
An Argumentation-based Approach to Database Repair

Emanuel Santos12 and João Pavão Martins 2 and Helena Galhardas 2

Abstract. The access to high-quality data is essential to make accu-
rate decisions. Consequently, when a database becomes inconsistent
is crucial to restore its consistency. The main approach for database
consistency restoration is based on the notion of repair. In this work,
we use Argumentation techniques to provide a better understand of
the reasoning process behind database reparation. We introduced an
extended argumentation framework that provides a comprehensive
and alternative way to identify, represent and resolve the conflicts be-
tween tuples in an inconsistent database. We studied the complexity
of this framework and show that it can be used to check the optimal-
ity of a repair based on the extended notions of locally, semi-globally
and globally optimal repair with respect to Denial Constraints and
Tuple-Generating Dependencies classes.

1 Introduction

In order to make accurate decisions, information systems users need
to access high-quality data, i.e., without errors, duplicates or incon-
sistencies. One of the aims of Data Cleaning [5] is to restore the
consistency of an inconsistent database by maximizing its quality.
In this context, the notion of repair [3] was introduced: a consistent
database that results from applying repair operations (typically, dele-
tion, insertion or modification of tuples) in the original (inconsistent)
database. Depending on the repair model [9] used, different notions
of repair can be implemented. In addition, different notions of opti-
mal repair have been introduced [13].

Argumentation [6] is a comprehensive process that allows us to
explain and justify a conclusion derived in a reasoning process, to
identify conflicts and find the pros and cons for a given conclusion
through a alternating use of arguments and counter-arguments. It in-
volves one or more entities (e.g., users, DBMS, agents, etc.) that
independently interact and exchange arguments with one another.
Many frameworks for modelling argumentation in logic have been
presented (e.g., [2, 7, 6, 11]). Each one introduces a formal repre-
sentation of arguments and evaluation techniques to settle possible
conflicts between them.

We introduce an argumentation framework that provides a com-
prehensive and alternative way to identify, represent and resolve the
conflicts between tuples in an inconsistent database. We extend the
monological argument framework introduced in [12]. We studied
the complexity of this framework and show that it can be used to
check the optimality of a repair with respect to Denial Constraints
and Tuple-Generating Dependencies classes. For this purpose we ex-
tend the notions of locally, semi-globally and globally optimal repair
introduced in [13]. Plan of the paper: Section 2 introduces notation,

1 Phd Student supported by Fundação para a Ciência e Tecnologia under PhD
grant SFRH/BD/27253/2006.

2 Instituto Superior Técnico, Technical University of Lisbon, Portugal, email:
{esantos, joao.pavao.martins, helena.galhardas}@ist.utl.pt.

integrity constraints classes and conflicting set, repair and optimal re-
pair definitions; Section 3 introduces the argumentation framework,
definition of argument (Section 3.1), counter-argument (Section 3.2)
and argumentation tree (Section 3.3); Section 4 presents results re-
garding the optimal repair checking; Section 5 shows conclusions
and future work. Due to space limitations, all the proofs are omitted.
A extended version of this paper can be found in [1].

2 Preliminaries

We assume the base definitions of the relational model found in [4].
We use X, Y, ... to denote sets of attributes, R, S, ... to denote rela-
tion schemas, R, S, ... to denote database schemas, r, s, ... to denote
database instances, r, s, ... to denote relations and t, x, y, ... to de-
note tuples. An apostrophe or an index can also be added to each of
the previous representation letters. We denote by t[X] the attribute
value of t wrt the attribute X . We represent a database instance r =
{r1, ..., rn}, with a relation schema R = {R1(X1), ..., Rn(Xn)},
as a set of tuples of the form Ri(tj), where Ri(tj) denotes a tuple tj

with scheme Ri. Thus, the set operations over database instances are
well defined.

2.1 Inconsistency

We consider the most broad integrity constraint classes that are com-
monly associated to databases:

1. Denial Integrity Constraints (DC), denoted as [(R1, ..., Rn), φ]:

∀t1,..,tn .(R1(t1) ∧ ... ∧ Rn(tn)) ⇒ φ(t1, ..., tn),

where φ is a propositional formula of comparison atoms
ti[X] = tj [Y ], ti[X] �= tj [Y ], ti[X] < tj [Y ] or ti[X] ≤ tj [Y ],
where 1 ≤ i, j ≤ n.

2. Tuple-Generating Dependencies (TGD), denoted as
[(R1, ..., Rm), φ1 � (Rm+1, ..., Rn), φ2] :

∀t1,..,tm .

i=m̂

i=1

Ri(ti) ∧ φ1 ⇒ ∃tm+1,...,tn .
i=n̂

i=m+1

Ri(ti) ∧ φ2

where φ1 and φ2 are conjunctions of equality atoms ti[X] =
tj [Y ], where 1 ≤ i, j ≤ m and 1 ≤ i, j ≤ n, respectively.

Notice that Functional, Inclusion, Key and Foreign Key Depen-
dencies are special cases of the previous classes [4]. We say that a
set Σ of integrity constraints is acyclic if its dependency graph has
no cycles. The dependency graph of Σ is the graph whose nodes are
the relation symbols occurring in Σ and whose edges are pairs of the

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-125

125



form (R, S) such that R occurs in the left-hand side of some TGD in
Σ and S occurs in the right-hand side of that TGD.

For a given integrity constraint γ, we denote by [γ]l and [γ]r the
list of all relation symbols that occur in the left-hand side and in the
right-hand side of γ, respectively. Moreover, we extend these deno-
tations for a given set of integrity constraints.

Given a database instance r of R and a set of integrity constraints
Σ, we say that r is consistent wrt Σ (or that r satisfies Σ) if r |= γ
for every γ ∈ Σ, i.e. r |= Σ, in the standard model-theoretic sense;
otherwise, we say that r is inconsistent wrt Σ (or that r violates Σ).

In addition to the original database, we have a possibly infinite set
of tuples, called extra tuples, which can be added to the database.

Figure 1. The database rex and the respective set of extra tuples rext
ex .

workers
Name Depart SLevel

t1 Adrian dA 3
t2 Peter dA 3
t3 Peter dA 5
t4 Adrian dB 4
t5 Peter dB 5
t6 Peter dB 6
t7 Mary dC 3
t8 John dB 7

hierarchy
Name Boss Depart

t20 Adrian Peter dA
t21 Adrian Peter dB
t22 Adrian John dB
t23 John John dB

workersext

Name Depart SLevel
t31 John dC 5
t32 John dF 8

hierarchyext

Name Boss Depart
t41 Peter John dB
t42 Jay Bill dC
t43 Peter Peter dA
t44 Peter Gates dA

Example 1 Let rex = {workers, hierarchy} be the database
instance of R = {Workers(Name, Depart, SLevel),
Hierarchy(Name, Boss, Depart)} and rext

ex = {workersext,
hierarchyext} the set of extra tuples that can be added to rex

(Figure 1). For an easier reading, we represent each attribute name
by its first letter. Moreover, let γ1, γ2, γ3 and γ4 be the following
integrity constraints over R:

• γ1 is the DC [Workers, φ′], where φ′ ≡ (t1[N, D] =
t2[N, D] ⇒ t1[S] = t2[S]), i.e. every worker and department
has a unique security level.

• γ2 is the TGD [Workers, ∅ � Hierarchy, φ′′], where φ′′ ≡
(t1[N, D] = t2[N, D]), i.e. for every worker there is a boss with
respect to the same department.

• γ3 is the DC [(Workers, Hierarchy, Workers), φ3], where
φ3 = (t1[N, D] = t2[N, D] ∧ t2[N ] �= t2[B] ∧ t2[B, D] =
t3[N, D]) ⇒ t1[S] < t3[S], i.e. every worker has a lower se-
curity level than each one of its bosses with respect to the same
department.

• γ4 is the DC [(Hierarchy, Hierarchy), φ4], where
φ4 = (t1[B] = t2[B] ⇒ t1[D] = t2[D]), i.e. every boss has an
unique department.

Let Σex = {γ1, γ2, γ3, γ4}. Then rex is inconsistent wrt Σex, be-
cause, e.g., t2 and t3 do not satisfy γ1.

2.2 Conflicting Sets

In order to restore the consistency of a database, we need to investi-
gate the causes of the inconsistency. To this end, we find out tuples
that are in conflict, i.e. that fail to satisfy one of the integrity con-
straints. We define four types of conflicts that allow to identify which
inconsistencies must be resolved in order to restore the database con-
sistency. In our setting, consistency restoration can only be achieved
by deleting or inserting database tuples.

Definition 1 (d-conflicting set) Let γ be an integrity constraint. A
set of tuples s = {t1, ..., tn} is a directly conflicting (d-conflicting)
set wrt γ if: (1) γ is a DC, [(R1, ..., Rn), φ], and ¬φ(t1, ..., tn);
or, (2) γ is a TGD, [(R1, ..., Rn), φ1 � (Rn+1, ..., Rm), φ2],
φ1(t1, ..., tn) and s �|= γ. We say that the non-empty sets of tuples s′

and s′′ are in d-conflict wrt γ if s′ ∪ s′′ is a d-conflicting set wrt γ.

A set of tuples r is inconsistent wrt Σ if only if it contains a d-
conflicting set wrt some γ ∈ Σ. Hence, if we remove a tuple from
all d-conflicting sets the resulting database is consistent [1]. A d-
conflicting set may not be minimum, i.e., it may contain a proper
d-conflicting subset. A minimal integrity constraint is an integrity
constraint γ such that all d-conflicting sets wrt γ are minimum. In
this work, we assume that our integrity constraints are minimal.

Example 2 Examples of d-conflicting sets: (1) wrt γ1, {t2, t3} and
{t5, t6}; (2) wrt γ2, {t1}, {t6} and {t7}; (3) wrt γ3, {t1, t20, t2};
(4) wrt γ4, {t20, t21}.

We can also restore the consistency of a database by adding tuples.
However, in contrast to the deletion of tuples, the addition of tuples
may introduce new inconsistencies. For this matter we introduce the
notion of guarantor.

Definition 2 (guarantor) Let Σ be a set of integrity constraints.
Given a d-conflicting set s wrt γ ∈ Σ, we say that a set of tuples
r is a guarantor of s wrt Σ if r is a minimal set of tuples such that
s ∪ r |= Σ. The set that contains all the guarantors of s wrt Σ is
represented by Grt(s, Σ).

A guarantor of a set s is a non-empty set of tuples that s may
depend on to be consistent. A guarantor is only related with TGDs
because with respect to DCs conflicting sets there are no guarantors.
A guarantor is finite if the given set of TGDs is acyclic.

Example 3 {t20} is a guarantor of {t1} wrt γ2. Grt({t2, t3},γ1) =
Grt({t1, t20, t2}, γ3) = Grt({t20, t21}, γ4) = ∅.

Given a database r and a set of integrity constraints Σ, r is consis-
tent if only if r contains a guarantor for each d-conflicting set, in r,
wrt some γ ∈ Σ [1].

In the following, we introduce an indirect conflict relation that can
be created by a set of TGDs and a single integrity constraint.

Definition 3 (i-conflicting set) Let Σ = Σtgd ∪ {γ} be a set of
integrity constraints, where Σtgd is a set of TGDs. We say that
s = sd ∪ si is an i-conflicting set (indirectly conflicting set) with
respect to Σtgd and γ, if s �|= Σtgd, sd ∩ si = ∅ and there is a
guarantor set sw of sd wrt Σtgd, where si is a minimum set of tuples
that is in d-conflict with a subset of sw wrt γ. We also say that the
non-empty sets of tuples s′ and s′′ are in i-conflict wrt Σtgd and γ if
s′ ∪ s′′ is an i-conflicting set wrt Σtgd and γ.

An a i-conflicting set represents an indirect conflict relation be-
tween a set of tuples and a guarantor of another set of tuples. If a
set of tuples r contains an i-conflicting set wrt Σ it does not entail
that r is inconsistent wrt Σ. Moreover, an i-conflicting set could be
non-minimum [1].

For notation purposes, given a set of integrity constraints Σ such
that Σtgd, {γ} ⊆ Σ, we say that s |= {Σtgd � γ} if s is not an i-
conflicting set wrt Σtgd and γ, where “Σtgd � γ” denotes a derived
constraint from Σ. Moreover, we denote by Σ∗ the union between Σ
and the set of all derived constraints from Σ. We call each subset of
Σ∗ a set of constraints. Finally, we define [Σtgd �γ]+ = Σtgd ∪{γ}
that is naturally extended for a set of constraints.

E. Santos et al. / An Argumentation-Based Approach to Database Repair126



Example 4 {t1, t20} and {t4, t20} are i-conflicting sets wrt {γ2} �
γ4 because {t20, t21} is a d-conflicting set wrt γ4 and {t20} and
{t21} are guarantors of {t1} and {t4} wrt γ2, respectively.

Given the conflict relations mentioned above, we say that a set
is a conflicting set set wrt a set of integrity constraints Σ if it is a
d-conflicting or an i-conflicting set wrt every γ ∈ Σ.

2.3 Repairs

Our work is based on the S-Repair model [3, 9] to restore the con-
sistency of a database instance. This model assumes that the original
database is neither consistent nor complete. Thus, the consistency
restoration of a database is achieved by deleting or inserting tuples.

Definition 4 (S-Repair) Given a database r, a set re of extra tuples
and a set of integrity constraints Σ, a database r′ is a repair of r
wrt Σ and re if r′ |= Σ and (r − r′) ∪ (r′ − r) is minimal and
(r′ − r) ⊆ re.

Notice that if the set of extra tuples is empty or the set of integrity
constraints only contains denial constraints, a repair is a maximal
consistent subset of the original (inconsistent) database (X-Repair
model, [3, 9]), because, in these cases, a repair is constructed by only
deleting tuples. To simplify, we omit the set of integrity constraints
and the set of extra tuples if they are known from the context.

Example 5 rex1 = {t1, t3, t4, t5, t8, t20, t22, t23, t41, t43}, rex2 =
(rex1 − {t5}) ∪ {t6}, rex3 = (rex1 − {t1, t3}) ∪ {t2} and rex4 =
(rex1 − {t1, t20, t43}) ∪ {t21, t44} are repairs of rex wrt Σex, rext

ex .

2.4 Preferences

In order to establish preferences among repairs, we extend the notion
of priority between pairs of conflicting tuples, introduced in [13],
to a non-empty set of conflicting tuples. A priority can reflect, for
example, the confidence of the accuracy placed by the user in distinct
tuples that was propagated via data provenance analysis.

Definition 5 (Priority) Let Σ be a set of constraints and r a
database instance. A priority (wrt Σ) is a binary relation �⊆ P(r)×
r only defined on conflicting sets of tuples, i.e. s � t if s ∪ {t} is a
conflicting set wrt Σ, and is acyclic, i.e. there does not exist t ∈ r
and s ⊆ r such that t ∈ s and s �∗ t, where �∗ is the transitive
closure of �. If s � t we say that s dominates t wrt �. 3

Given that a priority is based on a preference, if s dominates t wrt
� then t is the least element of s′ ∪ {t} wrt �. Once again, for nota-
tion simplification purposes, we omit the set of integrity constraints
from the priority symbol if it is known from the context.

Example 6 Let �1= {({t6}, t5)}, �2= {({t2}, t3), ({t5}, t6),
({t2, t20}, t1)} and �3= {({t21}, t1), ({t21}, t43), ({t21}, t20)}
be priorities over rex ∪ rext

ex wrt Σex. We have that {t2} ��1 t5,
{t6} �1 t5, {t2} �2 t3, {t2, t20} �2 t1 and {t21} �3 t1.

In the following, we define a priority over sets of tuples with re-
spect to an underlying set of tuples.

3 �∗ is defined as follows: If s � t then s �∗ t; and, If s � t and s′ ∪{t} �
t′ then s � t′.

Definition 6 (Priority wrt a set of tuples) Let r be a database in-
stance and � be a priority over r. Given s ⊆ r, r1 ⊆ s, r2 ⊆ (r − s)
and s′ = (s − r1) ∪ r2, we write r2 �s r1 if

∀t∈r1 ∃r′2⊆s′∧r′2∩r2 �=∅ r′2 � t

Moreover, if r2 �s r1 we say that r2 dominates r1 wrt s.

Example 7 Let s = {t20}. {t2} �s
2 {t1}, because {t2, t20} �2

{t1}; {t20} ��s
2 {t3}, because {t20} ��2 {t3}.

[13] introduces three important notions of optimal repair that rely
on a priority’s preference information to establish preferences among
repairs wrt functional dependencies. We extend those notions to our
class of integrity constraints and repair model used.

Definition 7 (optimal repair) Let r′ be a repair of r wrt Σ, re a set
of extra-tuples and � a priority over rt = r ∪ re wrt Σ.

• r′ is a locally optimal repair wrt �, if for no tuple t1 ∈ r′ there is
a tuple t2 ∈ (rt − r′) such that t2 �r′ t1 and (r′ − {t1}) ∪ {t2}
is a consistent set wrt Σ.

• r′ is a semi-globally optimal repair wrt �, if for no subset s ⊆ r′

there is a tuple t ∈ (rt − r′) such that t �r′ s and (r′ − s) ∪ {t}
is a consistent set wrt Σ.

• r′ is a globally optimal repair wrt �, if for no subset s ⊆ r′ there
is a set of tuples s′ ⊆ (rt − r′) such that s′ �r′ s and (r′ − s) ∪ s′

is a consistent set wrt Σ.

The notions of optimal repair can be roughly explained as follows:
(1) A repair is locally optimal if it does not have a tuple that can be
replaced by a conflicting tuple with a higher priority, such that the
resulting set is consistent; (2) A repair is a semi-globally optimal if
it does not have a subset of tuples that can replaced by a conflicting
tuple with higher priority, such that the resulting set is consistent; (3)
A repair is a globally optimal if it does not have a subset of tuples
that can replaced by a set of tuples with a higher priority, such that
the resulting set is consistent. Thus, a globally optimal repair is a
semi-globally optimal repair and a semi-globally optimal repair is a
locally optimal repair.

In our setting, a priority is defined over the original database in-
stance and the set of extra tuples. Thus, we take into account not
only the priorities among the tuples of the original database but also
among the extra tuples. In [13] this situation was not considered.
Notice, however, that an extra tuple can have a higher priority than a
tuple from the database. As a result, each of the consistent resulting
sets may not be a subset of a repair.

Example 8 rex1 is not a locally optimal repair wrt �1 because
{t6} �1 t5 and rex2 is consistent. rex1 is a locally optimal repair
wrt �2, but it is not a semi-globally optimal repair wrt �2, because
{t2} �2 t3, {t2, t20} �2 t1 and rex3 is consistent. rex1 is a semi-
global optimal repair wrt �3, but it is not globally optimal repair wrt
�3, because {t21} �3 t43, {t21} �3 t20, {t21} �3 t1 and rex4 is
consistent. rex1 is a global optimal repair wrt ∅.

3 The Argumentation Framework

In this section we present our Argumentation Framework. We intro-
duce the notions of argument, counter-argument and argumentation
tree, which extends work of [12]. We assume that the set of integrity
constraints is composed of minimal integrity constraints. In this way,
we guarantee that every d-conflicting is minimal. We use A, B, ... to
denote arguments.

E. Santos et al. / An Argumentation-Based Approach to Database Repair 127



3.1 Argument

An argument represents a statement about the relationship between
a set of tuples and a set of integrity constraints by identifying the
conflicting sets and consistent sets in a database. In this way, we are
not only able to identify the causes of a database inconsistency but
also to represent consistency restoration procedures (i.e. deletion and
insertion of a tuple).

Definition 8 (argument) Let Σ′ be a set of integrity constraints and
r and s be sets of tuples, where r ∩ s = ∅, and ∅ ⊂ Σ ⊆ (Σ′)∗. An
argument is a triple 〈s, r, Σ〉 such that :

1. If r = ∅ then s |= Σ.
2. If r �= ∅ then s ∪ r is a conflicting set wrt Σ.
3. If r �= ∅ and s �= ∅ then #r = 1.

We say that 〈s, r, Σ〉 is an argument for Σ, that Σ is the consequent
(conclusion) of the argument and that s and r are the positive and
negative support of the argument, respectively.

For an argument A = 〈s, r, Σ〉, we define the functions [A]p = s,
[A]n = r, [A]s = s∪ r and [A]ic = Σ, which are naturally extended
to sets of arguments.

An argument is composed by a support and a conclusion. The sup-
port is divided into a positive and negative part, each being a set of
tuples. The conclusion is composed by a set of constraints.

An argument 〈s, r, Σ〉 represents the following statements: If r �=
∅ then both supports are in conflict wrt the conclusion. Otherwise, the
support is consistent wrt the conclusion. An argument also represents
a consistency restoration procedure: If r �= ∅, in order to satisfy Σ, a
database r′, such that s ⊆ r′, must verify that r �⊆ r′. That is, if we
want to restore the consistency of our database and keep the tuples
from the positive support we must delete the tuples from the neg-
ative support. However, the previous restoration procedure may not
be unique when TGDs are considered, because we also can resolve a
conflict by adding tuples.

Condition (1) of Definition 8 guarantees that if there is no negative
support the positive support must satisfy the conclusion. Given this
condition, we can use an argument to denote, for example, that a set
of tuples (positive support) satisfies a set of constraints (conclusion).
Condition (2) ensures that if there is a negative support then the union
of both supports is a conflicting set wrt the conclusion. Condition (3)
ensures that if both supports are non-empty then the negative sup-
port is composed of only one tuple, the proposed tuple to be deleted.
Notice that the support of an argument could have irrelevant tuples,
because it can be not minimum wrt conclusion.

Example 9 Examples of arguments: 〈{t1, t2}, ∅, {γ1}〉,
〈∅, {t6}, {γ2}〉 and 〈{t1, t20}, {t2}, {γ3}〉. Examples of non-
arguments: 〈{t2, t3}, ∅, {γ1}〉 because it fails on the Condition
(1); 〈{t1}, {t2}, {γ1}〉 because it fails on the Condition (2);
〈{t1}, {t2, t20}, {γ1}〉 because it fails on the Condition (3).

The following definition formalizes a degree of dependency be-
tween arguments, which is useful in the following subsections.

Definition 9 (more conservative) Let A = 〈s, r, Σ〉 and B =
〈s′, r′, Σ′〉 be arguments. A is more conservative than B if Σ ⊆ Σ′

and s ⊂ s′ or r ⊂ r′.

We say that argument A is a maximal conservative argument if
there is no argument B that is more conservative than A.

Example 10 〈{t1}, ∅, {γ3}〉 is more conservative than
〈{t1, t7, t20}, ∅, {γ1, γ3}〉.

3.2 Counter-Argument

In order to refute a given argument we need to define the notion of
counter-argument. In our setting, a counter-argument represents an
alternative consistency restoration procedure for a given argument
and can be one of two types: undercut or rebuttal.

Definition 10 (undercut) An argument A = 〈s, r, Σ〉 is an under-
cut for an argument B = 〈s′, r′, Σ′〉, if ∅ ⊂ r ⊆ s′ and (1) Σ �⊆ Σ′;
or, (2) r′ �= ∅ and [A]s �= [B]s; or, (3) r′ = ∅ and [A]s �⊆ [B]p.

An undercut of an argument A represents a argument that is in
conflict with the support of A. An undercut also denotes an alterna-
tive consistency restoration procedure, in this case a tuple deletion,
that can be applied instead of the procedure denoted by A.

Conditions (1,2,3) denote the different ways an argument can be
a undercut: (1) By denoting a conflict wrt a different set of conclu-
sion; or, (2) By having a different support set; or, (3) By having new
tuples in the support. Conditions (2,3) prevent redundancy among ar-
guments and respective undercuts by not allowing the construction of
“symmetric” counter-arguments.

Example 11 A = 〈{t3}, {t2}, {γ1}〉 is an undercut for
B = 〈{t1, t2}, ∅, {γ1}〉. A is not an undercut for C =
〈{t1, t20}, {t2}, {γ3}〉, because {t2} �⊆ {t1, t20}. D =
〈{t1, t2}, {t20}, {γ3}〉 is not an undercut for C. E =
〈∅, {t1}, {γ2}〉 is an undercut for F = 〈{t1, t20}, ∅, {γ2}〉.

Definition 11 (rebuttal) An argument 〈s′, ∅, Σ′〉 is a rebuttal for an
argument 〈s, r, Σ〉 such that r �= ∅, if: (1) s ∪ r ⊂ s′; and, (2)
Σ+ ⊆ Σ′.

A rebuttal of an argument A represents a counter-argument that
given the support of A it contradicts its conclusion. An rebuttal also
denotes an alternative consistency restoration procedure, in this case
a tuple insertion, that can be applied instead of the procedure de-
noted by A (a tuple deletion). This situation happens when the set of
constraints includes TGDs.

Conditions (1, 2) assure that the rebuttal of an argumentation has a
superset support and conclusion, i.e., it adds new tuples to the support
of argument that allows the satisfaction of the conclusion.

Example 12 〈{t1, t20, t22}, ∅, {γ2 � γ4, γ2, γ4}〉 is a rebuttal for
〈{t20}, {t1}, {γ2 � γ4}〉. 〈{t3}, ∅, {γ1}〉 is not a rebuttal for
〈{t1, t2, t20}, ∅, {γ3}〉.

Definition 12 (sound/strict counter-argument) Let Σ be a set of
constraints, � a priority wrt Σ and Σ′ ⊆ Σ. An argument A =
〈s, r, Σ′〉 is a sound (resp. strict) counter-argument wrt � for
an argument B if: (1) A is a counter-argument for B; and, (2)
¬∃t∈s r ∪ (s − {t}) � t (resp. s � r) or s = ∅ or r = ∅.

A strict counter-argument is an argument where the positive sup-
port dominates the negative support. A sound counter-argument is
an argument that no tuple of the positive support is dominated by
the others tuples of the argument support. Hence, a strict counter-
argument is also sound.

Example 13 〈{t2, t20}, {t1}, {γ3}〉 is a sound counter-argument
wrt �1 and a strict counter-argument wrt �2 for 〈{t1}, {t21},
{γ2 � γ4}〉, because {t2, t20} �2 {t1}. 〈{t6}, {t5}, {γ1}〉 is not
strict counter-argument wrt �2 for 〈{t1, t5, t22}, ∅, {γ3}〉, because
{t6} ��2 t5. 〈{t5}, {t6}, {γ1}〉 is a non sound counter-argument wrt
�1 for 〈{t6}, ∅, {γ1}〉, because {t6} �1 t5.

E. Santos et al. / An Argumentation-Based Approach to Database Repair128



Definition 13 (canonical counter-argument) Let Σ be a set of con-
straints, A a counter-argument of argument B such that [A]ic ⊆ Σ.
We say that A is a canonical counter-argument wrt Σ for an argu-
ment B if:

1. if [A]p �= ∅ then (a) A is a maximal conservative counter-
argument for B; and (b) [A]s �⊆ [B]p; and,

2. if [A]p = ∅ then there is no counter-argument C of B such that
[C]p = ∅, [A]n ⊂ [C]n and [A]ic ⊆ [C]ic; and,

3. there is no argument D such that [A]ic ⊂ [D]ic ⊆ Σ and obeys
(1) and (2).

A canonical counter-argument represents a possible infinite set of
“equivalent” counter-arguments for a given argument. Condition (1a)
ensures that the support of a counter-argument is free from redundant
tuples. This condition is required because the support of an argument
can be non-minimum. Condition (1b) ensures that if the support of a
rebuttal A for an argument B is a subset of [B]p then it must have
an empty positive support. Conditions (1b) and (2) ensure that the
canonical counter-argument for B represents the “strongest” counter-
argument for B because it has an empty positive support and, there-
fore, strict wrt any priority. Finally, Condition (3) ensures that the
canonical argument is the most conclusive possible by checking that
it has a maximal set of constraints.

Example 14 〈{t6}, {t5}, {γ1}〉 is a strict canonical counter-
argument wrt �1 for 〈{t1, t5, t22}, ∅, {γ3}〉. 〈{t5}, {t6}, {γ1}〉
is not a canonical counter-argument for 〈{t1, t5, t6}, ∅,
{γ3}〉, because it fails Condition (1a). 〈∅, {t5, t6}, {γ1}〉
is a canonical counter-argument for 〈{t1, t5, t6}, ∅, {γ3}〉.
〈{t1, t20, t22}, ∅, {γ2, γ4, γ2 � γ4}〉 is not a canonical
counter-argument for 〈{t20}, {t1}, {γ2 � γ4}〉, because
〈{t1, t20, t22}, ∅, {γ1, γ2, γ4, γ2 � γ4}〉 is also a counter-argument
and, therefore, it fails Condition (3).

The following proposition shows that, if the set of integrity con-
straints is acyclic, we can obtain all canonical counter-arguments for
argument in polynomial time wrt the size of the database. Hence,
this framework presents a reasonable way to represent the alternative
consistency reparations procedures without extra complexity.

Proposition 1 Let Σ be a set integrity constraints, r a set of tuples
and A an argument. If Σ is acyclic, finding all canonical counter-
arguments for A wrt Σ and r can be done in polynomial time wrt the
size of r.

3.3 Argumentation Tree

An argumentation tree represents, in a recursive form, the different
ways an argument can be challenged, as its counter-arguments.

Definition 14 (argumentation tree) Let Σ be a set of integrity con-
straints and r a set of tuples. An argumentation tree for A wrt r and
Σ is a tree where nodes are arguments such that:

1. The root is the argument A = 〈s′, ∅, Σ′〉 such that s′ ⊆ r and
Σ′ ⊆ Σ∗; and,

2. There is no node B with an indirect ancestor node C such that
[B]s ⊆ [C]s ⊆ r and [B]ic ⊆ [C]ic ⊆ Σ∗; and,

3. The children nodes of a node A′ consist of canonical counter-
arguments for A′ that obey (2).

Each argument of an argumentation tree is constructed based on
a given set of tuples and set of integrity constraints. The support of
each argument is a subset of the given set of tuples, and its conclusion
a the set of constraints. Condition (2) ensures that an argumentation
tree does not have cycles and Condition (3) ensures that each counter-
argument is canonical. Given these conditions, we get the following
result about the size of argumentation tree.

Proposition 2 Let Σ be a set of integrity constraints, r a database
instance and re a set of extra tuples. If the sets re and Σ are finite
then all argumentation trees wrt r ∪ re and Σ are finite.

For an argumentation tree T, each argument in T is either an at-

tacking argument or a defensive argument. The root of the tree is a
defensive argument. If Ai is a defensive argument (resp. attacking),
then any child of Ai is an attacking argument (resp. defensive). The
set of defensive arguments is given by D(T) and the set of attacking
arguments is given by A(T). Moreover, the set of attacking (resp.
defensive) ancestor arguments of an argument A wrt T is given by
A(A, T) (resp. D(A, T)). Finally, At(T) and Dt(T) denote the set
of tuples that are first introduced in the tree T uniquely by attacking
and defensive arguments, respectively.

Definition 15 (full/single strict argumentation tree) Let T be an
argumentation tree and � a priority. T is a full argumentation tree
if the children nodes of any node A consist of all canonical counter-
arguments for A. T is a single strict attacking argumentation tree
wrt � if the children nodes of an attacking (resp. defensive) argu-
ment A, consist of sound (resp. at most, one strict) canonical counter-
arguments for A wrt �.

In a full argumentation tree, for each argument, all the canonical
counter-arguments are taken into account. A single strict attacking
argumentation tree is composed of sound defensive arguments with,
at most, one strict attacking counter-argument. A full argumentation
tree can be used to check the consistency of a set tuples [1].

Figure 2. The full argumentation tree T1.

A = 〈{t5, t8, t31}, ∅, {γ1}〉

B = 〈∅, {t5}, {γ2}〉

E = 〈{t5, t41}, ∅, Σ∗
ex〉

C = 〈{t6}, {t5}, {γ1}〉

F = 〈∅, {t6}, {γ2}〉

H = 〈{t6, t41}, ∅, Σ∗
ex〉

D = 〈∅, {t8}, {γ2}〉

G = 〈{t8, t23}, ∅, Σ∗
ex〉

Definition 16 (successful argumentation tree) We say that T is
successful if the leaf of every branch is a defensive argument. More-
over, say that T is full unsuccessful if the leaf of every branch is an
attacking argument.

An argumentation tree is successful if all attacking arguments are
defeated. On the other hand, it is full unsuccessful if all defensive
arguments are defeated.

Example 15 Figure 2 illustrates the full argumentation tree T1

for the argument A = 〈{t5, t8, t31}, ∅, {γ1}〉 wrt Σex and rex ∪
rext
ex . A dashed arrow represents a non-sound canonical argu-

ment wrt �2 and a solid arrow represents a strict canonical ar-
gument wrt �2. Moreover, D(T1) = {A, E, F, G}, A(T1) =

E. Santos et al. / An Argumentation-Based Approach to Database Repair 129



{B, C, D, H}, A(H, T1) = {C}, D(H, T1) = {A, G}, Dt(T) =
{t5, t8, t23, t31} and At(T) = {t6}. Notice that t41 �∈ Dt(T) ∪
At(T) because t41 is introduced by a defensive and an attacking ar-
gument. The left and the right branches of the argumentation tree T1

correspond to single strict attacking argumentation trees T2 and T3,
respectively, for A wrt Σex, rex ∪ rext

ex and �2. T1 is an unsuccessful
tree, but not a full unsuccessful tree. T2 and T3 are successful trees.

4 Optimal Repair Checking

The following result shows how the optimality of a repair (local,
semi-global and global) can be checked using our argumentation
framework. These result also shows that our framework successfully
captures all the conflicts among data and the possible consistency
reparations procedures.

Theorem 1 (optimal repair checking) Let Σ be a set of integrity
constraint, � a priority, r an inconsistent database wrt Σ, rext is
a set of extra-tuples, rr a repair of r wrt r ∪ rext and Σ. There is
no full unsuccessful single strict attacking argumentation tree T for
〈rr, ∅, Σ∗〉 wrt Σ, rex ∪ rext

ex and �, where s′ = [A(T)]p − rr and
s = [A(T)]n, such that the children nodes of each attacking (resp.
defensive) node of T consist of all (resp. one, if exists) canonical
counter-arguments such that: (1) Dt(T) = rr; and, (2) [A(T)]n ⊆
rr − [A(T)]p; and, (3) ∀B∈D(T)∀A∈D(D,T) [B]p ∩ [A]n = ∅; and

(a) #s = #s′ = 1 and (rr − s) ∪ s′ |= Σ iff rr is a locally optimal
repair wrt Σ, �.

(b) #s′ = 1 iff rr is a semi-globally optimal repair wrt Σ, �.
(c) #s′ ≥ 1 iff rr is a globally optimal repair wrt Σ, �.

Theorem 1 shows that there is an equivalence between a repair be-
ing locally, semi-globally and globally optimal and the existence of a
single strict attacking argumentation tree. Condition (1) assures that
defensive arguments do not introduce new tuples in the argumenta-
tion tree and, thus, are restricted to the tuples from the given repair
or tuples introduced by attacking arguments. Condition (2) assures
that attacking arguments do not have common tuples in the positive
and negative support. This condition does not allow, e.g., an attack-
ing argument to have in the positive support a tuple that was already
attacked. Condition (3) assures that defensive arguments do not have
tuples in the positive support that were already attacked in the branch.
(a), (b) and (c) establish the equivalence wrt all optimal repair types.

Figure 3. The single strict attacking argumentation trees T4, T5 and T6 .

〈rex1, ∅, Σ∗
ex〉

〈{t6}, {t5}, {γ1}〉

〈∅, {t6}, {γ2}〉

〈{t6, t41}, ∅, Σ∗
ex〉

〈rex1, ∅, Σ∗
ex〉

〈{t2, t20}, {t1}, {γ3}〉

〈∅, {t2}, {γ2}〉

〈{t2, t43}, ∅, Σ∗
ex〉

〈rex1, ∅, Σ∗
ex〉

〈{t21}, {t43}, {γ2}〉

〈{t3}, {t21}, {γ2 � γ4}〉

〈{t3, t21, t44}, ∅, Σ∗
ex〉

Example 16 Figure 3 illustrates the single strict attacking argumen-
tation trees T4, T5 and T6 wrt �1, �2 and �3, respectively, and Σex

for 〈rex1, ∅, Σ∗
ex〉. Given T4 we conclude, by Theorem 1, that rex1

is not a locally optimal repair of rex wrt �1, because the result of
replacing t5 by t6 (i.e.,[A(T4)]p − rex1) in rex1 (i.e., rex2) is consis-
tent wrt Σex. Given T5, we conclude, by Theorem 1, that rex1 is not

a semi-global optimal repair of rex wrt �2, because, e.g., the result
of replacing {t1, t3} by t2 (i.e.,[A(T5)]p−rex1) in rex1 (i.e., rex3) is
consistent wrt Σex. Given T6, we conclude, by Theorem 1, that rex1

is not a global optimal repair of rex wrt �3, because the result, e.g.,
of replacing {t1, t20, t43} by {t21, t44} (i.e.,[A(T6)]p−rex1) in rex1

(i.e., rex4) is consistent wrt Σex.

5 Discussion, Conclusions and Future Work

The aim of this paper has been to use argumentation to provide a
clear and comprehensive understanding of the database repair pro-
cess. We presented an argumentation framework that provides a way
to identify and represent the conflicts between tuples but also the
possible consistency restoration procedures that can be applied in
each case. Proposition 1 shows that this is done without compro-
mising its practicability. We extended the notions of locally, semi-
globally and globally optimal repair [13] to show that we can also
use this argumentation framework to check important repair related
properties (Theorem 1). Our work extends the argumentation frame-
work introduced in [12] to a broader and more common set of in-
tegrity constraints, namely, Denial Constraints and Tuple-Generating
Dependencies classes. It also provides an improved alternative for
the conflict hypergraph [8] that is used to succinctly represent the
conflicts between data with respect to the Denial Constraints class.
Although database repair is closely related to Belief Revision, be-
sides [12], to our best of knowledge there is no work that proposed
an argumentation-based approach to enhance the data consistency
restoration process. Thus, we advocate that this work opens a new
research line that embraces the Data Cleaning and Argumentation
research areas.

As ongoing research, we propose to build a decision support sys-
tem, based on our argumentation framework, that assists the user in
the consistency restoration process by identifying the conflicts and
suggesting possible repairing procedures. As future work, we pro-
pose to extend our framework to consider database user annotations
[10] in the consistency restoration process.

REFERENCES

[1] E. Santos, ‘An argumentation-based approach to database repair’. Un-
published. http://web.ist.utl.pt/esantos/tech-2010.pdf, 2010.

[2] L. Amgoud and C. Cayrol, ‘A reasoning model based on the production
of acceptable arguments’, Annals of Mathematics and Artificial Intelli-
gence, 34(1-3), 197–215, 2002.

[3] M. Arenas, L. Bertossi, and J. Chomicki, ‘Consistent query answers in
inconsistent databases’, in PODS, pp. 68–79. ACM Press, 1999.

[4] P. Atzeni and V. De Antonellis, Relational database theory, Benjamin-
Cummings Publishing Co., Inc., 1993.

[5] C. Batini and M. Scannapieco, Data Quality: Concepts, Methodologies
and Techniques, Data-Centric Systems and Apps., Springer, 2006.

[6] P. Besnard and A. Hunter, Elements of Argumentation, MIT Press,2008.
[7] C. Chesñevar, A. Maguitman, and R. Loui, ‘Logical models of argu-

ment’, ACM Comput. Surv., 32(4), 337–383, 2000.
[8] J. Chomicki and J. Marcinkowski, ‘On the computational complexity

of minimal-change integrity maintenance in relational databases’, in In-
consistency Tolerance, vol. 3300 of LNCS, pp. 119–150.Springer, 2005.

[9] W. Fan, ‘Dependencies revisited for improving data quality’, in PODS,
eds., M. Lenzerini and D. Lembo, pp. 159–170. ACM, 2008.

[10] W. Gatterbauer, M. Balazinska and and D. Suciu, ‘Believe it or not:
Adding belief annotations to databases’, PVLDB, 2(1), 1–12, 2009.

[11] E. Santos and J. P. Martins, ‘A default logic based framework for argu-
mentation’, in ECAI, vol. 178 of FAIA, pp. 859–860. IOS Press, 2008.

[12] E. Santos and J. P. Martins, ‘An argumentation framework for optimal
repair checking’, in ICCP, pp. 19 – 26, 2009.

[13] S. Staworko and J. Chomicki, ‘Priority-based conflict resolution in in-
consistent relational databases’, CoRR, 2005.

E. Santos et al. / An Argumentation-Based Approach to Database Repair130


