empty xor-clause (), i.e. these clauses are synonyms for ⊥.

A cnf-xor formula φ is a conjunction of clauses, expressible as a
conjunction

φ = φor ∧ φxor, (1)

where φor is a conjunction of or-clauses and φxor is a conjunction of
xor-clauses. A truth assignment π satisfies φ, denoted by π |= φ, if
it satisfies each clause in it; φ is called satisfiable if there exists such
a truth assignment satisfying it, and unsatisfiable otherwise. The cnf-
xor satisfiability problem studied in this paper is to decide whether
a given cnf-xor formula has a satisfying truth assignment. As usual,
a set of clauses {C1, ..., Cn} is interpreted as the formula

Vn
i=1 Ci.

A formula φ′ is a logical consequence of a formula φ, denoted by
φ |= φ′, if π |= φ implies π |= φ′ for all truth assignments π.
Let A be an atom different from � and C, D be xor-clauses. We use
C [A/D] to denote the xor-clause that is identical to C except that
all occurrences of A in C are substituted with D once. For instance,
(x1 ⊕ x1 ⊕ x2) [x1/(x1 ⊕ x3)] = x1 ⊕ x3 ⊕ x1 ⊕ x3 ⊕ x2.

Normal form for xor-clauses. In the rest of the paper, we implic-
itly assume that each xor-clause is given in a normal form such that
(i) each atom occurs at most once in it, and (ii) all the literals in it are
positive i.e. the negation does not appear. Especially, a xor-clause re-
sulting from a substitution C [A/X] is implicitly transformed to the
normal form. Given any xor-clause, its unique normal form can be
obtained by applying the following rewrite rules (where C is a possi-
bly empty xor-clause and A is an atom) in any order until saturation
is reached: (i) ¬A ⊕ C � A ⊕�⊕ C, and (ii) A ⊕ A ⊕ C � C.
These rules are similar to those given in [3]. For instance, the normal
form of ¬x1 ⊕ x2 ⊕ x3 ⊕ x3 is x1 ⊕ x2 ⊕�, while the normal form
of x1 ⊕ x1 is the empty xor-clause (). We say that a xor-clause is
unary if it is either of form x or x ⊕ � for some variable x; we will
identify x ⊕� with the literal ¬x.

3 DPLL(XOR)

Recall that our goal is to solve cnf-xor formulas of form φ =
φor ∧ φxor. In this paper we take an approach similar to the so-
called “lazy”, or DPLL(T), approach to Satisfiability Modulo The-
ories (SMT) (see e.g. [6, 1, 8, 14, 2]). In a nutshell, the basic idea
is that we use a state-of-the-art, conflict-driven and clause learning
(CDCL) SAT solver (see e.g. [13]) for finding satisfying truth as-
signments for the or-part φor and interface it with a xor-reasoning
module that validates whether the (partial or total) truth assignment
under consideration is consistent with the constraints in the xor-part
φxor. The simplified schema for the approach is shown in Fig. 1; the
standard SAT solver part (lines 2–4 and 13–19) iteratively builds a
truth assignment π by selecting an unassigned variable, unit prop-
agating its effects and performing conflict analysis when an incon-
sistency is found. The xor-module is interfaced at lines 1 and 6–12;
its methods and functionalities discussed below are similar to those
provided by “theory solvers” in the DPLL(T) approach for SMT:

1. initialize xor-module M with φxor
2. π = 〈〉 /*the truth assignment*/
3. while true:
4. (π′, confl) = UNITPROP(φor, π) /*standard unit propagation*/
5. if not confl : /*apply xor-reasoning*/
6. for each literal l in π′ but not in π: M .ASSIGN(l)
7. (l̂1, ..., l̂k) = M.DEDUCE()
8. for i = 1 to k:
9. let C = M.EXPLAIN(l̂i)

10. if l̂i = () or ¬l̂i ∈ π′: confl = C, break
11. else if l̂i /∈ π: add lC to π′

12. if k > 0 and not confl : continue /*unit propagate further*/
13. let π = π′

14. if confl : /*standard Boolean conflict analysis*/
15. analyze conflict, learn a conflict clause
16. backjump or return UNSAT if not possible
17. else:
18. add a heuristically selected unassigned literal in φor to π
19. or return SAT if no such variable exists

Figure 1. The essential skeleton of DPLL(XOR)

1. When initialized (at line 1 in Fig. 1), the module receives the xor-
part φxor of the formula φ. The clauses in φxor are from now on
called the original xor-clauses.

2. The SAT solver communicates the (possibly partial) truth assign-
ment it has built for φor to the module by calling its ASSIGN

method for each literal in the assignment (line 6). These literals
are called the xor-assumptions.

3. The core functionality of the module is the deduction and consis-
tency checking method DEDUCE (at line 7). If the xor-assumptions
(i.e. unary xor-clauses) l1, ..., lk have been communicated to the
module earlier, the method performs deduction on the augmented
xor-formula

φxor ∧ l1 ∧ ... ∧ lk.

As the result, the method returns a list l′1, ..., l
′
m of xor-implied

literals that are logical consequences of φxor ∧ l1 ∧ ... ∧ lk. Thus,
the SAT solver can extend its current partial truth assignment
with these literals (at line 11). Observe especially that if a xor-
implied literal li is the false literal ⊥, i.e. the empty clause (),
then φxor ∧ l1 ∧ ...∧ lk is unsatisfiable and thus the current partial
truth assignment built in the SAT solver cannot be extended to an
assignment satisfying φor ∧ φxor.

4. Upon deriving a conflict, the SAT solver analyzes the partial truth
assignment π to find out which literals in it are responsible for
the conflict (at lines 14–15). For this purpose π is actually ordered
and the literals in it (except for the decision literals added in line
18) are annotated literals of form lC , where C is an or-clause of
form (l1 ∨ ... ∨ lk ∨ l) such that (i) C is a logical consequence of
φor ∧φxor, and (ii) l is implied by C in π, meaning that the literals
¬l1, ...,¬lk must appear before l in π. To build such an annota-
tion for a xor-implied literal l returned by DEDUCE, the EXPLAIN

method (called at line 9) returns an or-clause C = (l1∨ ...∨ lk∨ l)
such that (i) C is a logical consequence of φxor, and (ii) the liter-
als ¬l1, ...,¬lk have either been assigned to the xor-module (and
are therefore in π′) or have been returned as xor-implied literals
before (and are thus in π′ when l is inserted at line 11). Such or-
clauses are called xor-explanations.
Observe that the conflict analysis at line 15 builds a new or-clause

T. Laitinen et al. / Extending Clause Learning DPLL with Parity Reasoning22

⊕-Unit+:
A C

C [A/�]
⊕-Unit−:

A ⊕� C

C [A/⊥]

⊕-Eqv+:
A1 ⊕ A2 ⊕� C

C [A1/A2]
⊕-Eqv−:

A1 ⊕ A2 C

C [A1/(A2 ⊕�)]

Figure 2. Inference rules of the proof system

that is a logical consequence of φor ∧ φxor. This clause is usu-
ally learnt, i.e. augmented to the formula φor, as it is built in a
way that prevents similar conflicts from arising again. As the xor-
explanations found at line 9 are logical consequences of φ as well,
they could also be learnt in the same way. We will return to this
issue in Sect. 3.3.

5. For the purpose of backtracking, the xor-module also imple-
ments the following methods: (i) ADD-BACKJUMP-POINT, which
records the state of the module (including the sequence of xor-
assumptions given so far) and returns an associated backjump
point, and (ii) BACKJUMP, which restores the state associated with
a previously added backjump point (this includes discarding the
xor-assumptions communicated after setting the backjump point).

In the rest of the section, we first describe the proof system used as
the deduction engine in the xor-module, and then how explanations
are computed for xor-implied literals. We also introduce and analyze
different ways to handle the case when not all variables in the xor-
part appear in the or-part handled by the CDCL SAT solver.

3.1 The Proof System

When the DEDUCE method of the xor-module is invoked, it applies
the following proof system to the conjunction ψ = φxor∧l1∧...∧lk of
the original xor-clauses φxor and the xor-assumptions l1, ..., lk. The
proof system produces new xor-clauses that are logical consequences
of ψ. Thus, the unary xor-clauses produced are xor-implied literals
and the deduction of the empty clause signals that ψ is unsatisfiable.

The inference rules of the proof system are listed in Fig. 2, where
A, A1 and A2 are atoms different from � and C is a xor-clause. For
instance, if we have the xor-clauses x1 ⊕ x2 and x1 ⊕ x2 ⊕ x3 ⊕�,
then the ⊕-Eqv− rule allows us to derive x2 ⊕ � ⊕ x2 ⊕ x3 ⊕ �,
i.e., x3 in the normal form. First, notice that the rules are sound in

the following sense: if R :
X Y

Z
is an instance of one of the

rules, then the consequent Z is a logical consequence of the premises
X and Y , i.e. {X, Y } |= Z. Observe that these rules are basically
the “⊕-Unit” and “⊕-Eqv” rules appearing in [3]. Thus, our proof
system is a subset of the one in [3]; in particular, we do not apply the
Gaussian elimination rule of [3] as our goal is to have a lightweight
system that is easier to implement efficiently.

Let ψ be any set of xor-clauses, e.g. the conjunction φxor ∧ l1 ∧
...∧ lk of original xor-clauses and xor-assumptions discussed earlier.
A xor-derivation on ψ is a vertex-labeled directed acyclic graph G =
〈V, E, L〉 such that the vertex set V is finite, the labeling function L
assigns each vertex v ∈ V a xor-clause L(v) and the following hold
for each vertex v ∈ V :

1. v has no incoming edges (i.e. v is an input vertex) and is labeled
with a xor-clause L(v) ∈ ψ, or

2. v has exactly two incoming edges, originating from some ver-
tices v1 and v2, and the xor-clause L(v) has been derived from

cut 1 cut 2 cut 3

x1 ⊕ x2 ⊕ x3 x1 ⊕ x2 ⊕ x4 ⊕ x5 x3 ⊕ x4 ⊕ x5

x1

x2 ⊕ x4 ⊕ x5 ⊕�

x2

x3 ⊕ x4 ⊕ x5 ⊕�

x2 ⊕ x3 ⊕�

x3

x4 ⊕ x5 x4 ⊕ x5 ⊕�

()

Figure 3. A xor-refutation.

L(v1) and L(v2) by using one of the inference rules. That is,

R :
L(v1) L(v2)

L(v)
must be an instance of an inference rule R

appearing in Fig. 2.

We say that a xor-clause C is derivable from ψ in the proof system,
denoted by ψ � C, if there exists a xor-derivation on ψ that contains
a vertex labeled with C. As a direct consequence of the definition of
xor-derivations and the soundness of the inference rules, it holds that
if a xor-derivation on ψ contains a vertex labeled with the xor-clause
C, then C is a logical consequence of ψ.

Lemma 1. ψ � C implies ψ |= C.

A xor-derivation on ψ is a xor-refutation of ψ if it contains a vertex
labeled with the empty clause (); in this case, ψ is unsatisfiable.

Example 1. Figure 3 shows a xor-refutation of ψ =
{(x1 ⊕ x2 ⊕ x3), (x1 ⊕ x2 ⊕ x4 ⊕ x5), (x3 ⊕ x4 ⊕ x5), x1, x2}.
(Ignore the dotted lines for now). In the figure, the label-
ing clause of each vertex is drawn inside it. Recall that all
clauses are implicitly transformed into the normal form; for
instance, at the last step we apply the ⊕-Eqv− rule to derive
(x4 ⊕ x5 ⊕�) [x4/x5 ⊕�] = x5 ⊕�⊕ x5 ⊕� = ().

Note that the proof system is not refutationally complete, meaning
that there are unsatisfiable clause sets for which there are no xor-
refutations in the proof system. As a simple example, consider the
clause set {(x1 ⊕ x2 ⊕ x3), (x1 ⊕ x2 ⊕ x3 ⊕�)} which is unsatis-
fiable but the largest xor-derivation on it consists only of two vertices
labeled with the clauses in the set. Thus, the proof system is not com-
plete, meaning that ψ |= C does not necessarily imply ψ � C. How-
ever, the proof system is eventually refutationally complete in the
following sense: if the set ψ of xor-clauses contains a unary clause
(x) or (x ⊕ �) for each variable x occurring in ψ, then the empty
clause is derivable if and only if ψ is unsatisfiable. In the context of
our DPLL(XOR) approach this means that if the SAT solver has pro-
vided a xor-assumption li for each variable occurring in φxor, then
the xor-module is indeed able to decide whether φxor ∧ l1 ∧ ... ∧ ln
is satisfiable or not.

If we compare the deduction capabilities of our proof system
on a set of xor-clauses to the those of the standard unit propaga-
tion on the corresponding or-clause formula, we observe that (i) the

T. Laitinen et al. / Extending Clause Learning DPLL with Parity Reasoning 23

⊕-Unit+ and ⊕-Unit− rules simulate unit propagation while (ii) the
⊕-Eqv+ and ⊕-Eqv− rules allow the proof system to deduce con-
sequences that the unit propagation cannot. As an example, given
the set {(x ⊕ y ⊕�), (x ⊕ a ⊕ b), (y ⊕ b ⊕ c), (a)} of xor-clauses,
the proof system can derive the unit clause (c) but the standard unit
propagation rule cannot deduce (c) on the corresponding or-clause
formula (¬x ∨ y) ∧ (x ∨ ¬y) ∧ (x ∨ a ∨ b) ∧ (¬x ∨ ¬a ∨ b) ∧
(¬x ∨ a ∨ ¬b) ∧ (x ∨ ¬a ∨ ¬b) ∧ (y ∨ b ∨ c) ∧ (¬y ∨ ¬b ∨ c) ∧
(¬y ∨ b ∨ ¬c) ∧ (y ∨ ¬b ∨ ¬c) ∧ (a).

Incrementality. Recall that in our DPLL(XOR) approach the
xor-module has a constant set of original xor-clauses φxor and a
dynamically increasing or decreasing sequence of xor-assumptions
l1 ∧ ... ∧ lk. Now observe that xor-derivations are monotonic in the
following sense: if G = 〈V, E, L〉 is a xor-derivation on ψ, then
G = 〈V, E, L〉 is a xor-derivation on ψ ∧ C for any xor-clause C.
Therefore, if the xor-module has already built a xor-derivation for
φxor ∧ l1 ∧ ... ∧ lk and receives a new xor-assumption lk+1 from
the SAT solver, it can extend the derivation by adding a vertex la-
beled with lk+1 and continue applying appropriate inference rules.
Similarly, when xor-assumptions are retracted with the BACKJUMP

method, the module can simply remove the vertices introduced since
the corresponding ADD-BACKJUMP-POINT method call.

3.2 Computing Explanations

We now describe how explanations for xor-implied literals are com-
puted from xor-derivations.

Assume a fixed xor-derivation G = 〈V, E, L〉 on a set ψ of xor-
clauses. As usual, we say that a vertex v′ ∈ V is a descendant of a
vertex v ∈ V if 〈v, v′〉 is in the transitive closure of the edge relation
E; in such a case, v is an ancestor of v′. A cut of G is a partitioning
W = 〈Va, Vb〉 of V , i.e. V = Va ∪ Vb and Va ∩ Vb = ∅, such that all
the input vertices of G belong to Va. The set Va is called the premise
part of the cut while Vb is the consequent part. Given a non-input
vertex v ∈ V , a cut for v is a cut 〈Va, Vb〉 of G such that v ∈ Vb.
If W = 〈Va, Vb〉 is a cut of G, then the reason set of the cut is the
set of those vertices in Va that have an edge to Vb, i.e. reason(W) =
{v ∈ Va | ∃v′ ∈ Vb : 〈v, v′〉 ∈ E}. Now the conjunction of the xor-
clauses in the reason set vertices imply the ones labeling the vertices
in Vb:

Lemma 2. If W = 〈Va, Vb〉 is a cut for a non-input vertex v, then
(
V

v′∈reason(W) L(v′)) |= L(v).

Proof. Consider the set of vertices V ′ = reason(W) ∪
{t ∈ V | t is a descendant of a vertex in reason(W)}. Now G′ =
〈V ′, E ∩ V ′ × V ′, L|V ′〉, where L|V ′ is the restriction of L to V ′, is
a xor-derivation on {L(u) | u ∈ reason(W)} and includes the ver-
tex v. Thus, {L(u) | u ∈ reason(W)} � L(v) and, by Lemma 1,
{L(u) | u ∈ reason(W)} |= L(v).

Example 2. Consider again the xor-derivation in Fig. 3
and the cut “cut 2”. The corresponding reason set con-
sists of the vertices labeled with the xor-clauses in ψ =
{(x1 ⊕ x2 ⊕ x3), (x1 ⊕ x2 ⊕ x4 ⊕ x5), (x3 ⊕ x4 ⊕ x5), x3, x1}.
As the vertex labeled with the empty clause is in the consequent part
of the cut, ψ |= () i.e. ψ is unsatisfiable.

CNF-compatible cuts. In the context of our DPLL(XOR) ap-
proach, of particular interest are the cuts where the reason set con-
sists only of vertices labeled with original or unary xor-clauses. That

is, assume that G = 〈V, E, L〉 is a xor-derivation on φxor ∧ l1 ∧
... ∧ lk, where φxor is the set of original xor-clauses and li are xor-
assumptions. In this setting, we say that a cut W = 〈Va, Vb〉 is
cnf-compatible if for each vertex w in the corresponding reason set
reason(W) it holds that either

1. w is an input vertex (in which case L(w) is an original xor-clause
in φxor or an unary xor-assumption clause), or

2. L(w) is a unary xor-clause.

Now suppose that a vertex v labeled with a unary xor-clause L(v)
belongs the consequent part of a cnf-compatible cut W = 〈Va, Vb〉.
Let A = {L(v′) | v′ ∈ reason(W) ∧ L(v′) ∈ φxor} and B =
{L(v′) | v′ ∈ reason(W) ∧ L(v′) /∈ φxor} be the set of xor-clauses
labeling the reason set vertices partitioned into those occurring in φxor

(the set A) and the others (the set B). As W is cnf-compatible, the
set B = {b1, ..., bm} consists only of unary clauses. By Lemma 2
we have that A ∧ B |= L(v), implying that A |= (¬b1 ∨ ...∨¬bm ∨
L(v)) and, by the fact A ⊆ φxor, that φxor |= (¬b1∨...∨¬bm∨L(v)).
Therefore, cnf-compatible cuts for vertices labeled with unary xor-
clauses allow us to derive or-clauses that capture parts of derivations
allowed in our proof system. Observe that for any non-input vertex v,
there is a unique cnf-compatible cut W = 〈Va, Vb〉 for v that is min-
imal with respect to the size of the consequent part Vb; this is the cut
where Vb is the smallest set U satisfying (i) v ∈ U and (ii) if v′ ∈ U ,
v′′ ∈ V , 〈v′′, v′〉 ∈ E, v′′ is not an input vertex, and L(v′′) is not
unary, then v′′ ∈ U . We call such a cut the closest cnf-compatible
cut for v.

Example 3. The cuts “cut 1” and “cut 2” in Fig. 3 are cnf-compatible
but “cut 3” is not. The cut “cut 2” is the closest cnf-compatible cut
for the vertex labeled with the empty clause ().

3.3 Handling XOR-internal variables

Assume an instance φ = φor ∧ φxor having variables that occur in
the xor-part φxor but not in the or-part φor (we call such variables xor-
internal as opposed to xor-shared variables common to φor and φxor).
Now if the SAT solver only sees the variables in the or-part φor, it may
happen that it constructs a truth assignment that satisfies φor, commu-
nicates all the literals l1, ..., ln in the assignment to the xor-module
as xor-assumptions, and asks the xor-module (by calling the DEDUCE

method) whether φxor∧l1∧...∧ln is satisfiable. But because the proof
system of the xor-module is not refutationally complete and there are
xor-internal variables not assigned by the xor-assumptions, it is pos-
sible that the xor-module cannot deduce whether φxor ∧ l1 ∧ ... ∧ ln
is satisfiable. We consider three approaches to solve this problem:

1. Implement a DEDUCE-FULL method that performs Gaussian elim-
ination on φxor ∧ l1 ∧ ... ∧ ln, thus solving its satisfiability. As
Gaussian elimination seems to be more difficult to implement ef-
ficiently than our proof system, DEDUCE-FULL should preferably
be called only when there are no unassigned xor-shared variables.
A major drawback of this approach is, as the SAT solver does not
see xor-internal variables, that the xor-internal xor-implied liter-
als returned by the EXPLAIN method are of no use. Furthermore,
the clauses returned by EXPLAIN can contain only xor-shared
variables; thus we cannot use the closest cnf-compatible cuts but
must compute (potentially much) larger cuts that only contain xor-
shared variables (such cuts always exist as xor-assumptions are
xor-shared). And, if DEDUCE-FULL finds that φxor ∧ l1 ∧ ... ∧ ln
is unsatisfiable, it must deduce and return a subset {l′1, ..., l′k} ⊆

T. Laitinen et al. / Extending Clause Learning DPLL with Parity Reasoning24

{l1, ..., ln} such that φxor |= (¬l′1 ∨ ... ∨ ¬l′k). These three facts
mean that the SAT solver cannot learn anything about the internal
structure of the xor-part but only about the xor-shared “interface”
variables.

2. Treat the xor-internal variables as if they were xor-shared in the
SAT solver. As they do not occur in the or-clauses, they are proba-
bly not assigned in the beginning of the SAT solver search but only
when there are no real xor-shared variables left. As opposed to the
previous approach, this approach has the advantage that the closest
cnf-compatible cuts can be used when performing EXPLAIN and
the SAT solver can learn about the interaction of the xor-internal
variables by storing the or-clauses returned by EXPLAIN. How-
ever, if the or-clauses returned by the EXPLAIN method are all
stored by the SAT solver, it essentially performs a cnf-translation
to the xor-part φxor; we consider this undesirable and only store
such clauses if they were needed during a conflict analysis per-
formed by the SAT solver, the goal being to let the SAT solver
learn only about the parts of φxor that were difficult. Of course,
such stored clauses are subject to usual removal (“forgetting”)
heuristics applied in SAT solvers to avoid memory congestion.

3. Eliminate all the xor-internal variables in a preprocessing step by
substituting them with their “definitions”; e.g. if x1 ⊕ x2 ⊕ x3

is a xor-clauses with a xor-internal variable x1, then remove the
clause and replace every occurrence of x1 in all the other xor-
clauses by x2⊕x3⊕�. This approach is simple to implement but
has the drawback that the xor-clauses tend to grow longer, making
our proof system less effective. As an example, assume the xor-
clauses (x ⊕ a ⊕ z), (y ⊕ d ⊕ z), and (z ⊕ b ⊕ c), where z is
xor-internal; now the equivalence x⊕ y⊕� can be deduced from
the xor-assumptions (a) and (d). If z is eliminated, we have the
xor-clauses (x ⊕ a ⊕ b ⊕ c ⊕�) and (y ⊕ d ⊕ b ⊕ c ⊕�); now
the equivalence x ⊕ y ⊕� cannot be deduced from (a) and (d).

Due to the reasons discussed above and some preliminary experi-
mental evaluations, we have chosen to use the second approach in
the experiments in the next section.

4 Experimental Results

We have evaluated the efficiency of the proposed DPLL(XOR) ap-
proach by implementing the xor-module and integrating it to the min-
isat [7] (version 2.0 core) solver in the way described in the previous
section.2 As benchmarks we consider instances that contain a large
number of xor-clauses in order to show cases where the SAT solver
enhanced with XOR reasoning outperforms the unmodified solver,
but also problem instances that have only a few equivalences/XORs
to demonstrate that enabling XOR reasoning does not hinder the SAT
solver’s performance in cases where it cannot reduce the number
of decisions. The three benchmark families we consider are: known
plain text attack on the block cipher DES, randomly generated linear
problems based on 3-regular bipartite graphs, and known keystream
attack on the stream cipher Trivium. All tests were run on Linux ma-
chines with 2GHz Intel Xeon 5130 processors; the available mem-
ory was limited to four gigabytes and time to four hours. The cipher
attack benchmark instances were generated by first modelling the
cipher and the attack as a Boolean circuit and then converting the
Boolean circuit into (i) the standard DIMACS CNF format, and (ii)
a DIMACS-like format allowing xor-clauses as well.

2 Further experimental results and other ways to compute explanations and
integrate the xor-reasoning module into a SAT solver can be found in [11].

Block Cipher DES. We modelled known plain texts attacks on
two configurations of DES: 3 rounds with 1 block, and 4 rounds
with 2 blocks. On these instances only around 1% of the clauses
are xor-clauses and the xor-clauses are furthermore partitioned into
small clusters separated by large number of or-clauses (here a cluster
means a non-empty, minimal subset of xor-clauses such that if two
xor-clauses share a variable, then they belong to the same cluster).
Therefore, we did not expect that the xor-module would help in prun-
ing the search space on these instances but included them as a “sanity
check” to show that xor-reasoning does not degrade the performance
too much on these kinds of instances. When compared to the stan-
dard minisat, the results indicate that there is a small overhead in the
number of heuristic decisions required to solve the problems and a
small constant time overhead in run time (most probably caused by
not yet fully optimized data structures in xor-minisat).

Randomly Generated Regular Linear Problems. As a second
test case we studied the impact of the xor-module on solving artifi-
cial problem instances consisting only of xor-clauses based on ran-
dom generated 3-regular bipartite graphs presented in [9]. As these
instances are fully linear, they can effectively be solved as-such by
Gaussian elimination, so we considered modified instances obtained
by converting a random amount of the XOR expressions to CNF. The
problem instances included satisfiable and unsatisfiable instances
with a number of variables ranging from 96 to 240. When compared
to unmodified minisat, applying the xor-module on these highly reg-
ular, random problems did not reduce the number of heuristic deci-
sion required. We suspect that this is due to the random nature of
the instances, which typically is not well suited for clause learning
techniques applied also in our approach. Moreover, due to the strong
regularity of the problem instances, there may be fewer cases where
the equivalence inference rules can be used to prune the search space.

Stream Cipher Trivium. The most interesting benchmark we
studied was a “known key-stream attack” on the stream cipher Triv-
ium. The attack is modelled by generating a small number (from one
to twenty in our experiments) of keystream bits after the 1152 ini-
tialization rounds. The 80-bit initial value vector is randomly gen-
erated and given in the problem instance. The 80-bit key, however,
is left open. As there are far fewer generated keystream bits than
key bits, a number of keys probably produce the same prefix of the
keystream. Thus, the instances we benchmarked are all satisfiable.
Structurally these instances are very interesting for benchmarking
xor-reasoning as they have a large number of xor-clauses and these
xor-clauses are also tightly connected so that there are only two or
three large xor-clusters in each instance. For example, on instances
with three xor-clusters, each xor-cluster has 2600–2900 xor-clauses
involving 3500–3800 variables, while the or-part contains typically
8000–8600 or-clauses involving 5250–5700 variables.

In these experiments we compare our xor-minisat to the unmod-
ified minisat, eqsatz [12] version 20, and march hi3 which is an
optimized version of march eq [10]. In the experiments, we ran
twenty instances of each keystream length from one to twenty with
each solver. The results are shown in Fig. 4; the dots on vertical and
horizontal lines denote runs that exceeded the time limit.

When compared to the unmodified minisat, xor-minisat needs
to make much less heuristic decisions when solving the instances.
This is as expected because the underlying proof system in the xor-
module includes equivalence reasoning in addition to unit propaga-

3 Available at http://www.st.ewi.tudelft.nl/sat/Sources/sat2009/march hi.zip

T. Laitinen et al. / Extending Clause Learning DPLL with Parity Reasoning 25

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

x
o
r-
m
in
is
a
t

minisat

time

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

x
o
r-
m
in
is
a
t

minisat

decisions

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

x
o
r-
m
in
is
a
t

eqsatz

time

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

x
o
r-
m
in
is
a
t

eqsatz

decisions

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

x
o
r-
m
in
is
a
t

march_hi

time

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

x
o
r-
m
in
is
a
t

march_hi

decisions

Figure 4. Results on the trivium benchmark set.

tion. However, if we compare the run times especially on the easier
instances, it is clearly visible that the data structures and algorithms
for xor-reasoning in xor-minisat are not yet as fully optimized as
those for standard Boolean reasoning in minisat. On harder instances
the stronger deduction system then helps to compensate this and the
run times become comparable and even better on very hard instances.

Comparing xor-minisat to eqsatz we observe that the lookahead
technique applied in eqsatz is a very strong deduction method as
eqsatz makes even less decisions than xor-minisat. However, com-
puting the lookahead is also very time consuming and, thus, eqsatz
performs much worse when run time is considered.

When comparing against march hi, the following observations
can be made. First, when compared to eqsatz, march hi seems to
trade deduction power for speed as it does not suffer from the same
run time penalty but neither prunes the search space as efficiently
with (partial) lookahead and the other applied techniques (such as
problem preprocessing, adding resolvents as well as finding and us-
ing binary xor-clauses). As a result, xor-minisat explores slightly
smaller search spaces than march hi on moderately hard and hard
problems but needs to be further optimized to reach similar run times.

As a summary of these results, we can say that the proof system
used in the xor-module as well as the way it has been integrated with
a conflict-driven clause learning SAT solver are together indeed ef-
fective in reducing the size of the search space. However, the data

structures and algorithms in xor-minisat still seem to need some
optimization as xor-minisat appears to suffer from some constant
factor inefficiencies. Furthermore, some preprocessing techniques
should definitely be developed for xor-minisat.

5 Conclusions

The paper considers a combined satisfiability problem where the in-
put consists of or-clauses and xor-clauses. A novel DPLL(T) style
approach to integrating xor-reasoning to a SAT solver has been devel-
oped based on a xor-reasoning module which offers implied literals
detection and clausal explanations. The module can be straightfor-
wardly integrated into a state-of-the-art conflict-driven clause learn-
ing SAT solver, enabling clause learning over the combination of or-
clauses and xor-clauses.

We have developed a prototype implementation of the xor-
reasoning module and integrated it into a state-of-the-art conflict-
driven SAT solver minisat. The implementation has been evaluated
using challenging test cases involving combinations of or- and xor-
clauses. The results are encouraging as, in particular, the number
of decisions typically decreases if xor-clauses are exploited directly
when compared to translating them to CNF. Also run times are com-
parable, especially on some hard instances.

REFERENCES

[1] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebas-
tiani, ‘A SAT based approach for solving formulas over boolean and
linear mathematical propositions’, in Proc. CADE 2002, volume 2392
of LNCS, pp. 195–210. Springer, (2002).

[2] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, ‘Satisfiability
modulo theories’, in Handbook of Satisfiability, IOS Press, (2009).

[3] P. Baumgartner and F. Massacci, ‘The taming of the (x)or’, in
Proc. CL 2000, volume 1861 of LNCS, pp. 508–522. Springer, (2000).

[4] A. Biere, M. Heule, H. van Maaren, and T. Walsh, eds. Handbook of
Satisfiability. IOS Press, 2009.

[5] J. Chen, ‘Building a hybrid SAT solver via conflict-driven, look-ahead
and XOR reasoning techniques’, in Proc. SAT 2009, volume 5584 of
LNCS, pp. 298–311. Springer, (2009).

[6] L. de Moura and H. Rueß, ‘Lemmas on demand for satisfiability
solvers’, in Proc. SAT 2002, (2002).

[7] N. Eén and N. Sörensson, ‘An extensible SAT solver’, in Proc. SAT
2003, volume 2919 of LNCS, pp. 502–518. Springer, (2004).

[8] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli,
‘DPLL(T): Fast decision procedures’, in Proc. CAV 2004, volume 3114
of LNCS, pp. 175–188. Springer, (2004).

[9] H. Haanpää, M. Järvisalo, P. Kaski, and I. Niemelä, ‘Hard satisfiable
clause sets for benchmarking equivalence reasoning techniques’, J. Sat-
isfiability, Boolean Modeling and Computation, 2(1-4), 27–46, (2006).

[10] M. Heule, M. Dufour, J. van Zwieten, and H. van Maaren, ‘March eq:
Implementing additional reasoning into an efficient look-ahead SAT
solver’, in Proc. SAT 2004, volume 3542 of LNCS, pp. 345–359.
Springer, (2004).

[11] T. Laitinen, ‘Extending sat solvers with parity constraints’, Research
Report TKK-ICS-R32, Aalto University, Department of Information
and Computer Science, (2010).

[12] C. M. Li, ‘Integrating equivalency reasoning into Davis-Putnam proce-
dure’, in Proc. AAAI/IAAI 2000, pp. 291–296. AAAI Press, (2000).

[13] J. Marques-Silva, I. Lynce, and S. Malik, ‘Conflict-driven clause learn-
ing SAT solvers’, in Handbook of Satisfiability, IOS Press, (2009).

[14] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, ‘Solving SAT and
SAT modulo theories: From an abstract Davis–Putnam–Logemann–
Loveland procedure to DPLL(T)’, J. ACM, 53(6), 937–977, (2006).

[15] R. Ostrowski, É. Grégoire, B. Mazure, and L. Sais, ‘Recovering and ex-
ploiting structural knowledge from CNF formulas’, in Proc. CP 2002,
volume 2470 of LNCS, pp. 185–199. Springer, (2002).

[16] M. Soos, K. Nohl, and C. Castelluccia, ‘Extending SAT solvers to cryp-
tographic problems’, in Proc. SAT 2009, volume 5584 of LNCS, pp.
244–257. Springer, (2009).

T. Laitinen et al. / Extending Clause Learning DPLL with Parity Reasoning26

