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Abstract.   We study models of coordination, negotiation and 

collaboration in multi-agent systems (MAS). More specifically, 

we investigate scalable models and protocols for various 

distributed consensus coordination problems in large-scale MAS. 

Examples of such problems include conflict avoidance, leader 

election and coalition formation. We are particularly interested in 

application domains where robotic or unmanned vehicle agents 

interact with each other in real-time, as they try to jointly 

complete various tasks in complex dynamic environments, and 

where decisions often need to be made “on the fly”. Such MAS 

applications, we argue, necessitate a multi-tiered approach to 

learning how to coordinate effectively. One such collaborative 

MAS application domain is ensembles of autonomous micro 

unmanned aerial vehicles (micro-UAVs).   A large ensemble of 

micro-UAVs on a complex, multi-stage mission comprised of 

many diverse tasks with varying time and other resource 

requirements provides an excellent framework for studying multi-

tiered learning how to better coordinate. A variety of tasks and 

their resource demands, complexity and unpredictability of the 

overall environment, types of coordination problems that the 

UAVs may encounter in the course of their mission, multiple time 

scales at which the overall system can use learning and adaptation 

in order to perform better in the future, and multiple logical and 

organizational levels at which large ensembles of micro-UAVs 

can be analyzed and optimized, all suggest the need for a multi-

tiered approach to learning. We outline our theoretical and 

conceptual framework that integrates reinforcement learning and 

meta-learning, and discuss potential benefits that our framework 

could provide for enabling autonomous micro-UAVs (and other 

types of autonomous vehicles) to coordinate more effectively. 

1    INTRODUCTION AND MOTIVATION

Coordination is among the most important problems in 

Distributed AI research that studies various models and 

applications of multi-agent systems.  According to [26], multi-

agent coordination can be defined as “managing inter-

dependencies among the activities of different agents”. These 

interdependencies of agent activities can be of various types [26] 

(pp. 200 – 202), and the type of interdependencies is one of the 

factors determining the appropriate multi-agent coordination 

paradigm.   Moreover, various interdependencies and hence the 

need to coordinate may arise both among self-interested, 
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competitive agents, and the cooperative, distributed problem 

solving agents that typically share the same goals or objectives 

and are not competing with each other.  

      There are several common types of coordination problems 

that have been extensively studied in the MAS literature. Among 

them, various distributed consensus problems are particularly 

prominent. An important distributed consensus problem is 

coalition formation (e.g., [1, 4, 5, 9-13, 18-20]). In this paper, for 

space constraints reasons, we focus on a particular coordination 

distributed consensus problem – that of coalition formation 

among multiple collaborative autonomous agents that are 

cooperating with each other in order to better perform on their 

tasks [11-13, 18-21]. While the problem setting we consider is 

simpler than the one where the autonomous agents are self-

interested and competitive (and hence, in general, may engage in 

both competition and cooperation with each other), as we shall 

see this setting still provides an abundance of research challenges 

– especially when it comes to addressing the appropriate ways of 

enabling these cooperative agents to learn how to coordinate 

more effectively based on their past interactions. 

     In many important collaborative MAS applications, 

autonomous agents need to dynamically form groups or coalitions 

in an efficient, reliable, fault-tolerant and partly or entirely 

distributed manner. In most of the literature on distributed 

coalition formation, agents’ negotiation and coalition formation 

strategies are static, in that the agents do not learn from past 

experience, nor adapt their strategies to become more effective in 

their future coalition formation interactions. Moreover, most of 

the prior research that does consider learning and adaptation to 

improve coalition formation cf. focuses on various models of 

reinforcement learning (RL) at the level of individual agents. 

     We have recently proposed an integrated, multi-tiered 

approach to multi-agent learning on how to coordinate that 

systematically addresses agents’ adaptability and ability to 

improve at forming coalitions in typical complex (in particular, 

noisy, partially observable and dynamic) environments.  This 

integrated approach combines reinforcement learning (RL) of 

individual agents with co-learning and meta-learning at higher 

organizational levels [22]. In particular, we argue that the 

interaction and synergy between reinforcement learning of 

individual agents and meta-learning at the system level would 

enable agents to considerably improve in their coordination 

capabilities. The potential benefits of multi-tiered approach to 

learning in general, and of application of meta-learning 

techniques in particular, are especially significant when there is 

only a modest amount of past experience, limited computational 

resources of each individual agent (hence imposing constraints on 

how much can an agent spend on RL), and/or when there are 
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considerable changes in the agents’ dynamic environments in 

which future coordination interactions and coalition formation 

attempts will take place. 

    The rest of the paper is organized as follows. First, we discuss 

the general problem of multi-agent coordination, and the more 

specific problem of coalition formation, in collaborative MAS; 

our focus is on motivating the need for various learning 

techniques in order to improve coordination and coalition 

formation abilities of agents over time.  We then briefly discuss 

two important learning paradigms applicable in this context, those 

of reinforcement learning (RL) and meta-learning (ML). We find 

that, while RL has a relatively considerable prior art in the 

existing MAS literature, ML in the context of multi-agent 

learning is largely an unchartered territory. We briefly compare 

and contrast reinforcement learning at the level of individual 

agents and meta-learning at the large agent ensemble or system 

level. We then turn to an integrated, multi-tiered approach to 

multi-agent learning on how to coordinate and form coalitions 

more effectively, and how it can be fruitfully applied to an 

application domain that one of us has extensively studied in the 

past, namely, the large-scale ensembles of micro unmanned aerial 

vehicles (micro-UAVs) on multi-task missions carried out in 

highly dynamic, unpredictable, nondeterministic and partially 

observable environments [17, 18, 21].  

2 AGENT COORDINATION AND COALITON 

FORMATION IN COLLABORATIVE MAS 

As outlined in the introduction, distributed coordination and 

coalition formation in collaborative multi-agent domains are 

important problems that have been extensively studied by the 

Distributed AI research community. There are many important 

collaborative MAS applications where autonomous agents need 

to form groups, teams or coalitions. These applications include 

both purely software agents as well as robotic agents; the latter 

include, but are not limited to, various types of autonomous 

unmanned vehicles [17-21, 23, 27]. Collaborative agents may 

need to form teams or coalitions in order to share resources, 

complete tasks that exceed the abilities of individual agents, 

and/or improve some system-wide performance metric such as 

the speed of task completion [8, 12, 21].  

 One well-studied general problem domain is a collaborative 

MAS environment populated with distinct tasks, where each task 

requires a tuple of resources on the agents' part in order for the 

agents to be able to complete that task [11, 12, 18-21]. In this 

distributed task allocation context, agents need to form coalitions 

such that each coalition has sufficient cumulative resources or 

capabilities across the coalition members in order to be able to 

complete the assigned task. 

   There are at least two fundamental properties shared by many 

practical MAS applications that require the agents to be adaptable 

and capable of learning how to improve their coalition formation 

strategies. First, the same larger group of agents may need to 

engage in coalition formation or other types of coordination 

interactions with each other repeatedly, and for the purpose of 

effectively coordinating in the same or similar kind of 

environment, they need to become effective at completing the 

same or similar set of repetitive tasks. Clearly, being able to learn 

from past experience and then improve in future coordination 

interactions would be very beneficial.  

 Second, most realistic MAS environments, including those 

where coalition formation naturally arises as a way of solving the 

distributed task or resource assignment problem as outlined 

above, are characterized by a number of possible sources of 

uncertainty and noise [3, 4, 8, 21, 22]. Sources of uncertainty and 

noise may include (i) inaccuracies and inconsistencies in different 

agents' estimates of the tasks' utility values and/or resource 

requirements, (ii) a possibility of an agent’s failure while working 

on a task as a part of one’s current coalition, and (iii) inaccurate, 

incomplete and/or inconsistent estimates of individual agents' 

abilities and their potential contribution as members of various 

coalitions, that is, imperfect beliefs about other agents [4, 17, 18]. 

Once these sources of uncertainty are taken into account, and 

assuming agents would need to form coalitions repeatedly, clearly 

each agent should be able to learn how to better identify which 

candidate coalitions have a high(er) chance of success, i.e., are 

most likely to succeed at completing future tasks. 

 We argue that a need for learning arises naturally in this kind 

of noisy, imperfect information collaborative MAS environments 

with repeated coalition formations and coalition-to-task 

assignments at two qualitatively distinct levels. At one level, we 

find learning to identify individual agents that among their peers 

are better (more reliable and effective) coalition partners than 

others. In most scenarios we have considered or found in the 

existing literature, this individual agent learning is of the 

reinforcement nature: an agent learns based on the past track 

record of rewards from various completed tasks, which were 

accomplished while the agent was a member of various 

coalitions. At a different level, we encounter a kind of learning 

that takes place at the 'system level' or agent ensemble level. For 

example, how would the MAS designer (e.g., in team robotics 

applications) or the central command-and-control (e.g., in 

emergency response, military or law enforcement applications) go 

about re-defining or modifying the agents' coalition formation 

strategies, the incentives given to the agents to form various 

coalitions, and how to reconcile inconsistencies of different 

agents' views of the world, in order to make the future 

autonomous coalition formation process among its agents as 

effective as possible?  

     We make the case that what is really needed is to combine 

reinforcement learning models and techniques with those of meta-

learning. In our view, only a multi-tiered approach to learning and 

adaptation in multi-agent coordination in general, and distributed 

coalition formation in particular, holds a true promise for making 

a breakthrough on the fundamental challenge of collaborative 

MAS research, that of learning how to coordinate effectively. In 

particular, we posit that the problem of learning how to 

coordinate fundamentally needs to be tackled both at the level of 

individual agents and at the overall MAS level [22]. 

3   REINFORCEMENT LEARNING IN AGENT 

COORDINATION & COALITON FORMATION 

During any coordination encounter in general, and the coalition 

formation process in particular, an agent encounters various 

sources of uncertainty and noise that affect its effectiveness as 

well as its preferences over possible candidate coalitions with 

other agents. Uncertainty and noise may affect the following: 

(i) Agent’s perception of various tasks, and in particular 

tasks’ (i) utility values (to the agent and/or to the entire 

system) and (ii) resource requirements (i.e., how difficult 

is it going to be to complete those tasks); 
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(ii) Agent’s perception of other agents, in particular those 

other agents’ capabilities and reliability as coalition 

members;  

(iii) Inconsistencies in task preferences (e.g., in terms of 

different utility evaluations of a given task by different 

agents, or different estimates of that task’s resource 

requirements) by different members of a potential 

coalition of agents. 

In many applications, the same ensemble of agents may need to 

perform multiple stages of coalition formation and coalition-to-

task mapping. Each member of such agent ensemble, therefore, 

could benefit from being able to learn which coalition partners are 

more reliable or useful than others, based on past experience. In 

most situations, learning is of the reinforcement nature: rather 

than being provided clues by an outside teacher, an agent 

receives, in general, different payoffs for different choices of 

coalition partners and of tasks that the formed coalitions are 

mapped to. These differences in payoff outcomes are the result of 

varying effectiveness of different coalitions that this agent forms 

at different stages of the MAS deployment [4, 5, 22].  

    Several reinforcement learning (RL) models in the context of 

multi-agent coalition formation have been studied. We briefly 

discuss some representative research directions found in the 

existing literature that are directly relevant to our problem setting, 

namely to locally-bounded robotic and unmanned vehicle agents 

that are collaborative and hence strictly cooperative, never 

competitive, with respect to each other. We observe that self-

interested agents that are, in general, competitive with each other, 

may still need to engage in various forms of coordination and 

even some (typically limited) forms of cooperation [25]. More 

details on various collaboration and cooperation challenges in 

multi-agent systems can be found in [25] and [26]. 

    While we assume that each agent has a local picture of the 

world, and therefore different agents’ pictures of the world are in 

general going to differ from each other, we study agents that do 

not have conflicting interests, nor selfish agendas, and hence no 

interest in trying to out-smart or “out-play” each other.  

    In particular, the rich prior art that addresses reinforcement 

learning (or other types of learning) in multi-agent domains 

where the agents are assumed self-interested, and where agents 

therefore in general compete (or possibly both cooperate and 

compete) with each other, is not directly relevant to us. An 

excellent survey on rational distributed decision making among 

self-interested agents, including various aspects of negotiation 

and coordination, can be found in Chapter 5 of [25]. However, we 

are only interested in those aspects of coordination and coalition 

formation that are of relevance to the agents that, while locally 

constrained, are not self-interested.  

    An important critical survey of the broad general area of multi-

agent reinforcement learning, that in particular identifies four 

“core” categories of problems in multi-agent learning, is that of 

Shoham et al. [14]. Our problem, which is collaborative multi-

agent learning on how to coordinate and form coalitions 

effectively, would fit into the second category in the MAS RL 

problem taxonomy proposed in [14]. 

    While our focus on strictly collaborative MAS considerably 

narrows down the overall problem setting (since we explicitly 

exclude the competitive MAS from the onset), the collaborative 

multi-agent domains still offer a wealth of interesting problems. 

The brief discussion of prior art on RL for multi-agent 

coordination, coalition formation and task allocation in 

collaborative MAS that follows is not meant to be exhaustive, but 

rather illustrative of some interesting approaches to reinforcement 

learning in the above-mentioned contexts.  

    In [4], Bayesian models of RL for coalition formation in the 

presence of noise are proposed. Each agent maintains its explicit 

beliefs about properties of other agents, that is, agents engage in 

mutual modeling [26]. These beliefs are then refined and updated 

based on an agent’s experience, i.e., on prior outcomes resulting 

from repeated multi-agent interactions. Each agent is learning to 

control a stochastic environment which is modeled as a Markov 

Decision Process (MDP). Research direction in [1] assumes an 

underlying organizational structure of the multi-agent system, and 

a distributed coalition formation process that is guided by that 

structure. The proposed approach uses RL techniques to improve 

upon local agent decisions within the larger organizational 

context; however, the learning still takes place at the level of 

individual agents. In [5], agents use case-based learning and 

reasoning in order to make and maintain simple models of each 

other, and then engage in reinforcement learning at both joint-

behavior and individual-behavior levels. The joint-behavior 

learning proposed in [5] is an interesting and promising approach 

that has a distinctly co-learning flavor; the main challenge there 

is scaling up such joint behavior learning from a handful of 

agents to dozens to hundreds or more agents. We discuss co-

learning mechanisms and their strengths and limitations in some 

detail in the next two sections. 

    Several other approaches based on RL at the level of an 

individual agent in order to improve effectiveness of coalition 

formation have been studied. More detailed surveys of the state-

of-the-art of RL in the context of coalition formation can be 

found, e.g., in [5] and [8].  

4 META-LEARNING FOR COORDINATION 

AND COALITION FORMATION 

Various forms of reinforcement learning, as briefly discussed in 

the previous section, pertain to how an individual agent can adapt 

and improve its coalition formation strategy and selection of 

coalition partners. However, learning from past experience can 

take place at higher organizational levels than that of individual 

agents; in particular, it can take place at the system level, as well.    

   Depending on the nature of MAS, this system level learning 

could refer to, e.g., self-organizing adaptability of agent 

ensembles or to meta-learning of the MAS system designer or 

other central authority. For example, in case of a collaborative 

MAS application of a system of autonomous micro unmanned 

aerial vehicles (micro-UAVs) on a complex, multi-stage, multi-

task mission [17, 18], this higher-level learning could take place 

at the central command-and-control.  

   In contrast to the relatively rich literature on individual agent’s 

RL in the context of various MAS coordination, prior art on meta-

learning [2, 24]) applied to improving coordination among 

collaborative agents is very modest. Reference [16] studies meta-

learning processes in MAS among self-interested agents that are 

competing with each other, as opposed to engaging in cooperative 

distributed problem-solving. This work focuses on algorithmic 

game-theoretic aspects of multi-agent interactions. In that 

context, a number of assumptions are made that are not suitable 

for our problem setting, including (i) competitive nature of inter-

agent interactions and (ii) small, a priori known (and fixed) finite 

sets of available actions to each agent at each “move” of the 

“game”.  Furthermore, what [16] refers to as meta-learning is 

more properly described as agent co-learning.  
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   The closest in spirit to our approach to learning and meta-

learning for more effective coordination and coalition formation 

in collaborative distributed problem solving MAS is found in 

[15], which addresses learning how to improve coalition 

formation at different organizational levels for general MAS that 

need not be strictly collaborative. [15] studies learning at what the 

authors refer to as tactical and strategic levels. At the tactical 

level (of an individual agent’s decision-making), RL is used to 

identify most viable candidates for coalition partners, whereas 

case-based learning (CBR) is used to refine specific negotiation 

strategies used by an individual agent. At the strategic level, a 

distributed, cooperative CBR aids in improving the overall 

negotiation capabilities, thereby leading to a more effective 

coalition formation. However, [15] doesn’t consider meta-

learning techniques at all.  

     We outline how meta-learning could enable a better multi-

agent coordination and more effective, adaptable and efficient 

coalition formation at the system or strategic level [15, 22]. Past 

performance and coordination strategies (such as choice of 

coalition partners, tie-breaking mechanisms, and how successful 

various resulting coalitions were in performing their tasks) of 

collaborative MAS can be captured in a meta-dataset, that would 

be stored at a (typically, central) knowledge base (KB). Such 

meta-dataset would contain various parameters that are used by 

the agents during the coalition formation process, where selected 

values of these parameters, in general, are associated with 

different levels of coalition formation efficiency and/or 

subsequent coalition successfulness. A meta-learning system can 

exploit this meta-knowledge to learn to associate various 

parameters with successfulness. This meta-learning system would 

use the large system-level KB with complex data sets in order to 

make complex, typically probabilistic/statistical inferences about 

the future effectiveness of various coalition formation strategies 

and choices, based on the past histories (i.e., cumulative 

experience of all individual agents in the system). Such 

cumulative experience and inferences based on that experience 

can be then exploited to adjust how agents select future coalition 

partners, as well as to dynamically adapt coalitions and their 

overall capabilities to tasks and their resource requirements. In 

the fairly common MAS scenario where an agent ensemble 

repeatedly engages in coalition formation and coalition-to-task 

mapping interactions over a considerable time, the accumulated 

experience can reveal statistically relevant patterns to suggest the 

best coalition formation strategy for particular tasks [24].  

    In most practical scenarios of our interest (such as team 

robotics, ensembles of micro-UAVs, as well as various swarm 

intelligence applications), accumulating and storing all this 

experience across large agent ensembles, as well as making non-

trivial statistical inferences based on the knowledge base created 

from that stored experience, would likely be beyond the 

computational resources of any single agent [21, 22]. Moreover, 

both creation and subsequent use of such a system- or ensemble-

level KB would also likely exceed the joint resources or abilities 

of smaller groups of agents, as well; as such, inferences at this 

level, and presumably the improved coordination abilities based 

on those inferences, would therefore also be beyond what is 

achievable via co-learning at the level of small groups of agents. 

Therefore, complex inferences at the level of large agent 

ensembles or the entire system should not be expected to be 

feasible to achieve at lower organizational levels of MAS, nor via 

the classical reinforcement learning and/or co-learning 

mechanisms alone.   

     We further argue that, in many robotic and autonomous 

unmanned vehicle applications, meta-learning is indeed necessary 

if the system designer hopes to take maximal advantage of the 

historical records of her MAS system performance. Furthermore, 

resources necessary for successfully undertaking such a meta-

learning approach are usually readily available – at least insofar 

as offline learning and inference are concerned. The results of 

such offline learning can then be made available to the agents as 

those agents repeatedly engage in the same, or similar, type(s) of 

interactions. In particular, in most practical MAS applications that 

we have studied, complex statistical pattern inference would 

certainly exceed the available computational resources of 

individual agents; hence, the potential benefits of such inference 

capabilities wouldn’t be expected to be attainable without meta-

learning at the system level [22].  

    We conclude our discussion of the role meta-learning by 

summarizing the main conceptual, logical and architectural 

differences between reinforcement learning and meta-learning in 

collaborative, distributed problem-solving MAS. 

     Reinforcement learning is typically done: (i) at the level of a 

single agent; (ii) within the agent (and its memory, processing, 

sensing, etc. resources); (iii) online (and, in many applications, 

esp. those of team robotics and autonomous unmanned vehicle 

nature, in real-time); (iv) is resource-bounded; and (v) is based on 

local information and knowledge available to a single agent. 

�����In contrast, meta-learning in our proposed overall learning 

architecture would be done (i) at the system level (see above for 

some examples, what that could mean in practice); (ii) logically 

as well as architecturally externally to individual agents; (iii) 

offline; (iv) with an access to much richer data sets, as well as to 

more processing power and other computational resources; and 

(v) would not be subject to local constraints of individual agents.    

     In particular, the “meta-knowledge” that is used in the course 

of meta-learning would be stored in a (potentially, very sizable) 

knowledge base that is external to the agents themselves. The 

ability to create and maintain an offline KB external to the agents, 

and to perform complex meta-learning and meta-reasoning 

analysis with that KB by centralized resources available to the 

MAS designer but not to her individual agents, may well be the 

most practical (or even the only possible) way of taking 

advantage of the rich, complex, large data sets that capture 

detailed histories of the past agent interactions. With such a large 

knowledge base, and a sufficiently powerful inference engine, it 

would be possible to represent and analyze knowledge and meta-

knowledge about (i) all individual agents and their past actions, 

deliberations and performances, (ii) local as well as non-local 

inter-agent interactions, and (iii) global properties of the large-

scale agent ensembles and their environments.  

5   MULTI-TIERED LEARNING OF HOW TO 

BETTER COORDINATE MICRO-UAVs    

A collection of micro unmanned aerial vehicles (micro-UAVs) 

that are autonomous (in particular, not remotely controlled by 

either a human operator or a computer program) and that need to 

coordinate with each other in order to accomplish a complex, 

multi-task mission in a highly dynamic, unpredictable, partially 

observable environment provide an ideal tested for modeling, 

designing and analyzing large-scale collaborative MAS operating 

in “the real world”. Such ensembles of micro-UAVs can be used 

for various surveillance, reconnaissance, search-and-rescue and 

other similar tasks, including longer-term missions made of a 
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variety of such tasks [17, 18]. Micro-UAVs are, in general, 

equipped with sophisticated sensors (radars, infra-red cameras 

etc.), actuators or “payloads”, and communication links 

(typically, radios). Their communication may include peer-to-

peer message exchanges, local broadcasts or multicasts, global 

broadcasts/multicasts, and message exchanges with centralized 

command-and-control [6, 7, 17, 18].  

    The coordination problems encountered by an ensemble of 

micro-UAVs can range from conceptually simple (but 

challenging in practice) collision avoidance to distributed divide-

and-conquer “single shot” task allocation to complex fully or 

partially distributed planning [19]. Some consensus problems that 

naturally arise in UAV deployments that are fully distributed (i.e., 

when no communication with command-and-control is possible 

or feasible) include coalition formation and leader election [19, 

21].� �We point out that, while coordinating unmanned vehicles 

originated as primarily a military application, coordination of 

dozens or even hundreds of autonomous unmanned vehicles of 

various types is a problem of increasing importance in the private 

sector and various industries, as well. An interested example on 

unmanned vehicles used in very large warehouses, and DAI 

research behind enabling those vehicles to work together without 

colliding with each other, can be found in [27]. ��
�����A large micro-UAV ensemble on a complex, multi-stage 

mission comprised of diverse tasks with varying time and other 

resource requirements provide an excellent context for multi-

tiered learning on how to better coordinate [17, 22]. A variety of 

tasks and their resource demands, complexity of the overall 

environment, a variety of coordination problems that the UAVs 

may encounter in the course of their mission, multiple time scales 

at which the overall system can use learning and adaptation in 

order to perform better in the future, and multiple logical and 

organizational levels at which large such micro-UAV ensembles 

can be analyzed and optimized, all suggest the need for a multi-

tiered approach to learning. At the level of an individual UAV, 

the familiar reinforcement learning paradigm is suitable.  Due to 

space constraints, we won’t discuss it further; we will focus, 

instead, on co-learning and meta-learning in the outlined setting.   

     Co-learning among small groups of UAVs could take place 

along similar lines to what is proposed in [15]. One caveat is that 

the need for one agent to model some of the other agents 

explicitly would not be motivated by differing, possibly 

conflicting, interests of different agents. Instead, it would be due 

to any combination of the following: (i) imperfections of 

communication links, (ii) inaccuracies in how agents evaluate 

tasks and, in particular, the suitability of their own capabilities or 

resources to perform those tasks, (iii) inconsistencies in perceived 

value and resource requirements of a task as seen by different 

agents, (iv) different capabilities of agents, and (v) agents’ 

inconsistent beliefs about each other’s capabilities.  

     Consider a simple example: an agent, A, identifies some task T 

that A estimates would require two agents of A’s capabilities to 

complete. Among near-by UAVs, A can pick UAV B or UAV C 

to form a two-member coalition that would be assigned to task T. 

Ability of A (and other agents, including B and C) to co-learn

would enable agent A to (i) solicit feedback from B and C on how 

they view task T’s value and resource requirements, and to 

compare those with its own view of the task, (ii) based on past 

interactions with B and C, to have a preference for one over the 

other as a coalition partner, (iii) to learn from B and C if they 

happen to have identified other tasks worth completing, (iv) to 

have a degree of trust or confidence in B’s and C’s evaluations of 

their own abilities, as well as (v) of the values and resource 

requirements of other tasks that agents B and C may be interested 

in. Based on (i) – (v), agent A may be able to make a more 

informed decision on matters such as (a) whether to still pursue 

task T or opt for some T’ that it learns about from B or C, (b) 

which of the alternative tasks (if more than one such T’ exists) to 

choose, and (c) which coalition partner, B or C, to choose as 

preferred coalition partner for the task of choice.

     Co-learning as above, however, could hardly be expected to 

scale up; that is, a micro-UAV can perhaps maintain explicit 

models of a handful of other micro-UAVs, but in case of a very 

large ensemble (made of hundreds or possibly thousands of such 

micro-UAVs), trying to model most or all of other agents would 

simply exceed the memory and processing power of an individual 

agent. Moreover, such swarm micro-UAV deployments would 

likely entail each UAV being able to directly interact with only a 

handful of others; moreover, flooding this ad hoc network of 

micro-UAVs with the global information (say, sent from the 

central command-and-control) would likely not work well either, 

both from the communication cost standpoint and from the 

computational processing stand-point.  

     In our view, to take the full advantage of accumulated global 

knowledge and meta-knowledge about all the agents in the 

system, their past interactions, various tasks and their properties, 

and successfulness of different previously used coordination 

strategies, a genuine meta-learning [2, 24] approach is required. 

Due to its memory and CPU time resource requirements, this 

meta-learning would be expected to take place offline, perhaps at 

a centralized command-and-control. We briefly outline (i) the 

potential benefits of integrating such offline, computationally 

intensive meta-learning (and meta-reasoning) with the online, 

real-time (RT) reinforcement learning and co-learning that are 

less computationally demanding but also provide less insights, 

and (ii) what kind of knowledge would be stored in an 

appropriate knowledge base that a meta-learning and meta-

reasoning engine would then use in order to enhance longer-term 

learning and decision-making. 

    Consider a scenario where the command-and-control may want 

to learn from the experience with the past deployments of UAV 

teams, so that the future deployments of a similar nature don’t 

repeat the same mistakes and hopefully achieve the required 

coordination faster than before. To do this, without meta-learning, 

the command-and-control would have to base its inferences on 

what went wrong, what needs to be improved (and how)  entirely 

on human experience and expertise (i.e., the military or law 

enforcement commanders looking into videos, or log files, or 

other track records, and then deciding how to re-program and re-

deploy the UAVs in the future). Meta-learning and meta-

reasoning would enable partial (or, in principle, even complete) 

automation of such future deployments, where lessons are learned 

from the past mistakes at the level of the entire system, not just 

individual UAVs; hence, this level of automated learning and 

reasoning would go beyond what individual UAVs can 

reinforcement-learn from their local environments, histories etc.  

     Meta-learning and meta-reasoning could indicate what 

coordination mechanisms have better chance of success for a 

given terrain or type of mission or types/capabilities of given 

UAVs than other; but the future deployments of UAVs would still 

be genuinely distributed (i.e., no remote control), except that 

some new knowledge and meta-knowledge is periodically “built 

into” the agents; and indeed some of that new knowledge may 

have been obtained in a centralized manner, as discussed above. 
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    The kinds of meta-data that the knowledge base (KB) at the 

command-and-control center would store could include properties 

of all tasks encountered by any of the micro-UAVs so far, 

individual experiences of agents across the entire large ensemble 

and across different time epochs, and various meta-knowledge 

inferred from the historical records. Some examples of such 

records would be those pertaining to appropriate agent coalitions, 

resources that were required and how much time it took in the 

past to complete particular type of tasks (such as search-and-

rescue or surveillance or reconnaissance tasks) in particular types 

of environment (for example, mountainous terrain vs. flat terrain,  

the size in square miles of the land area across which the search 

took place, what were the weather conditions, was resistance 

from an adversary encountered and what type of resistance, etc.). 

Such meta-knowledge could then be used in the second stage of 

the meta-learning inference engine’s operation to provide the 

agents with summaries of all the past experience in forms of task 

and candidate coalition rankings, “bonus” incentives to build 

coalition with one subset of agents instead of another, revised 

estimates of the values (expected payoffs) and resource 

requirements of new tasks that are sufficiently similar to some of 

the previously encountered tasks, and so on. 

6   SUMMARY 

We survey in this paper distributed coordination and coalition 

formation in collaborative MAS, and discuss the need for multi-

agent learning in order to improve coordination. We propose a 

novel multi-tiered approach to multi-agent learning, where 

learning from past interactions takes place at different logical and 

organizational levels, from individual agents to the entire large-

scale agent ensembles and the system designer level. In 

particular, we argue that meta-learning applied to coordination 

and coalition formation, and integrated with individual agents’ 

reinforcement learning and co-learning, holds a great promise for 

genuinely adaptable, distributed problem solving multi-agent 

systems whose complex behaviors need not be (and often times in 

practice, actually cannot be) “hard-wired” at the design time.  

      We then focus on an application, namely, micro-UAVs. We 

study multi-tiered learning in that setting, and outline how would 

meta-learning apply to UAV coordination. Inferring useful meta-

knowledge and then using that meta-knowledge to help agents 

revise their beliefs and intentions, and ultimately to coordinate 

better, would in most situations be beyond the resources of 

individual agents such as micro-UAVs. Therefore, large-scale 

micro-UAV deployments, as well as many collaborative large-

scale MAS conceptually similar to micro-UAVs, could uniquely 

benefit from meta-learning and meta-reasoning techniques.  
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P.T. Tošić and R. Vilalta / Learning and Meta-Learning for Coordination of Autonomous Unmanned Vehicles168


