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On Computing Backbones of Propositional Theories

Joao Marques-Silva' and Mikola$ Janota? and Inés Lynce?

Abstract. Backbones of propositional theories are literals that are
true in every model. Backbones have been used for characterizing
the hardness of decision and optimization problems. Moreover, back-
bones find other applications. For example, backbones are often iden-
tified during product configuration. Backbones can also improve the
efficiency of solving computational problems related with proposi-
tional theories. These include model enumeration, minimal model
computation and prime implicant computation. This paper investi-
gates algorithms for computing backbones of propositional theories,
emphasizing the integration of these algorithms with modern SAT
solvers. Experimental results, obtained on representative problem in-
stances, indicate that the proposed algorithms are effective in practice
and can be used for computing the backbones of large propositional
theories. In addition, the experimental results indicate that proposi-
tional theories can have large backbones, often representing a signif-
icant percentage of the total number of variables.

1 Introduction

Backbones of a propositional formula ¢ are literals that take value
true in all models of ¢ [22, 4, 15]. Interest in backbones was orig-
inally motivated by the study of phase transitions in Boolean Satis-
fiability (SAT) problems, where the backbone size was related with
search complexity. In addition, backbones have also been studied in
random 3-SAT [9] and in optimization problems [8, 27, 16, 28], in-
cluding Maximum Satisfiability (MaxSAT) [29, 21]. Finally, back-
bones have been the subject of recent interest, in the analysis of back-
doors [11] and in probabilistic message-passing algorithms [12].

Besides the theoretical work, backbones have been studied (often
with other names) in practical applications of SAT. One concrete ex-
ample is SAT-based product configuration [1], where the identifica-
tion of variables with necessary values has been studied in the recent
past [18, 14, 13]. In configuration, the identification of the backbone
prevents the user from choosing values that cannot be extended to
a model (or configuration). Besides uses in practical applications,
backbones provide relevant information that can be used when ad-
dressing other decision, enumeration and optimization problems re-
lated with propositional theories. Concrete examples include model
enumeration, minimal model computation and prime implicant com-
putation, among others.

This paper has three main contributions. First, it develops several
algorithms for computing backbones. Some algorithms are based on
earlier work [14, 13, 11], whereas others are novel. Moreover, sev-
eral new techniques are proposed for improving overall performance
of backbone computation. Second, the paper evaluates the proposed
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algorithms in computing the backbone of large practical SAT prob-
lem instances, many of which taken from recent SAT competitions.
Third, and somewhat surprisingly, the results show that large prac-
tical problem instances can contain large backbones, in many cases
close to 90% of the variables. In addition, the experimental results
show that, by careful implementation of some of the proposed al-
gorithms, it is feasible to compute the backbone of large problem
instances.

The paper is organized as follows. Section 2 introduces the nota-
tion and definitions used throughout the paper. Section 3 develops
two main algorithms for backbone computation, one based on model
enumeration and the other based on iterative SAT testing. Also, this
section details techniques that are relevant for improving the perfor-
mance of backbone computation algorithms, and suggests alterna-
tive algorithms. Moreover, a number of algorithm configurations are
outlined, which are then empirically evaluated. Section 4 analyzes
experimental results on large practical instances of SAT, taken from
recent SAT competitions*. Finally, Section 5 concludes the paper.

2 Preliminaries

A propositional theory (or formula) ¢ is defined on a set of variables
X. pisrepresented in conjunctive normal form (CNF), as a conjunc-
tion of disjunctions of literals. ¢ will also be viewed as a set of sets
of literals, where each set of literals denotes a clause w, and a literal
is either a variable x or its complement z. The following definitions
are assumed [20]. An assignment v is a mapping from X to {0, u, 1},
v:X — {0,u,1}. vis a complete assignment if v(z) € {0, 1} for
all x € X; otherwise, v is a partial assignment. w is used for vari-
ables for which the value is left unspecified, with 0 < v < 1. Given a
literal , v(1) = v(z) ifl = z,and v(l) = 1 —v(x) ifl = Z. visalso
used to define v(w) = maxiec., (1) and v(p) = minge, v(w). A
satisfying assignment is an assignment v for which v(¢) = 1. Given
¢, SAT () = 1 if there exists an assignment v with v(¢) = 1. Sim-
ilarly, SAT(¢) = 0 if for all complete assignments v, v(¢) = 0. In
what follows, true variables represent variables assigned value 1 un-
der a given assignment, whereas false variables represent variables
assigned value 0.

2.1 Models and Implicants

In many settings, a model of a propositional theory is interpreted as
a satisfying assignment. However, in the remainder of this paper, it
is convenient to represent a model as a set of variables M, defined
as follows. Given a satisfying assignment v, for each z € X, add
x to M if v(x) = 1. Hence, models are represented solely with the
true variables in a satisfying assignment (see for example [6, 19]).

4 http://www.satcompetition.org/.
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An implicant I is defined as a set of literals. Given a satisfying as-
signment v, for each z € X, (i) if v(z) = 1, then include z in T; (ii)
if v(z) = 0, then include Z in I. This in turn leads to the following
definitions.

Definition 1 (Minimal Model) A model M of ¢ is minimal if there
is no other model Mo of  such that M> C M;.

Minimal models find many applications in artificial intelligence, in-
cluding knowledge representation and non-monotonic reasoning [2,
6, 17].

Definition 2 (Prime Implicant) An implicant I of ¢ is prime if
there is no other implicant I of p such that Io C I.

Prime implicants also find many applications in computer science, in-
cluding knowledge compilation in artificial intelligence and Boolean
function minimization in switching theory [24, 6, 17]. Besides a wide
range of practical applications, prime implicants and minimal mod-
els have also been studied in computational complexity theory. The
identification of a minimum-size minimal model is in A% [log n] [19].
Minimal models can be computed with algorithms for minimum-
cost satisfiability (also referred to as the Binate Covering Prob-
lem (BCP)) [5, 19, 10]). Prime implicants can be obtained from com-
puted satisfying assignments. Suppose v is a satisfying assignment,
which can either be complete or partial. For each w € ¢, let T (w, v)
denote the true literals of w, and let 7 (, v) = Uyeo7 (w, V). More-
over, define the following minimum cost satisfiability problem:

min Z l

1ET (p,v) M
st NAweep (VleT(w,V) l)

The solution to the above set covering problem represents the small-
est number of true literals (among the true literals specified by v)
that satisfy the propositional theory. Hence, this solution represents
a prime implicant of (.

Proposition 1 Given a satisfying assignment v of a propositional
theory o, the solution of (1) is a prime implicant of .

This result summarizes the main arguments of [25]. Moreover, it is
well-known that the computation of prime implicants can be modeled
with minimum-cost satisfiability [23].

2.2 Backbones

The most widely used definition of backbone is given in [27] (see [8]
for an alternative definition):

Definition 3 (Backbone) Let ¢ be a propositional theory, defined
on a set of variables X. A variable x € X is a backbone variable of
@ if for every model v of o, v(x) = v, withv € {0,1}. Letl, = T if
v =0andl, = x ifv=1. Thenl is a backbone literal.

In addition, the computation of the backbone literals of ¢ is referred
to as the backbone problem. In the remainder of the paper, backbone
variables and backbone literals will be used interchangeably, and the
meaning will be clear from the context. Although the focus of this
paper are satisfiable instances of SAT, there are different definitions
of backbone for the unsatisfiable case [22, 15]. For the algorithms
described in this paper, the backbone for unsatisfiable instances is
defined to be the empty set.

Furthermore, backbones can be related with the prime implicants
of a propositional theory.

Proposition 2 (Backbones and Prime Implicants) x € X is a
backbone variable of a propositional theory ¢ if and only if either
x or X (but not both) occur in all prime implicants of ¢.

Following the definition of backbone, a possible solution for com-
puting the backbone of a propositional theory consists in intersecting
all of its models. The final result represents the backbone. Proposi-
tions 1 and 2 can be used for developing procedures for solving the
backbone problem, including: (i) intersection of the prime implicants
based on enumeration of satisfying assignments; and (ii) intersection
of the prime implicants based on enumeration of the minimal models
of a modified propositional theory [23].

Moreover, additional alternative approaches can be devised. Kilby
et al. [16] indicate that the backbone problem is NP-equivalent, and
that deciding whether a variable is a backbone of a propositional the-
ory is NP-easy, because this can be decided with a SAT test. Clearly,
this suggests computing the backbone of a propositional theory with
a sequence of SAT tests that grows with | X |. Hence, the backbone
problem can be solved by a polynomial number of calls to a SAT
solver, and so the backbone problem is in Ag . The basic result can
be stated as follows:

Proposition 3 Let ¢ be a propositional theory, defined on a set of
variables X, and consider the modified theories pp = ¢ U {z} and
on = @ U{Z}. Then one of the following holds:

1. If op and @n are both unsatisfiable, then ¢ is also unsatisfiable.
2. If pp is satisfiable and oN is unsatisfiable, then x € X is a
backbone such that o is satisfiable if and only if x = 1 holds.

3. If on is satisfiable and pp is unsatisfiable, then x € X is a
backbone such that o is satisfiable if and only if x = 0 holds.

4. Ifboth on and @ p are satisfiable, then x € X is not a backbone.

Proposition 3 can be used to develop algorithms that compute the
backbone of a propositional theory with a number of SAT tests that
grows with | X, as suggested for example in [14, 13, 11]. The dif-
ferent approaches outlined in this section for solving the backbone
problem are described in more detail in the next section.

3 Computing Backbones

This section develops algorithms for backbone computation. The
first algorithm follows the definition of backbone literal. Hence, it
enumerates and intersects the satisfying assignments of the propo-
sitional theory. As will be shown in Section 4, this algorithm does
not scale for large propositional theories. The second algorithm con-
sists of iteratively performing satisfiability tests, considering one or
two truth values for each variable. This algorithm follows earlier
work [14, 13, 11], and is amenable to a number of optimizations.
This section also outlines a number of different algorithm configura-
tions, which will be evaluated in Section 4.

3.1 Model Enumeration

An algorithm for computing the backbone of a propositional theory
based on model enumeration is shown in Algorithm 1. The algo-
rithm consists in enumerating the satisfying assignments of a propo-
sitional theory. For each satisfying assignment, the backbone esti-
mate is updated. In addition, a blocking clause (e.g. [25]) is added
to the propositional theory. A blocking clause represents the com-
plement of the computed satisfying assignment, and prevents the
same satisfying assignment from being computed again. In order
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Input : CNF formula ¢
Output: Backbone of ¢, vr
1 v 0
2 repeat

) < SAT(p)
false then
mvg // Terminate if unsatisfiabl
(? then
v // Initial backbone estimat

// SAT solver cal

vrNv // Update backbone estimat

lockClause(v) // Block mode
wB

12 until outc = false or vg = {)

13 return ()

Algorithm 1: Enumeration-based backbone computation

to improve the efficiency of the algorithm, the blocking clauses are
heuristically minimized using standard techniques, e.g. variable lift-
ing [25]. In addition, a SAT solver with an incremental interface [3] is
used. The incremental interface reduces significantly the communi-
cation overhead with the SAT solver, and automatically implements
clause reuse [20].

It is interesting to observe that Algorithm 1 maintains a superset
of the backbone after the first satisfying assignment is computed.
Hence, at each iteration of the algorithm, and after the first satisfying
assignment is computed, the size of vr represents an upper bound
on the size of the backbone.

3.2 TIterative SAT Testing

The algorithm described in the previous section can be improved
upon. As shown in Proposition 3, a variable is a backbone provided
exactly one of the satisfiability tests SAT(pU{x}) and SAT(pU{Z})
is unsatisfiable. This observation allows devising Algorithm 2. This
algorithm is inspired by earlier solutions [14, 13]. Observe that if a
literal is declared a backbone, then it can be added to the CNF for-
mula, as shown in lines 9 and 12; this is expected to simplify the
remaining SAT tests. Clearly, the worst case number of SAT tests for
Algorithm 2 is 2 - | X|.

Analysis of Algorithm 2 reveals a number of possible optimiza-
tions. First, it is unnecessary to test variable x if there exist at least
two satisfying assignments where x takes different values. Also,
modern SAT solvers compute complete assignments [20]. Clearly,
some variable assignments may be irrelevant for satisfying the CNF
formula. More importantly, these irrelevant variable assignments are
not backbone literals. These observations suggest a different organi-
zation, corresponding to Algorithm 3. The first SAT test provides a
reference satisfying assignment, from which at most | X | SAT tests
are obtained. These | X| SAT tests (denoted by A in the pseudo-code)
are iteratively executed, and serve to decide which literals are back-
bones and to reduce the number of SAT tests that remain to be con-
sidered. The organization of Algorithm 3 guarantees that it executes
at most | X'| 4+ 1 SAT tests. Besides the reduced number of SAT tests,
Algorithm 3 filters from backbone consideration (i) any variable that
takes more than one truth value in previous iterations of the algo-
rithm (lines 17 to 19), and (ii) any variable that can be removed from
the computed satisfying assignment (lines 14 to 16).

Input : CNF formula ¢, with variables X
Output: Backbone of ¢, vr

vr

2 foreach x € X do

) < SAT(p U {z})

) < SAT(p U {z})

false and outcy = false then
n ()

false then
vr U {Z}
puU{z}
false then
vr U {z}
¢ U {z}

[

// T is backbone

// x 1s backbone

13 return vg

Algorithm 2: Iterative algorithm (two tests per variable)

Input : CNF formula ¢, with variables X
Output: Backbone of ¢, vr

-

(outc,v) < SAT(yp)
2 if outc = false then
3 l return ()

4 v « ReduceModel(v)
s A—{l|lev}
6 VR < @

7 foreach [ € A do
8

9

// Simplify ref model
// SAT tests planned

(outc, v) «— saT(p U {l})
if outc = false then

12 else

vr «— vr U{l} // Backbone identified

o —pU{l}

educeModel(v)
hz € X do

Z v AT ¢ v then
A—A—{z,7}

// Simplify model

// Var filtering

A—A-{l} // Var filtering

20 return vp

Algorithm 3: Iterative algorithm (one test per variable)

Different techniques can be used for removing variables from
computed satisfying assignments. One example is variable lift-
ing [25]. Lifting consists of analyzing each variable and discarding
the variable if it is not used for satisfying any clause. Another ex-
ample is (approximate) set covering [25]. The set covering model
is created by associating with each variable the subset of clauses it
satisfies. The goal is then to select a minimal set of variables that sat-
isfies all clauses (see (1) in Section 2.1). Since the set covering prob-
lem is NP-hard, approximate solutions are often used. One example
is a greedy approximation algorithm for the set covering problem
(e.g. [7]). The integration of either of these two techniques is shown
in lines 4 and 13.

In contrast to the enumeration-based approach, iterative algo-
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rithms refine a subset of the backbone. Hence, at each iteration of
the algorithm, the size of vr represents a lower bound on the size of
the backbone. For complex instances of SAT, the enumeration-based
and the iteration-based can be used to provide approximate upper and
lower bounds on the size of the backbone, respectively.

3.3 Implementation & Configurations

The previous sections outlined two main algorithmic solutions for
computing the backbone of a propositional theory. In addition, a
number of optimizations was proposed. Nevertheless, in order to
achieve the best possible performance, the practical implementation
of the algorithms involves essential optimizations. For algorithms
that require iterated calls to a SAT solver, a well-known technique is
the use of an incremental interface (e.g. [20]). For the results in this
paper, the incremental interface of the PicoSAT [3] solver was con-
sidered. Nevertheless, an incremental interface is standard in modern
SAT solvers [20]. For backbone computation, the incremental inter-
face allows specifying a target assumption (i.e. the value to assign
to a variable) in each iteration. As a result, there is no need to re-
create the internal data structures of the SAT solver. One additional
advantage of using an incremental interface is that clause reuse [20]
is implemented by default. Hence, unit clauses from backbones are
automatically inferred.

Table 1 summarizes the algorithm configurations to be evaluated in
Section 4. Enumeration denotes an implementation of Algorithm 1.
Iteration with 2 tests denotes an implementation of Algorithm 2. It-
eration with 1 test denotes an implementation of Algorithm 3. In-
cremental denotes implementing repeated SAT tests through an in-
cremental interface. Variable filtering represents the elimination of
unnecessary SAT tests using the pseudo-code in lines 17 to 19 in Al-
gorithm 3. Variable lifting represents the elimination of unnecessary
SAT tests obtained by simplifying computed satisfying assignments
using standard variable lifting [25]. Appr set covering represents the
elimination of unnecessary SAT tests obtained by simplifying com-
puted satisfying assignments using an approximation of set cover-
ing [25]. These two techniques correspond to calling function Re-
duceModel in lines 4 and 13 of Algorithm 3, and serve for further
elimination of unnecessary SAT tests, as shown in lines 14 to 16
of Algorithm 3. In Table 1, both bb3, bb8, and bb9 correspond to
Algorithm 3. The main differences are (i) bb3 does not use the SAT
solver’s incremental interface, and (ii) the satisfying assignment sim-
plification algorithm used differs.

3.4 Additional Solutions

Besides the algorithms outlined in the previous sections, and which
will be evaluated in Section 4, a number of additional algorithms and
techniques can be envisioned. A simple technique is to consider k
initial SAT tests that implement different branching heuristics, dif-
ferent default truth assignments and different initial random seeds. A
similar technique would be to consider local search to list a few initial
satisfying assignments, after the first satisfying assignment is com-
puted. Both techniques could allow obtaining satisfying assignments
with more variables assuming different values. This would allow set
A to be further reduced. The experiments in Section 4 indicate that
in most cases the number of SAT tests tracks the size of the back-
bone, and so it was deemed unnecessary to consider multiple initial
SAT tests. Another approach consists of executing enumeration and
iteration based algorithms in parallel, since enumeration refines up-
per bounds on the size of the backbone, and iteration refines lower

Feature bb1 bb2 bb3 bb4 bb5 bb6 bb7 bb8 bb9
Enumeration X

Iteration, 2 tests X X

Iteration, 1 test X X X X X X
Incremental X X X X X X X
Variable filtering X X X X X
Variable lifting X X X

Appr set covering X

Table 1. Summary of algorithm configurations

bounds. Such algorithm could terminate as soon as both bounds be-
come equal. The experiments in Section 4 suggest that a fine-tuned
iterative algorithm, integrating the techniques outlined above, is a
fairly effective solution, and enumeration tends to perform poorly
on large practical instances. Finally, as suggested in Section 2.2 and
Proposition 2, an alternative algorithm would involve the enumera-
tion of prime implicants, instead of model enumeration. Algorithm 1
could be modified to invoke a procedure for computing prime impli-
cants. However, given the less promising results of model enumera-
tion, prime implicant enumeration is unlikely to outperform the best
algorithms described in earlier sections.

4 Results

The nine algorithm configurations outlined in Section 3.3 were eval-
uated on representative SAT problem instances. First, a few simple
satisfiable instances were taken from standard encodings of planning
into SAT [26]. These instances provide a baseline for comparing all
algorithms. In addition, a few 2dlx instances were selected from the
SAT 2002 competition. Finally, instances from the SAT 2005, 2007
and 2009 competitions were selected. These include instances from
the maris, grieu, narain, ibm and aprove classes of benchmarks. The
selected instances are solved by a modern SAT solver in a few sec-
onds (usually less than 20s), to allow computing the backbone in a
reasonable time limit. Nevertheless, some of the instances consid-
ered have in excess of 70,000 variables, and a few hundred thousand
clauses. In total, 97 satisfiable instances were evaluated. All exper-
imental results were obtained on an Intel Xeon 5160 3GHz server,
running RedHat Enterprise Linux WS4. The experiments were ob-
tained with a memory limit of 2GB and a time limit of 1,000 sec-
onds. In the results below, TO indicates that the CPU time limit was
exceeded. Figure 1 presents a plot by increasing run times of the
problem instances for each configuration. The x-axis represents the
number of instances solved for a given run time, which is shown in
the y-axis (in seconds). In addition, Table 2 presents the results in
more detail for a representative subset of the instances. The first col-
umn gives the instance name, the second one its number of variables,
the third one the percentage of variables which belong to the back-
bone, and the following ones the CPU time (in seconds) required to
run each of the algorithm configurations.

One main conclusion of the experimental results, is that backbone
computation for large practical instances is feasible. Some algorithm
configurations allow computing the backbone for problem instances
with more than 70,000 variables (and more than 250,000 clauses).
Another main conclusion is that the size of the backbone for these
large problem instances can represent a significant percentage of the
number of variables. For some of the large problem instances, the
backbone can represent 90% of the variables, and for a few other
examples, the backbone can exceed 90%. Moreover, the backbone
size is never below 10%. The identification of large backbones on
non-random instances agrees with, but significantly extends, earlier
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Instance #vars %bb bb1 bb2 bb3 bb4 bb5 bb6 bb7 bb8 bb9
crawford-4blocksb 410 86.3 0.1 94 8.6 0.6 0.5 0.4 0.4 0.5 0.4
dimacs-hanoi5 1931 | 100.0 0.6 | 805.9 | 800.9 1.8 1.7 1.5 1.5 1.5 1.5
selman-f7hh.15 5315 13.2 TO [ 335.3 62.4 98.9 45.7 54.5 25.2 11.2 11.9
selman-facts7hh.13 4315 15.6 TO @ 165.4 347 44.6 22.3 23.6 12.6 5.4 54
2dIx_cc.mc_ex_bp_f2_bug001 4821 36.6 TO TO | 322.4 78.0 21.1 41.4 15.1 14.9 14.8
2dIx_cc.mc_ex_bp_f2_bug005 4824 44.7 TO TO TO 64.8 253 44.4 22.1 17.9 18.3
2dIx_cc.mc_ex_bp_f2_bug009 4824 34.8 TO | 489.2 | 290.2 65.6 16.7 35.1 12.3 12.4 12.1
maris-sat05-depots3.vOla 1498 82.6 TO 86.1 73.6 7.6 5.7 6.5 54 54 5.5
maris-sat05-ferry8_v01i 1745 63.3 TO TO TO 40.9 26.5 33.5 18.8 19.4 18.9
maris-sat05-rovers5 _ks99i 1437 23.7 TO 30.0 15.3 4.9 2.3 3.0 1.8 1.8 1.8
maris-sat05-satellite2_v01i 853 80.1 1.6 18.4 15.7 1.0 0.8 0.7 0.6 0.6 0.6
grieu-vmpc-s05-25 625 | 100.0 | 263.6 TO TO 91.9 92.1 1299 131.4 | 131.1 | 139.1
grieu-vmpc-s05-27 729 92.9 TO TO TO J591.2 | 602.4 |l 882.2 | 853.9 |1 859.3 | 742.2
narain-satQ7-clauses-2 75528 89.3 TO TO TO TO TO W 974.4 | 869.3 |l 868.9 | 865.8
IBM_FV_01_SAT _dat.k20 15069 36.9 TO TO TO [ 526.5 @ 367.1 |l 564.0 | 357.6 |1 379.2 | 406.5
IBM_FV _02_2_SAT _dat.k20 12088 19.4 TO TO i 203.9 | 303.1 419 158.4 24.1 23.3 23.0
IBM_FV _03_SAT _dat.k35 34174 59.8 TO TO TO TO M 553.4 | 931.6 | 323.7 | 322.1 |1 320.8
IBM_FV _04_SAT _dat.k25 27670 78.4 TO TO TOMS545.1 31742974 163.6 @ 172.4 @ 175.7
IBM_FV _04_SAT _dat.k30 33855 70.5 TO TO TO M 898.5 4542 [ 513.1 | 224.5 |1 223.7 | 224.7
IBM_FV _06_SAT _dat.k35 42801 50.8 TO TO TO TO TO TO | 669.3 | 728.1 |l 655.4
IBM_FV _.06_SAT _dat.k40 49126 45.0 TO TO TO TO TO TO TO [ 994.3 W 977.9
IBM_FV_1.02_3_SAT .dat.k20 il 15775 17.4 TO TO TO | 566.2 59.7 | 316.1 439 36.8 37.0
IBM_FV_1.16_2_SAT .dat.k20 7410 29.7 TO @ 174.9 56.8 67.1 15.5 34.4 8.6 8.1 8.2
IBM_FV_1.16_2_SAT .dat.k50 s 19110 19.8 TO TOM373.4 @ 779.5 | 142.5 | 408.7 82.1 82.7 77.3
IBM_FV _19_SAT _dat.k30 73337 28.9 TO TO TO TO TO TO [ 947.0 |l 684.9 | 634.7
IBM_FV_2_16_2_SAT .dat.k20 7416 29.7 TO | 182.0 60.3 35.3 8.7 18.1 4.9 4.9 4.9
IBM_FV_2_16_2_SAT .dat.k50 il 19116 19.8 TO TO | 378.3 @ 483.5 88.9 | 242.3 47.6 47.2 47.2
IBM_FV _3.02_3_SAT _dat.k20 gl 15775 17.5 TO TO TO @ 492.1 38.1 | 207.2 25.9 24.4 24.4
IBM_FV _4.16_2_SAT _dat.k20 [l 10371 34.6 TO | 395.6 @ 137.4 69.4 15.6 35.7 9.2 9.2 9.2
IBM_FV _4_16_2_SAT _dat.k50 |l 25971 25.1 TO TO i 786.3 |1 952.9 | 152.8 | 487.6 83.5 83.5 83.4
IBM_FV_5.02_3_SAT .dat.k20 sl 15775 17.5 TO TO TO Q@ 374.4 38.5 @ 195.5 26.2 21.8 21.7
IBM_FV _5.16_2_SAT .dat.k50 il 25582 25.4 TO TO | 666.6 TO 2062 6695 M113.0 @ 116.1 @ 115.5
AProVE(09-03 59231 51.7 TO TO TO TO TO TOM743.3 8 779.5 | 783.1
AProVE09-05 14685 76.3 41.7 TO TO | 146.5 72.0 97.2 61.8 61.6 61.6
AProVE09-07 8567 77.4 M 108.3 TO TOR 1472 117.7 | 120.0 8 106.2 | 108.4 | 114.3
AProVE(09-11 20192 50.5 TO TO TO W475.3 | 102.1 | 269.7 79.4 81.8 81.9
AProVEQ09-13 7606 64.5 TO j§222.1 @ 123.3 33.5 11.9 16.3 8.7 8.4 8.5
AProVE09-17 33894 65.4 TO TO TO TO | 895.2 TO [ 839.9 | 629.8 |l 669.9
AProVE(09-22 11557 45.5 TO [ 724.2 | 295.7 | 144.7 29.6 75.4 19.1 19.1 19.2
AProVE(09-24 61164 18.0 TO TO TO TO | 897.0 TO [ 687.2 | 697.3 |l 648.0

Table 2. Experimental results for the 9 algorithm configurations

results [11]. It should be emphasized that these large backbones are
observed in problem instances originating from well-known practical
applications of SAT, including planning (maris, and the initial set
of benchmarks), formal verification (2dlx), model finding (narain),
model checking (ibm), termination in term-rewriting (aprove) and
cryptanalysis (grieu).

In addition, the experimental results allow drawing several gen-
eral conclusions. With a few exceptions, it can be concluded that the
enumeration-based algorithms do not scale for large practical prob-
lem instances. Despite the poor results, it should be noted that al-
gorithm bb1 is fairly optimized. For example, blocking clauses are
minimized with variable lifting [25], and the SAT solver’s incremen-
tal interface is used [3], which also provides clause reuse. Iterative
algorithms that do not use the incremental SAT solver interface also
perform poorly. This is justified by (i) learned clauses are not reused,
and (ii) repeated creation of the SAT solver’s internal data structures.

The use of a single test per variable, with an additional initial test
for computing a reference assignment, is an effective technique that
can reduce the run times substantially. Some of the simplification
techniques are key for solving larger problem instances. Concrete
examples include filtering of variables with complementary values
in different models, and recording backbone literals as unit clauses.
The simplification of models for additional filtering of variables can
be significant for some of the most difficult problem instances. Re-
garding Table 2, and with the exception of a few outliers, the per-
formance improves (often significantly) with the integration of the
techniques proposed in this paper. bb9, bb8 and bb7 are the best al-
gorithms for 20, 18 and 14 instances, respectively. The remaining
algorithms combined are the best performing for only 4 instances.
Similarly, for Figure 1, out of the test set of 97 instances, bb8 solved
78 instances, closely followed by bb9 and bb7, that solve 76 and 75
instances, respectively.
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Figure 1. Run times of each algorithm configuration

5 Conclusions

This paper develops algorithms for backbone computation. The al-
gorithms build on earlier work, but integrate new techniques, aiming
improved performance. In addition, the paper conducts a compre-
hensive experimental study of backbones on practical instances of
SAT. The experimental results suggest that iterative algorithms, re-
quiring at most one satisfiability test per variable, are the most effi-
cient. However, the best performance requires exploiting the incre-
mental interface of modern SAT solvers, and the implementation of
a number of key techniques. These techniques include learning unit
clauses from identified backbones, clause reuse, variable filtering due
to simplified models, and variables having more than one truth value
in satisfying assignments. In addition, the experimental results show
that the proposed algorithms allow computing the backbone for large
practical instances of SAT, with variables in excess of 70,000 and
clauses in excess of 250,000. Furthermore, the experimental results
also show that these practical instances of SAT can have large back-
bones, in some cases representing more than 90% of the number of
variables and, in half of the cases, representing more than 40% of the
number of variables.

The experimental results confirm that backbone computation is
feasible for large practical instances. This conclusion motivates fur-
ther work on applying backbone information for solving decision and
optimization problems related with propositional theories, including
model enumeration, minimal model computation and prime impli-
cant computation. Finally, the integration of additional model sim-
plification techniques could yield additional performance gains.
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