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1 Introduction

This paper is about ‘Independent Set (IS) readings’. Those are read-
ings where two or more witness sets are independent of one another,
and so they need to be evaluated in parallel. Four kinds of IS readings
have been identified in the literature, starting from [10].

(1)
a. Branching Quantifier readings, e.g. Two students of mine have

seen three drug dealers in front of the school.
b. Collective readings, e.g. Three boys made a chair yesterday.
c. Cumulative readings, e.g. Three boys invited four girls.
d. Cover readings, e.g. Three children ate five pizzas.

The preferred reading of (1.a) is the one where there are exactly two2

students and exacly three drug dealers and each of the students saw
each of the drug dealers. (1.b) may be true in case three boys coop-
erated in the construction of a single chair. In the preferred reading
of (1.c), there are three boys and four girls such that each of the boys
invited at least one girl, and each of the girls was invited by at least
one boy. Finally, (1.d) allows for any sharing of five pizzas among
three children. E.g., it is satisfied by the following extension of ate′:

(2) ‖ate′‖M ≡ {〈c1⊕c2⊕c3, p1⊕p2〉, 〈c2⊕c3, p3⊕p4〉, 〈c3, p5〉}

In (2), children c1, c2, and c3 (cut into slices and) share pizzas p1 and
p2, c2 and c3 share p3 and p4, and c3 also ate pizza p5 on his own.

This paper assumes, following [12], that Cover readings are the IS
readings, of which the three kinds exemplified in (1.a-c) are merely
special cases. The name “Cover readings” comes from the fact that
their truth values are traditionally captured in terms of Covers. In
[12], Covers are denoted by 2-order variables called “Cover vari-
ables”. We may then define a meta-predicate Cover that, taken a
Cover variable C and two unary predicates P1 and P2, asserts that
the extension of the former is a Cover of the extensions of the latter:

(3) Cover(C, P1, P2) ⇔

∀X1X2
[C(X1, X2)→

∀x1x2
[((x1 ⊂ X1) ∧ (x2 ⊂ X2))→(P1(x1) ∧ P2(x2))]] ∧

∀x1
[ P1(x1) → ∃X1X2

[ (x1 ⊂ X1) ∧ C(X1, X2) ] ] ∧

∀x2
[ P2(x2) → ∃X1X2

[ (x2 ⊂ X2) ∧ C(X1, X2) ] ]

Thus, it is possible to decouple the quantifications from the predi-
cations. We introduce two relational variables whose extensions in-
clude the atomic individuals involved. Another relational variable
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that covers them describes how the actions are actually done. For
instance, in (2), in order to evaluate as true the variant of (1.d), we
may introduce three variables P1, P2, and C such that:

‖P1‖
M = {c1, c2, c3} ‖P2‖

M = {p1, p2, p3, p4, p5}

‖C‖M = { 〈c1⊕c2⊕c3, p1⊕p2〉, 〈c2⊕c3, p3⊕p4〉, 〈c3, p5〉 }

The above extensions of P1, P2, and C satisfy Cover(C, P1, P2).

2 The Maximality requirement

In order to represent IS readings, it is necessary to reify the witness
sets into relational variables as P1 and P2. Separately, the elements
of these sets are combined as described by the Cover variables, in
order to assert the predicates on the correct pairs of (possibly plu-
ral) individuals. As argued by [13], [6], [9], and others the relational
variables must, however, be Maximized in order to achieve the proper
truth values with any quantifier, regardless to its monotonicity.

Two kinds of Maximalization has been proposed in the literature.
In this paper, they are termed as ‘Local’ and ‘Global’ Maximaliza-
tion. In Local Maximalization, it is required the non-existence of
a superset of either ‖P1‖

M or ‖P2‖
M such that the corresponding

Cover is a superset of ‖C‖M,g that is also included in the main pred-
icate’s extension3. Accordingly, (1.d) is represented as ( ∀P ′

1

[ . . . ]
and ∀P ′

2

[ . . . ] are the two Local Maximality conditions.):

(4) ∃P1P2[
=3x(child’(x), P1(x)) ∧ =5y(pizza’(y), P2(y)) ∧
Cover(C,P1, P2) ∧ ∀xy[C(x, y))→ ate’(x, y)] ∧

∀P ′

1

[ ( ∀x[P1(x)→P ′

1(x)]∧

∃C′ [Cover(C′, P ′

1, P2) ∧ ∀xy[C(x, y)→C′(x, y)]∧

∀xy[C′(x, y)→ate’(x, y)]] )→ ∀x[P ′

1(x)→P1(x)] ] ∧

∀P ′

2

[ ( ∀y[P2(y)→P ′

2(y)]∧

∃C′ [Cover(C′, P1, P
′

2) ∧ ∀xy[C(x, y)→C′(x, y)]∧

∀xy[C′(x, y)→ate’(x, y)]] )→ ∀y[P ′

2(y)→P2(y)] ]

The other kind of Maximalization, termed here as ‘Global Maximal-
ization’ has been advocated by [11], and formalized in most formal
theories of Cumulativity, e.g. [7], [5], [3], and [2]. With respect to
IS readings involving two witness sets ‖P1‖

M and ‖P2‖
M , Global

Maximalization requires the non-existence of other two witness sets
that also satisfy the predication but that do not necessarily include
‖P1‖

M and ‖P2‖
M . For instance, the event-based logical framework

defined by [7] represents the Cumulative reading of (1.c) as:

3 Without going down into formal details, we assume that quantifiers are Con-
servative, i.e. that for every quantifier Qx, ‖P B

x ‖M is a subset of ‖P R
x ‖M .
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(5) ∃e∈∗INVITE: ∃x∈∗BOY: |x|=3 ∧∗Ag(e)=x ∧

∃y∈∗GIRL: |y|=4 ∧∗Th(e)=y ∧

|∗Ag(
⋃
{e ∈INVITE: Ag(e)∈BOY ∧ Th(e)∈GIRL})| = 3 ∧

|∗Th(
⋃
{e ∈INVITE: Ag(e)∈BOY ∧ Th(e)∈GIRL})| = 4

Formula in (5) asserts the existence of a plural event e whose Agent
is a plural individual made up of three boys and whose Theme is
a plural individual made up of four girls. The two final conjuncts,
in boldface, are Maximality conditions. If ex is the plural sum of
all inviting events having a boy as agent and a girl as theme, i.e.
ex=

⋃
{e ∈INVITE: Ag(e)∈BOY ∧ Th(e)∈GIRL}, the cardinality

of its agent ∗Ag(ex) is exactly three while the cardinality of its theme
∗Th(ex) is exactly four. Therefore, Landman’s Maximality condi-
tions in (5) do not refer to the same events and actors quantified in
the first row. Rather, they require that the number of the boys who
invited a girl in the whole model is exactly three and the number of
girls who were invited by a boy in the whole model is exactly four.

Global Maximalization appears to be more problematic than Local
one. For instance, it seems that (6) is intuitively true in fig.1.

(6) Less than half of the dots are connected with exactly three stars.

Nevertheless, Global Maximalization predicts that it is false. The
number of all dots in the model connected to a star is six, while the
number of all stars in the model connected to a dot is five, not exactly
three. On the contrary, once the witness sets have been identified as
in fig.1, Local Maximalization predicts (6.b) as true, in that no other
star is connected to a dot occurring in ‖P1‖

M , and no other dot is
connected to a star occurring in ‖P2‖

M .

Figure 1. Identification of the witness sets for evaluating (6) as true.

A comparison between Local/Global Maximalization is found in
[11], who reasonably argues that (7.a-b) are false in fig.2, while (7.c)
is true. Local Maximalization wrongly predicts all (7.a-c) as true.

(7) a. Few dots are totally connected with few stars.
b. Exactly two dots are totally connected with exactly two stars.
c. At least two dots are totally connected with at least two stars.

Figure 2. A model for sentences in (7).
(7.a-b) seem to be false in the model, or at least odd.

In the light of this, Schein concludes that [13]’s Local Maximaliza-
tion, which is defined for any kind of quantifier, with any monotonic-
ity, is incorrect. A proper semantics for NL quantification should in-
stead stipulate two different semantics depending on monotonicity:

one for M↑ quantifiers, e.g. At least two, and one for M↓ quantifiers,
e.g. Few, and non-M quantifiers, e.g. Exactly two.

While I accept the truth values attested by Schein for sentences
(7.a-c) in fig.2, I do not share his conclusions. The present paper
suggests that such an oddity stems from Pragmatics. No English
speaker would ever utter (7.a-b) in those contexts, as they would
not be informative enough, and so they would violate a Gricean
Maxim. From the examples above, it seems that sentences involv-
ing non-M↑ quantifiers sound odd in contexts where more pairs of
witness sets are available. For instance, the reader gets confused
when he tries to evaluate (7.a-b) in fig.2, as multiple pairs of (wit-
ness) sets of dots and stars are available, i.e. 〈{d1, d2}, {s1, s2}〉,
〈{d3, d4}, {s3, s4}〉, etc., and he does not have enough information
to prefer one of them upon the others.
The multiple availability of witness sets does not seem to confuse the
reader for sentences involving M↑ quantifiers, perhaps because they
are simpler to interpret (cf. [4]). However, several cognitive experi-
mental results showed that many other factors besides monotonicity,
e.g. expressivity/computability, fuzzyness, the fact that quantifiers
are cardinal rather than proportional, etc., may affect the accuracy
and reaction time of the interpretation of IS readings involving these
quantifiers. See [1], [8], and [14] to begin with.

In order to formally obtain this result, a final modification of the
formulae is needed: it is necessary to pragmatically interpret the rela-
tional variables denoting the witness sets, besides the ones denoting
the Covers. Accordingly, formula (4) is revised as in (8). Maximality
conditions are omitted as they are the same shown in (4).

(8) =20x(child’(x), P1(x)) ∧ =10y(pizza’(y), P2(y)) ∧
Cover(C, P1, P2) ∧ ∀xy[C(x, y))→ ate’(x, y)] ∧
∀P ′

1

[. . .] ∧ ∀P ′

2

[. . .]

The only difference between (8) and (4) is that the value of P1 and
P2 is provided by an assignment g, as it is done for the Cover vari-
able C. The assignment g must clearly obey to all (extra-)linguistic
pragmatic constraints briefly listed above.
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