
Variable Level-Of-Detail Motion Planning
in Environments with Poorly Predictable Bodies

Stefan Zickler and Manuela Veloso1

Abstract. Motion planning in dynamic environments consists of the
generation of a collision-free trajectory from an initial to a goal state.
When the environment contains uncertainty, preventing a perfect pre-
dictive model of its dynamics, a robot ends up only successfully exe-
cuting a short part of the plan and then requires replanning, using the
latest observed state of the environment. Each such replanning step is
computationally expensive. Furthermore, we note that such sophisti-
cated planning effort is unnecessary as the resulting plans are not
likely to ever be fully executed, due to an unpredictable and chang-
ing environment. In this paper, we introduce the concept of Variable
Level-Of-Detail (VLOD) planning, that is able to focus its search
on obtaining accurate short-term results, while considering the far-
future with a different level of detail, selectively ignoring the physi-
cal interactions with poorly predictable dynamic objects (e.g., other
mobile bodies that are controlled by external entities). Unlike finite-
horizon planning, which limits the maximum search depth, VLOD
planning deals with local minima and generates full plans to the goal,
while requiring much less computation than traditional planning. We
contribute VLOD planning on a rich simulated physics-based plan-
ner and show results for varying LOD thresholds and replanning in-
tervals.

1 INTRODUCTION

Mobile robot motion control in the physical world is a challenging
problem. A robot has to deal with the uncertainty that arises during
the execution of its own actions (caused by e.g., drift, wheel slippage,
and sensory noise). More importantly, uncertainty also makes it diffi-
cult to accurately predict the motions of any other moving obstacles
in the environment, in particular when controlled by an unpredictable
foreign entity, making it difficult to devise a model for valid predic-
tions of the obstacles’ motions.

Accurate motion planning in such uncertain domains can be a fu-
tile task: as soon as the robot starts executing its plan, the real world’s
state is likely to quickly diverge from the predictions that were made
during planning. A well-known solution to this problem is replan-
ning: the robot only executes a portion of a generated plan; it then
re-observes the world’s true state and plans a new solution, using
the latest observations. This process is repeated as a replanning loop
until the robot reaches its goal state.

A major problem of replanning is its computational cost. At each
replanning iteration, a planner performs an intensive search for a
complete solution that will bring the robot from its current state all
the way to the final goal state. During this search, a motion planner

1 Carnegie Mellon University, Computer Science Department, Pittsburgh, PA,
USA, email: {szickler,veloso}@cs.cmu.edu

ensures that the resulting plan is dynamically sound and collision-
free by employing sophisticated, computationally expensive physi-
cal models to predict the robot’s motions and its interactions with the
predicted environment. Such an elaborate search might seem unnec-
essary, given the fact that the robot will only execute a small portion
of the resulting plan, before discarding it and re-invoking the plan-
ner to start from scratch in the next replanning iteration. However,
simply limiting the planner’s search depth, an approach also known
as finite-horizon planning, is dangerous because it can lead to a robot
becoming stuck in a local search minimum as there are no guarantees
that a partial plan will actually lead to the final goal state.

In this paper, we introduce Variable Level-Of-Detail (LOD) plan-
ning, a novel approach to reduce the computational overhead of re-
planning in physical robot environments. Unlike finite-horizon plan-
ning, VLOD planning maintains a full search to the goal state, and is
therefore more robust against local minima.

We base VLOD planning on the idea that a planner should be able
to speed up its search by relaxing the treatment of computationally
intensive domain details that lie far in the future and that are unlikely
to be accurately predicted. We present a binary LOD model that al-
lows the planner to selectively ignore future interactions with bodies
that are considered to be difficult to predict. The time threshold that
defines what is to be considered “too far in the future to be accurately
predicted” is a controllable parameter, and can be adjusted based on
the amount of unpredictability in the domain (thus the term Variable
LOD planning).

This paper is organized as follows: first, we cover related work. We
then formally define the physics-based motion planning problem and
introduce a sampling-based planning algorithm. We then present our
VLOD approach, integrating it into the existing planning algorithm.
We test our approach on two domains and present a detailed analysis
of the results. Finally, we end with concluding remarks and ideas for
future work.

2 RELATED WORK

Our work focuses on motion planning in continuous, physical do-
mains. Sampling-based planners are an effective choice for this pur-
pose as they can efficiently cover the continuous search space [7].
Rapidly-Exploring Random Trees (RRT) [9] is a sampling-based
planning algorithm that has been shown to be usable for motion plan-
ning problems involving dynamic and kinematic constraints [10], and
has been employed to solve many types of robot navigation prob-
lems [2, 11, 12].

There is a vast body of work on increasing replanning performance
for robot motion planning in continuous domains. ERRT [3] is an
extension to RRT that introduces the concept of a waypoint cache to

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-189

189



bias the planner’s search toward points from previous solutions, let-
ting the planner more quickly discover solutions in new slightly dif-
ferent problems during replanning. Other approaches include DRRT
[6] and Multipartite RRT [16] which use different schemes to store
entire portions of previous search trees to be re-used during planning.
Compared to these approaches, our work takes a fundamentally dif-
ferent direction: instead of trying to speed up replanning by re-using
past planning solutions, we aim to directly reduce replanning com-
plexity by selectively ignoring low-level domain details that lie too
far in the future to be relevant for near term execution.

Another approach for increasing replanning performance in dy-
namic environments is to introduce a layered planning architecture,
where a global plan is computed by a planner that uses a higher-level
abstraction of the world (e.g., graph-based), which is computation-
ally efficient, but less accurate and typically unaware of lower-level
dynamics [8, 4]. The global plan is then handed to a lower-level, local
planner that performs a finite-horizon search with the goal of follow-
ing along the global planner’s solution. One fundamental weakness
of this dual-layer approach is that the global planner, due to its ab-
stract model, cannot guarantee that its solutions are actually solvable
by the local planner. VLOD planning circumvents the global plan-
ning inaccuracy problems of such layered planning approaches by
relying on a single fully dynamic planner that generates global plans
leading all the way to the goal state, only ignoring a certain subset of
multi-body interactions that are assumed to be locally solvable.

3 PHYSICS-BASED PLANNING

We define the motion planning problem as follows: given a state
space X , an initial state xinit ∈ X , and a set of goal states Xgoal ⊂ X ,
a motion planner searches for a sequence of actions a1, . . . , an,
which, when executed from xinit, ends in a goal state xgoal ∈ Xgoal.
Additional constraints can be imposed on all the intermediate states
of the action sequence (e.g., collision avoidance).

To demonstrate our approach, we use a Physics-Based motion
planning algorithm that aims to reflect the inherent physical proper-
ties of real world multi-body interactions. The Rigid Body Dynamics
model [1] provides a computationally feasible approximation of ba-
sic Newtonian physics, and allows the simulation of the physical in-
teractions between multiple mass-based bodies. Physics-based plan-
ning is an extension to kinodynamic planning [5], adding the simula-
tion of rigid body interactions to traditional second order navigation
planning [14, 13].

A rigid body system is composed of n rigid bodies r1 . . . rn. A
rigid body is defined by two disjoint subsets of parameters r = {r̂, r̄}
where r̂ are the body’s mutable state parameters (i.e., position, orien-
tation, and velocity), and r̄ are the body’s immutable parameters (i.e.,
its shape, mass, and material properties). The physics-based planning
state space X is defined by the mutable states of all n rigid bodies in
the domain and time t. That is, a state x ∈ X is defined as the tuple
x = 〈t, r̂1, . . . , r̂n〉.

An action a is defined as a vector of subactions 〈â1, . . . , ân〉,
where âi represents a pair of 3D force and torque vectors applica-
ble to a corresponding rigid body ri.

A physics-based planning domain d is defined as the tuple
d = 〈G, r̄1 . . . r̄n, M〉 where G is the global gravity force vector,
r̄1 . . . r̄n are the immutable parameters of all n rigid bodies, and M
is a symmetric collision matrix. The symmetric collision matrix M
is of size n×n and defines whether pairwise collisions between any
two rigid bodies ri and rj should be resolved or ignored. A value of
1 for a matrix entry mij (and therefore also mji) implies that a colli-

sion should be resolved as if the two bodies were rigid, i.e., the bodies
should not penetrate one another. A value of 0 implies that collisions
should be ignored by treating the two bodies as non-rigid with re-
spect to each other, i.e., the bodies should pass through one another.
By default, M is filled with ones, except for its main-diagonal that is
always zero-filled, because a body is unable to collide with itself.

3.1 Planning Algorithm

We now introduce our core planning algorithm (see Algorithm 1).
The search expansion methodology of our algorithm is based on
Rapidly-Exploring Random Trees (RRT) [9]. We initialize the search
with a tree T containing an initial state xinit ∈ X . We then en-
ter the main planning loop, which runs for a predefined domain-
dependent maximum number of search iterations z, if no solution
is found earlier. On each iteration, the algorithm selects a node x
from the existing tree T which it will expand from by invoking
the function SelectNodeRRT. Within SelectNodeRRT (see Al-
gorithm 2), the function SampleRandomState uses an internal
probability distribution to provide a sample y taken from the sam-
pling space Y that is some predefined subspace of X . The function
NearestNeighbor then finds the nearest neighbor to y, according
to some predefined distance function. As with traditional RRT, it is
important that the sampling space Y , the underlying probability dis-
tribution, and especially the distance function are all carefully chosen
to match the domain. For our domains, we use a simple acceleration-
based motion model to compute the minimal estimated time for the
controlled rigid body in x ∈ T to reach its target position and orien-
tation in y. SelectNodeRRT then returns both the selected node x
and the sample y.

Algorithm 1: PlanLOD
Input: Initial state: xinit, set of goal states: Xgoal, RRT sampling

space: Y, set of valid states: Xvalid, timestep: Δt, domain:
d max iterations: z.

T ← NewEmptyTree();
T.AddVertex(xinit);
for iter ← 1 to z do

〈x, y〉 ←SelectNodeRRT();
d.M ← SetupCollisionMatrix(x,d.M);
〈x’, L〉 ← Propagate(x,y,Δt,d);
if Validate(x’,L) then

T.AddVertex(x’);
T.AddEdge(x,x’,a);
if x’ ∈ Xgoal then

return TraceBack(x’,T);

return Failed;

Algorithm 2: SelectNodeRRT
y ← SampleRandomState(Y);
x ← NearestNeighbor(T, y);
return 〈x, y〉;

After selection of the source node x, the algorithm then con-
figures the domain’s collision matrix M by invoking the function
SetupCollisionMatrix. This function is a core component
to Variable Level-Of-Detail planning and its purpose will be ex-
plained in the following section. For now, let us temporarily assume

S. Zickler and M. Veloso / Variable Level-Of-Detail Motion Planning in Environments with Poorly Predictable Bodies190



Algorithm 3: Propagate
a ← Controller(x,y);
〈x’.〈r̂1, . . . , r̂n〉, L〉 ← e(x.〈r̂1, . . . , r̂n〉,a,d,Δt);
x’.t ← x.t + Δt;
return 〈x’, L〉;

that SetupCollisionMatrix simply returns the default colli-
sion matrix, thus not changing any of the physics-engine’s collision
handling behavior.

Next, the planner invokes the Propagate function to expand the
search tree by growing a branch from the source node x. To compute
the successive state x′, the Propagate function (see Algorithm 3)
first computes an action for the controlled rigid body to execute. This
action is computed by some controller that heuristically generates
forces and torques to bring the controlled body’s state in x closer to
the state in the random sample y. The particular type of controller can
range from a simple linear motion controller (as is assumed in this
work) to very elaborate behavioral models that are aware of higher
level tactical knowledge [14, 15].

Figure 1: A Physics Engine computes state transitions.

Using the action a generated by the controller, the Propagate
function can now invoke the physics transition function e that will
forward-simulate the rigid-body dynamics and generate the new
rigid-body states r̂1, . . . , r̂n that are then stored as part of the new
state x′. The actual dynamics computations are performed by a rigid
body simulator. There are several robust rigid body simulation frame-
works freely available, such as the Open Dynamics Engine (ODE),
Newton Dynamics, and NVIDIA PhysX. Frequently referred to as
physics engines, these simulators are then used as a “black box” by
the planner to simulate state transitions in the physics space (see
Figure 1). Besides the new rigid body states, the transition func-
tion e also returns a list of collisions L = 〈l1, l2, . . . 〉 that oc-
curred during forward simulation. Each item l ∈ L is an unordered
pair l = 〈λ1, λ2〉, consisting of the indices of the two rigid bodies
rλ1 , rλ2 involved in the collision. Note, that only collisions that were
enabled in the collision matrix M will be reported.
Propagate then returns the new state x′ and the list of colli-

sions L that occurred during the forward simulation. The algorithm’s
Validate function then checks whether the resulting state is a
valid state by making sure that it did not validate any user-defined
constraints (e.g., that no undesired collisions occurred in L). If ac-
cepted, the algorithm adds x′ to the search tree T as a child of the
chosen node x.

The complete loop is repeated until the algorithm either reaches
the goal, or until it reaches the maximum allowed number of itera-
tions z, at which point the search returns failure for this state. Once
a goal state is reached, the algorithm simply traces back the chain of
states and actions and returns it as a solution sequence.

4 VARIABLE LOD MOTION PLANNING

To be useful for execution in real-world domains containing uncer-
tainty, our physics-based planning algorithm can be wrapped into a
continuous, fixed-timestep replanning loop (see Algorithm 4). After
observing the initial state of the world, the robot generates a plan us-
ing our physics-based planning algorithm. The robot then executes a
fixed, pre-determined amount of this plan, before repeating the loop
of re-observing the environment, updating the initial state, and gen-
erating a new plan. The replanning interval treplan is set by the user,
and generally depends on the expected domain uncertainty. Uncer-
tain domains and robots with unreliable executions tend to require
more frequent replanning as the true world state will more quickly
diverge from the predicted planning solution while the robot is exe-
cuting.

Algorithm 4: ExecuteAndReplan

while true do
xinit ← ObserveWorldState();
solution ← PlanLOD(xinit,. . .);
if solution �= Failed then

i ← 1;
repeat

〈x, a〉 ← solution[i];
Execute(a);
i ← i + 1;

until x.t > treplan or i > length(solution) ;

In this type of replanning environment, a planner will perform
many computationally intensive searches for detailed solutions, only
to have them be partially executed and then scrapped for the next re-
planning iteration. To alleviate this situation, we can now introduce
Variable Level-Of-Detail (LOD) planning, that is able to find global
planning solutions while ignoring execution-irrelevant domain de-
tails that lie far in the future. We introduce the LOD-horizon tLOD.
This horizon acts as a threshold in the time component t of our plan-
ning space X . The purpose of tLOD is to control at what point the
planner should begin to ignore certain domain details during its sim-
ulated state transitions. The value of tLOD is a global parameter, to be
set by the user. A reasonable guideline is that tLOD should be greater
than the replanning interval treplan because there is the inevitable as-
sumption that the plan will be executed up to length treplan and as such
should be planned with maximum detail for at least that length.

VLOD planning assumes knowledge about the types of bodies
present in the domain. We classify the types of bodies in the domains
of the physics-based planner, using the hierarchy shown in Figure 2.

Figure 2: Rigid Body classes

Every body is by definition a rigid body. There are static rigid
bodies that do not move, even when a collision occurs, which are

S. Zickler and M. Veloso / Variable Level-Of-Detail Motion Planning in Environments with Poorly Predictable Bodies 191



often used to model the ground plane and all non-movable bodies,
such as walls and heavy objects. All other bodies are manipulatable,
meaning that they react to collision forces exerted upon them. Among
these, the planner can directly control the actively controlled bodies,
i.e., the planner has available actions directly applicable to these bod-
ies. Passive bodies can only be actuated by external influences and
interactions, such as being carried or pushed. Foreign controlled bod-
ies are actively actuated, but by external control to our planner.

Based on this classification hierarchy, we define corresponding
sets of rigid body groups: , that allow us to classify each rigid body
in the domain by letting it become a member in the corresponding
sets: BAll, BManip, BStatic, BControlled, BPassive, BForeign.

To apply Variable Level-Of-Detail planning, we need to clearly
define what we mean by “details”. We use a binary notion of detail,
allowing the planner to selectively ignore particular pairwise multi-
body interactions. In our physics-based domains, we regard the sub-
set of multi-body interactions as details if they are solvable through
a local finite horizon search without requiring a global change of
plans. In our particular planning model, we treat the interactions be-
tween controlled bodies and other manipulatable bodies as details,
whereas we treat any other interactions as essential. The idea is that
the avoidance and/or manipulation of moving or manipulatable bod-
ies can normally be considered a locally solvable problem, whereas
global navigation, such as finding the path through a maze of static
wall bodies, requires full-depth planning to successfully reach the
goal state without ending up in local minima. Another line of reason-
ing is that foreign-controlled bodies are not accurately predictable in
the long term and as such qualify as details that are only relevant for
short term planning. Because foreign-controlled bodies can interact
(e.g., push) any other manipulatable body, we consider all manipu-
latable bodies to fall into the unpredictable detail category.

Of course one could imagine special cases of domains where
even interactions with manipulatable bodies have implications on the
global topology of the plan that go beyond the LOD search horizon
tLOD. For such domains, it might make sense to either increase the
value of tLOD, or – in extreme cases – manually reduce the selection
of pairwise interactions that should be considered “details”.

Algorithm 5: SetupCollisionMatrix

// Let mij denote the element at the i-th
row and j-th column of M.

for i ← 1 to n do

for j ← i to n do

if i=j then
mij ← 0;

else
if (x.t > tLOD and

((ri ∈ BControlled and rj ∈ BManip) or

(rj ∈ BControlled and ri ∈ BManip))) then
mij ← 0;
mji ← 0;

else
mij ← 1;
mji ← 1;

return M;

The planner (see Algorithm 1) applies the LOD-horizon to the
physics model before each state transition by calling the function
SetupCollisionMatrix (see Algorithm 5). This function con-
figures the collision matrix M to effectively let the physics en-

Figure 3: An illustration of VLOD planning

gine know about which rigid-body collisions should be resolved and
which ones should be ignored. If the current source state x has a
time index less than tLOD, then all collisions are fully simulated and
resolved. However, if x.t lies beyond tLOD, then the collision is set
to be ignored if it involves a pair of bodies, with one body being a
member in the set of controlled bodies BControlled and the other being a
member in the set of manipulatable bodies BManip. All other pairwise
collisions are treated normally.

Figure 3 shows an illustrative example of VLOD planning. The
controlled robot body (R) has to navigate from its current state to the
goal. The domain contains four poorly predictable foreign-controlled
moving bodies (labeled 1-4) and a static obstacle. Assuming a LOD
horizon tLOD = 2 seconds, the first body is treated with full detail
during a predicted collision that occurred before t = 2, thus requir-
ing planning a path around the body. The static obstacle is fully pre-
dictable and relevant to the global path topology, thus it is always
treated as an obstacle (even when t > tLOD). The other moving bod-
ies (2-4) only make contact with the search tree beyond the horizon
tLOD, thus they are ignored in this planning iteration.

5 RESULTS

We tested our physics-based VLOD planner using a detailed simu-
lation framework that is able to model robot execution under uncer-
tainty. We used NVIDIA PhysX as the underlying physics engine
with Δt = 1/60s.

We devised two challenging kinodynamic robot navigation do-
mains to test the effects of VLOD planning. In each domain, the
controlled robot body has to navigate from a starting state to a goal
area while avoiding multiple oscillating obstacles. The planner in this
case uses a simple deterministic prediction model of where it expects
the obstacles to move. We actively model the domain’s execution
uncertainty by controlling the amount of random divergence of the
obstacle’s actual motion paths from the planner’s prediction model.

In the “Hallway” domain, the main challenge is to execute a safe
trajectory through a dense field of 12 rapidly moving and not fully
predictable obstacle robots. Figure 4(a) shows a kinodynamic RRT
search tree (black) as generated by our planner during the first replan
iteration. The planner’s linearly predicted trajectories of the moving
obstacles are indicated by the vertical paths. Figure 4(b) shows what
individual obstacle trajectories actually look like during execution
under maximum domain uncertainty (uncertainty value of 1.0).

The “Maze” domain (see Figure 4(c)) is even more challenging
from a navigation standpoint. In its layout, the domain contains sev-
eral “horseshoe”-shaped walls, consequently requiring a deep search
all the way to the goal state because a finite-horizon search would get
the robot stuck in a local search minimum. Similar to the “Hallway”
domain, the “Maze” contains several fast-moving foreign-controlled

S. Zickler and M. Veloso / Variable Level-Of-Detail Motion Planning in Environments with Poorly Predictable Bodies192



(a) A search tree in the Hallway domain (b) A solution trajectory in the Hallway domain, under high uncertainty

(c) A search tree in the Maze domain (d) A solution trajectory in the Maze domain, under high uncertainty

Figure 4: Experimental Domains

obstacles along the way, further increasing the difficulty of the plan-
ner’s search. Again, the planner uses a deterministic prediction of
the obstacles, as shown in Figure 4(c), whereas their actual motions
during execution can be significantly different due to the uncertainty
model (see Figure 4(d)).

5.1 Performance

The controlled variables of our experiments are the LOD time hori-
zon tLOD, the replanning interval treplan, and the domain uncertainty.
The most relevant performance metrics are the number of collisions
that occurred during simulated execution, as well as the amount of
total cumulated planning time required to get the robot from its ini-
tial state to the goal state. Combining these two variables, we can
express the planner’s overall performance using a single relative per-
formance comparison metric, defined as

performance = (1 − NormCollisions) (1 − NormTime),

where NormCollisions and NormTime are both values ranging from
0-1, normalized over an entire experiment. An ideal planning strat-
egy would use a minimum amount of cumulative planning time and
generate a minimum number of collisions, thus generating a maxi-
mum performance value.

In experiments, our planner was able to find valid solutions for
both domains. Overall planning and execution performance trends
were similar for both domains. In the following selected graphs and
discussions we explain in detail how our VLOD planning approach
performs under various conditions.

Figures 5(a) and 5(d) show the performance values for the Hall-
way and Maze domains respectively, under varying LOD-horizons
and varying replanning intervals. Each data-point in the graphs was
generated using 120 simulated trials, thus totaling in 6480 trials per
domain. In both domains, it is clear to see that VLOD planning has
a positive impact on performance for all tested replanning intervals.
Generally, the VLOD planner achieves its highest performance with
tLOD values that are slightly greater than the corresponding replan-
ning interval. This result makes sense, as using a tLOD value lower

than the replanning interval would mean that the robot will execute
partial solutions that have not been planned with the maximum level
of detail, thus likely to collide with obstacles. This reasoning is ver-
ified if we look at the corresponding collision rates shown in Fig-
ures 5(b) and 5(e). Here, selecting a tLOD value lower than the re-
planning interval results in an agressive growth of collision rates.

The true benefit of VLOD planning, however, becomes clear
when looking at the total accumulated planning time in Figures 5(c)
and 5(f). For example, in the Hallway domain using a replanning
interval of 0.5, we see an approximately 70% decrease in planning
time, when reducing tLOD from its maximum of 5.7s down to 0.5s.
The reason for why the VLOD approach is able to perform so much
faster, lies within the fact that a lower value of tLOD allows the plan-
ner’s search to find simpler solutions that ignore obstacle interactions
in the future. In the Maze domains, we see a similar trend of shorter
planning times with smaller values of tLOD, but the effect is less pro-
nounced. The reasoning for this behavior lies in the fact that the Maze
domain remains significantly difficult to solve, even when foreign-
controlled bodies are ignored due to a low value of tLOD. Although
ignoring these dynamic interactions makes the search evidently eas-
ier, the planner still needs to find a trajectory that leads around the
maze of static wall bodies without getting stuck in local minima.

Conclusively, achieving optimal planning performance depends
on multiple factors. First, a replanning interval appropriate for the
domain’s level of uncertainty should be chosen. Given the replanning
interval, maximum performance is then achieved by selecting a value
for tLOD that minimizes planning time and collision rate. Our overall
performance metric tries to capture this trade-off, proposing a tLOD

value that not only reduces collisions, but that’s also low on compu-
tational expense. Depending on one’s particular needs and computa-
tional power available, one could weigh this metric differently to put
special emphasis on either safety or computational time.

6 CONCLUSION AND FUTURE WORK

In this paper, we have introduced VLOD planning for physics-based
domains with poorly predictable bodies. We have tested its perfor-

S. Zickler and M. Veloso / Variable Level-Of-Detail Motion Planning in Environments with Poorly Predictable Bodies 193



0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

P
er

fo
rm

an
ce

LOD Time-Horizon (s)

Replanning Interval=0.5s
Replanning Interval=0.75s
Replanning Interval=1.1s
Replanning Interval=1.7s
Replanning Interval=2.5s
Replanning Interval=3.8s

(a) Impact of tLOD and replanning on performance.
Hallway domain, Uncertainty=0.75.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6

C
ol

li
si

on
R

at
e

LOD Time-Horizon (s)

Replanning Interval=0.5s
Replanning Interval=0.75s
Replanning Interval=1.1s
Replanning Interval=1.7s
Replanning Interval=2.5s
Replanning Interval=3.8s

(b) Impact of tLOD and replanning on collisions.
Hallway domain, Uncertainty=0.75.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6

T
ot

al
P

la
n
n
in

g
T

im
e

T
o

G
oa

l
(s

)

LOD Time-Horizon (s)

Replan Int.=0.5s
Replan Int.=0.75s
Replan Int.=1.1s
Replan Int.=1.7s
Replan Int.=2.5s
Replan Int.=3.8s

(c) Impact of tLOD and replanning on total planning
time. Hallway domain, Uncertainty=0.75.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

P
er

fo
rm

an
ce

LOD Time-Horizon (s)

Replanning Interval=0.5s
Replanning Interval=0.75s
Replanning Interval=1.1s
Replanning Interval=1.7s
Replanning Interval=2.5s
Replanning Interval=3.8s

(d) Impact of tLOD and replanning on performance.
Maze domain, Uncertainty=0.5.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6

C
ol

li
si

on
R

at
e

LOD Time-Horizon (s)

Replanning Interval=0.5s
Replanning Interval=0.75s
Replanning Interval=1.1s
Replanning Interval=1.7s
Replanning Interval=2.5s
Replanning Interval=3.8s

(e) Impact of tLOD and replanning on collisions.
Maze domain, Uncertainty=0.5.

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6

T
ot

al
P

la
n
n
in

g
T

im
e

T
o

G
oa

l
(s

)

LOD Time-Horizon (s)

Replan Int.=0.5s
Replan Int.=0.75s
Replan Int.=1.1s
Replan Int.=1.7s
Replan Int.=2.5s
Replan Int.=3.8s

(f) Impact of tLOD and replanning on total planning
time. Maze domain, Uncertainty=0.5.

Figure 5: VLOD performance analysis for the Hallway (a–c) and Maze (d–f) domains.

mance on multiple experiments, using a rich simulated model. We
have analyzed the impact of the LOD horizon on planning perfor-
mance over different replanning intervals and domain uncertainty.
Our overall results clearly show that VLOD planning is able to sig-
nificantly cut down computational cost at little to no expense to col-
lision safety. We therefore conclude that VLOD planning is effective
for improving planning performance in dynamic motion planning do-
mains.

For future work, it would be interesting to extend the definition
of detail beyond a time-horizon threshold only involving collisions.
For example, one could modify the planner’s internal planning gran-
ularity (e.g., the value of Δt, or the node selection strategy itself)
as it plans further into the future to gain additional speedups with-
out sacrificing costs. Additionally, it will be interesting to analyze
how our approach could be combined with other existing replanning
improvements, such as solution caching.

REFERENCES

[1] D. Baraff, ‘Physically Based Modeling: Rigid Body Simulation’, SIG-
GRAPH Course Notes, ACM SIGGRAPH, (2001).

[2] J. Bruce and M. Veloso, ‘Safe Multi-Robot Navigation within Dynam-
ics Constraints’, Proceedings of the IEEE, Special Issue on Multi-Robot
Systems, (2006).

[3] J. Bruce and M.M. Veloso, ‘Real-Time Randomized Path Planning
for Robot Navigation’, Robocup 2002: Robot Soccer World Cup VI,
(2003).

[4] S. Chakravorty and R. Saha, ‘Hierarchical motion planning under un-
certainty’, in Decision and Control, 2007 46th IEEE Conference on, pp.
3667–3672, (2007).

[5] B. Donald, P. Xavier, J. Canny, and J. Reif, ‘Kinodynamic motion plan-
ning’, Journal of the ACM (JACM), 40(5), 1048–1066, (1993).

[6] D. Ferguson, N. Kalra, and A. Stentz, ‘Replanning with RRTs’,
Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on, 1243–1248, (2006).

[7] LE Kavraki, P. Svestka, J.C. Latombe, and MH Overmars, ‘Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces’, Robotics and Automation, IEEE Transactions on, 12(4), 566–
580, (1996).

[8] R. Knepper, S. Srinivasa, and M. Mason, ‘Hierarchical planning archi-
tectures for mobile manipulation tasks in indoor environments’, in Pro-
ceedings of ICRA 2010, (May 2010).

[9] S.M. LaValle, ‘Rapidly-exploring random trees: A new tool for path
planning’, Computer Science Dept, Iowa State University, Tech. Rep.
TR, 98–11, (1998).

[10] S.M. LaValle and J.J. Kuffner Jr, ‘Randomized Kinodynamic Planning’,
The International Journal of Robotics Research, 20(5), 378, (2001).

[11] N.A. Melchior, J. Kwak, and R. Simmons, ‘Particle RRT for Path Plan-
ning in very rough terrain’, in NASA Science Technology Conference
2007 (NSTC 2007), (2007).

[12] N. Vahrenkamp, C. Scheurer, T. Asfour, J. Kuffner, and R. Dillmann,
‘Adaptive motion planning for humanoid robots’, in Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on,
pp. 2127–2132, (2008).

[13] S. Zickler, Physics-Based Robot Motion Planning in Dynamic Multi-
Body Environments (Thesis Number: CMU-CS-10-115), Ph.D. disser-
tation, Carnegie Mellon University, May 2010.

[14] S. Zickler and M. Veloso, ‘Efficient physics-based planning: sampling
search via non-deterministic tactics and skills’, in Proceedings of The
8th International Conference on Autonomous Agents and Multiagent
Systems-Volume 1, pp. 27–33, (2009).

[15] S. Zickler and M. Veloso, ‘Tactics-Based Behavioural Planning for
Goal-Driven Rigid-Body Control’, Computer Graphics Forum, 28(8),
2302–2314, (2009).

[16] M. Zucker, J. Kuffner, and M. Branicky, ‘Multipartite rrts for rapid re-
planning in dynamic environments’, Proc. IEEE Int. Conf. on Robotics
and Automation, 1603–1609, (2007).

S. Zickler and M. Veloso / Variable Level-Of-Detail Motion Planning in Environments with Poorly Predictable Bodies194


