
Diagnosing Process Trajectories
Under Partially Known Behavior

Gerhard Friedrich1 and Wolfgang Mayer2 and Markus Stumptner3

Abstract. Diagnosis of process executions is an important task in
many application domains, especially in the area of workflow man-
agement systems and orchestrated Web Services. If executions fail
because activities of the process do not behave as intended, recovery
procedures re-execute some activities to recover from the failure. We
present a diagnosis method for identifying incorrect activities in pro-
cess executions. Our method is novel both in that it does not require
exact behavioral models for the activities and that its accuracy im-
proves upon dependency-based methods. Observations obtained from
partial executions and re-executions of a process are exploited. We
formally characterize the diagnosis problem and develop a symbolic
encoding that can be solved using CLP(FD) solvers. Our evalua-
tion demonstrates that the framework yields superior accuracy to
dependency-based methods on realistically-sized examples.

1 INTRODUCTION

The spread of orchestrated Web Services increased the importance of
diagnosing errors in process executions. Orchestrated Web Services
define a process where individual activities are implemented by Web
Services. If individual activities fail during execution, repair must be
carried out [4]. To provide complete and correct methods for repair, a
complete and correct diagnosis method is of central importance. The
goal of this paper is to infer minimal (irreducible) diagnoses in terms
of activity executions from observed execution traces.

While powerful techniques based on discrete event systems have
been developed for process diagnosis [10], virtually all correct and
complete diagnosis methods introduced so far assume that a detailed
model of the activities’ behavior is available while some of the pro-
cesses’ transitions and variables are unobservable. Unfortunately, this
assumption does not hold in the Web Service process and workflow
context. In this domain, the correct control flow is specified but pre-
cise models of individual services and activity behaviors are usually
unavailable. Fortunately, the sequence of activity executions can be
obtained from the execution engine. However, in case of failures (i.e.,
if exceptions are triggered), a repair-enabled execution engine needs
the ability to execute and re-execute activities in order to achieve
a successful process execution despite the fault. This increases the
difficulty of the task, since repair executions (re-executions) do not
necessarily follow the defined control flow.

To solve the problem of partial knowledge, earlier work has used
dependency tracing [12, 13, 1]. As we will show in our example,
such methods cannot always correctly compute the set of minimal
diagnoses because they do not fully capture the semantics of the
employed control elements. Also, to the best of our knowledge no
current diagnostic approach can deal with (re-)executions of activities,
nor deal with partially known behaviors. We present an approach to
isolate minimal sets of faulty activity executions based on the structure
of a given process while assuming that the behavioral descriptions of

1 Alpen-Adria Universität, Austria, gerhard.friedrich@uni-klu.ac.at
2 University of South Australia, mayer@cs.unisa.edu.au
3 University of South Australia, mst@cs.unisa.edu.au

individual activities may not be given fully. Rather, partial models of
activities are gathered from observed execution traces.

Following consistency-based diagnosis [11], a diagnosis specifies
the set of observed activity executions that are assumed to be correct.
These assumed-correct activity behaviors must be part of “guaranteed
safe” behavioral models for the activities of a process definition s.t. (i)
no exceptions will be triggered for all possible process executions and
(ii) specified activity behavior constraints are fulfilled. Such behavior
constraints express partial knowledge about activity behaviors. If such
a process behavior cannot exist, then some activity behaviors must
be incorrect. The lack of precise knowledge about activity behaviors
creates the necessity to reason about all possibly correct behaviors
of activities. We tackle this problem by introducing sets of possible
behavior descriptions and the propagation of symbolic constants rep-
resenting specific but unknown values that may be created during
execution of the process.

We develop a correct and complete diagnosis method for a se-
quence of activity (re-)executions. We introduce basic concepts and
an example in Sec. 2 and present the process model in Sec. 3. In
Sec. 4 we provide the diagnosis concepts for process (re-)executions.
Sec. 5 introduces the diagnosis method based on symbolic values. Its
implementation and evaluation are discussed in Sec. 6.

2 EXAMPLE

We use the example depicted in Figure 1 to introduce core concepts
of our approach. The upper part of this figure shows the process
definition, the lower part depicts the executions of activities.

The process definition includes processing activities (e.g. SAM-
PLE) connected by a control-flow using XOR-splits (i.e. X1) and
OR-joins (i.e. J1 and J2) as control activities. Activities read input
variables and store their results in output variables. Process executions
are started by the execution of activity START which provides the
process inputs. A process execution is finished by the execution of
END. The outputs of a process are the inputs of activity END. In our
example the input to the process is a specification of a test sample
(variable SPEC ) which is used by activity SAMPLE to generate a
sample placed at S. S is inspected by SEC1 and SEC2. Depending on
the outcomes of SEC1 and SEC2, activity REM is eventually executed
to remove some parts of the sample. Before ending the process a guard
examines the sample for a final quality control. This guard can decide
that the process failed by assigning nil to the control variable E thus
stopping the execution.

Assume that the process was executed as shown in Fig. 1. Time
points mark the end of an executed activity. The completion of activity
executions are observed. GUARD raises an exception by assigning
nil to E at time t8. We assume that only the processing activities
SAMPLE, SEC1, SEC2, REM could be faulty. Given the flow of
execution, activity executions SAMPLEt1 and SEC2t4 are the only
ones that could have failed. 〈SAMPLEt1, SEC2t4〉 is the only minimal
conflict so far; a correctness assumption of SEC1t2 is not needed to
predict that the guard will fail. Both branches of the first occurrence
of X1 in the process will lead to an execution of GUARD that fails if

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-111

111



SEC1

SEC2

SAMPLE

REM

GUARD END

X1

X1

R1

R2

S

SAMPLE SEC1 X1 SEC2 X1 GUARD REM GUARD SAMPLE GUARDREM

nil nil true

t0 t1 t2 t3 t4 t5 t7 t8 t9 t10 t11 t12t6

J1

J2

no

no

Time

START

SPEC

START

t13

EC1 C2 C3

C4

C5

C6

C7

C8

C10

C11

C9

SPEC ← start()
S1 ← sample(SPEC )
R1 ← sec1(S1)
if x1(R1) :

R2 ← sec2(S1)
if x1(R2) :

S2 ← rem(S1)

S3 ← φ(S1, S2)

S4 ← φ(S1, S3)
guard(S4)
end(S4)

Figure 1. Example process (top left), its Static Single Assignment form (right), and a sequence of activity executions (bottom)

SAMPLEt1 and SEC2t4 are assumed to be correct. Diagnosis methods
based on tracing dependencies [12] would not exonerate SEC1t2 since
the computation of E depends on the output of SEC1t2.

Let us assume that a failure of SAMPLEt1 is unlikely, so [SEC2t4]
is the only leading diagnosis. In this case, it follows, that SEC2 must
output to R2 a value such that the second occurrence of X1 takes the
upper branch. REM has to be executed to avoid the exception.

Let us assume a repair reasoner [4] decides to execute REM and
GUARD after the execution of GUARD at t8, but the execution of
GUARDt10 generates another exception. It follows that 〈SAMPLEt1,
REMt9〉 is a further minimal conflict. Whatever branch is taken in the
process, assuming executions SAMPLEt1, REMt9 as correct leads
to an exception raised by GUARD. Consequently, [SAMPLEt1] is
the only single fault diagnosis. So the repair reasoner decides to
execute SAMPLE again at t11. If we assume that the second execution
of SAMPLE (at t11) outputs the same value as the execution of
SAMPLE at t1, then the diagnosis [SAMPLEt1] has to be extended
to [SAMPLEt1, SAMPLEt11].

Consequently, there are two minimal diagnoses [SAMPLEt1,
SAMPLEt11] and [SEC2t4, REMt9]. If the first diagnosis is very
unlikely (since we know that the probability for SAMPLE to fail
twice is an order of magnitude lower than the second diagnosis) then
the repair reasoner decides to execute REM again which now pro-
vides a different value than REMt9. Next GUARD is executed which
returns t (true). At this point we can conclude that the value provided
by REMt12 corresponds to a value where the process is executed for
the input provided by STARTt0 and all activities worked correctly.
Consequently, the faulty execution of the process is repaired.

In such a diagnosis/repair scenario two challenges must be ad-
dressed. (1) The execution follows the control path of the process
definition until an exception is raised. At this point a repair reasoner
takes over control and (re-)executes activities in an order that may
differ from the one specified in the process definition. Note, if an
activity can be re-executed is decided by the repair reasoner.

(2) It cannot be assumed that a complete definition of the behav-
ior of the activities is available. In many cases only the structural
description of the process and the execution trace is provided.

To deal with partially known behavior we present a process model
that allows to define sets of possible activity behaviors.

3 PROCESS MODEL

In our model, a process consists of activities that are connected by
shared variables. To obtain a model that is suitable for simulation and
diagnosis, the semantics of each activity and the control and data flow
between activities must be captured. We follow the proposal of [9] and
represent the semantics of the process as constraints over the process
variables. Different from previous models, our approach explicitly
captures alternative possible process behaviors in a single model. Our
notation is based on Reiter’s logic formalism [11], but the underlying
ideas apply to other formalisms, such as transition systems. We first
describe the flow-related modeling aspects:

Definition 1 (Process) A process P = 〈A,V, I,O〉 consists of a set
of literals A = {A1, . . . , An} representing activities. Occurrences of

each activity are defined over a set of process variables V. I ⊂ V and
O ⊆ V represent the input and output variables of P , respectively.

Activities Ai may occur several times in the process exploiting
different process variables. Occurrence j of activity Ai is denoted
by Aij . Each occurrence j of activity Ai in P receives input values
through some process variables and outputs values to some process
variables. The vector of process variables serving as input (output) for
Aij is denoted by Ĩij (Õij ). A process has a distinguished START
activity with no predecessors and an END activity with no successors.
Processes conform to the Static Single Assignment (SSA) form [3],
where each variable is defined by exactly one activity. This is ac-
complished by creating new indexed “versions” of variables and by
introducing so called φ-activities that are placed at control flow join
points. The SSA form of our example process is shown (in pseudo-
code syntax) in Figure 1. The input variables taken by a process are
defined by the START activity, and the output variables are inputs to
the END activity. The structure of P is expressed as the conjunction
of all its activity occurrences
P (V) =

∧
Aij (Ĩij , Õij ), Aij ∈ A; Ĩij , Õij ⊆ V; i ∈ [1, n]

that defines the control and data flow of the process. We use upper
case letters to denote variables in first-order logical sentences. We
write P (Ĩ , X̃, Õ) to denote the conjunction P (V) where the process
receives input values assigned to Ĩ , assigns output values to Õ, and
assigns values to process-internal variables in X̃ . Symbol Ai denotes
a relation that governs the allowed value combinations admitted by
the correct behavior of all occurrences of activity Ai. This is called
the behavior relation and will be defined below. Hence, value assign-
ments to all process variables Ĩ , X̃, Õ which satisfy the relations of
the activities Ai in the conjunction P (Ĩ , X̃, Õ) correspond to the
allowed execution(s) where P receives input values Ĩ and produces
output values Õ. A value assignment that satisfies all relations Ai in
P (Ĩ , X̃, Õ) is an execution of the process. For simplicity of presenta-
tion, we assume that END has only a single control input variable
E that indicates success or failure of a process execution. The SSA
from of the example process is represented as the conjunction

P (SPEC , R1, R2, S1, . . . , S4, C1, C2, . . . , E) =
start(C1,SPEC ) ∧ sample(C1,SPEC , C2, S1) ∧

sec1(C2, S1, C3, R1) ∧ x1(C3, R1, C4, C5) ∧
sec2(C4, S1, C6, R2) ∧ x1(C6, R2, C7, C8) ∧

rem(C7, S1, C9, S2) ∧ φ(C8, C9, C10) ∧ φ(S1, S2, S3) ∧
φ(C5, C10, C11)∧φ(S1, S3, S4)∧ guard(C11, S4, E)∧ end(E,S4)

where the variables Ci and E model the control flow and the remain-
ing variables model the data flow. Control- and data flow joins are
uniformly represented as φ-activities.

From here on we define the relation describing the behavior of
an activity over a set of activity variables. We focus on the possible
relationships between input and output values of an activity and do not
rely on detailed knowledge about the internal structure or implementa-
tion of an activity. Since an activity may occur several times in P , the
activity variables (·) may be bound to different process variables (̃·)
as shown in the example for X1. That is, the activity variables in the
definition of the behavior relation serve as a placeholder for process
variables.

G. Friedrich et al. / Diagnosing Process Trajectories Under Partially Known Behavior112



Definition 2 (Behavior Relation) Let A be an activity with activity
variables U1, . . . , Ut where the input variables are I = 〈U1, . . . , Us〉
and the output variables are O = 〈Us+1, . . . , Ut〉, and let DUk

denote the value domain of variable Uk. The allowed behavior of
activity A is given as a relation over the allowed input and output
values: A(I,O) ⊆ DU1 × · · · ×DUs ×DUs+1 × · · · ×DUt .

We require that A is total, that is, A(v̂, O) includes at least one tuple
for each v̂ ∈ DU1 × · · · ×DUs . We describe the behavior relation
of A extensionally by a set of literals. Value domains correspond to
types and can appear in multiple behavior descriptions. For example,
the domain of the data output of SAMPLE is the domain of the
processing input of SEC1. We require processes to be well typed such
that an activity is defined on all values that could be produced by
its predecessors. Without loss of generality we assume that any two
domains are either equal or mutually disjoint.

Definition 3 (Process Behavior) A process behavior BP

for a process P is a vector of activity behavior relations〈
A1(I1, O1), . . . , An(In, On)

〉
. Ii, Oi denote vectors of activity

variables.

To accurately model the flow of control in a process execution, we as-
sume that each domain DUk contains a distinguished symbol nil that
represents “no value” and that is different from any value produced
by any execution of an activity. The control flow between activities is
expressed as a shared variable connecting each predecessor activity to
its successor(s). Control activities AND-split, AND-join, and OR-join
are defined as usual where control input and output variables have the
binary domain {t,nil}. For processing activities (those which process
inputs and pass the control flow), guards, and XOR-splits, we amend
the relation A(I,O) to include all tuples 〈v̂,nil , . . . ,nil〉 where an
input value in v̂ is nil and all other input variables are bound to values
of their domain. For φ-activities the output is nil iff both inputs are
nil . We refer to these sets of tuples as the nil -description. This model
derived from SSA form ensures that an activity produces non-nil out-
puts only if it is activated with non-nil inputs along the control flow
path and produces nil otherwise. As a result, the control and data
flow in any process execution are captured correctly. Furthermore, the
model ensures that the END activity receives a non-nil control input
iff the process runs to completion and does not raise an exception.

Let us now investigate the case where the behavior of an activity
A is partially unknown. This situation may arise if we must pre-
dict the execution of a process on partial input or in the presence
of fault assumptions. For example, the outputs of X1 cannot be pre-
dicted precisely without knowing the values supplied by SEC1 and
SEC2. However, even if the behavior of SEC1 is not known, it is
still possible to conclude that any execution of SEC1 will result in an
assignment for R1 and the activation of X1. Let the hypothetical value
of the assignment to R1 be r. Then it is known that X1 will activate
either the upper or the lower branch. Consequently, the behavior rela-
tion of X1 will contain either x1(t, r, t,nil) or x1(t, r,nil , t) where
the behavior of an XOR-split activity is expressed by the relation
x1(C,W, Y,N) defined over control variables C, Y , N and decision
input W . Since XOR-splits exhibit deterministic behavior (for given
inputs) the behavior relation could not contain both tuples. To capture
this form of incomplete knowledge, a model must be able to express
a set of possible behavior relations where each relation reflects a
different possible behavior if complete information was available.

We generalize our model of an activity from a single relation
to a set of relations in order to model the behaviors that may
arise if the behavior relation is not known completely. The possi-
ble behaviors of an activity A are expressed by a set of relations
A(I,O) =

{
A1(I,O), . . . , Az(I,O)

}
, where each Ak(I,O) repre-

sents a behavior relation as defined previously.
E.g., the two possible behaviors of an XOR-split activity

x1(C,W, Y,N) with its decision input fixed to W = x (where x
may be nil ) are

{x1(nil , x,nil ,nil), x1(t,nil ,nil ,nil), x1(t, x, t,nil)} and
{x1(nil , x,nil , nil), x1(t,nil ,nil ,nil), x1(t, x,nil , t)} .

More generally, if the value of variable W is not known,
AX1(IX1, OX1) comprises all sets

{{x1(t,nil ,nil ,nil) ∪
⋃

x∈DW

{x1(nil , x,nil , nil), x1(t, x, Y,N)}} |

〈Y,N〉= 〈t,nil〉 or 〈Y,N〉= 〈nil , t〉}
The behavior of the entire process P is determined as a combination

of specific behaviors, one each from Ai(Ii, Oi) for all activities Ai

in P . By constructing the set of possible selections we define the set
of all possible process behaviors.
Definition 4 (Possible Process Behaviors) The set of all possible
behaviors of P is given as

BP =
{〈

Ak1
1 , . . . , Akn

n

〉
| Aki

i ∈ Ai(Ii, Oi)
}
.

An element BP ∈ BP is a possible process behavior.

Assume an execution of P results in the following observed execution
behavior of activities Obs:

{start(t, spec1), sample(t, spec1, t, s1), sec1(t, s1, t, r11),

x1(t, r11, t,nil), sec2(t, s1, t, r21), x1(t, r21,nil , t), . . . ,

guard(t, s1,nil), rem(t, s1, t, s2), guard(t, s2,nil),

sample(t, spec1, t, s1), rem(t, s1, t, s3), guard(t, s3, t)}.
The same I/Os are observed for the executions of SAMPLE, while
REM produces different outputs for the same input.

In absence of further information, the observed execution behaviors
in Obs together with the nil -description comprise the behavior rela-
tions. Behavior relations of φ-activities and END are also included.
Assume that REM may behave non-deterministically for some in-
puts, and that for the input value r21 the behavior of the XOR is
unknown; that is, no behavior matching x1(t, r21, , ) has been ob-
served. Then there are two possible process behaviors BU

P and BL
P

for P : in BU
P , the second occurrence of X1 in P activates the upper

branch on input r21, while in BL
P the lower branch is taken.

A given process behavior BP ∈ BP determines the set of possible
executions of P . We abstract from the concrete execution(s) implied
by a given BP and project the process behavior on its output values:
Definition 5 (Reachable assignment) Let BP be a behavior of a
process P = 〈A,V, I,O〉. An assignment of value w to output
variable Q̃ ∈ O is reachable under BP iff some execution admitted
by P (Ĩ , X̃, Õ) satisfies Q̃ = w. We write

BP |= ∃Ĩ X̃ Õ : P (Ĩ , X̃, Õ) ∧ Q̃ = w.

For the scenario described above it holds that in both possible pro-
cess behaviors (BU

P and BL
P ) E = nil is a reachable assignment:

BL
P |= P (SPEC , R1, R2, S1, . . . , S4, C1, C2, . . . , E) ∧ E = nil

(the variables of P are existentially quantified). That is because the
guard signals an exception both for s1 and s2. Assignments S4 = s2
and S4 = s3 are both reachable in BU

P .
If BU

P determines the execution, E = nil , because the guard
signals an exception if S4 = s2 is reached. If BU

P is changed to B′U
P

by removing rem(t, s1, t, s2) from the behavior relation of REM,
E = nil is no longer reachable in B′U

P but is still reachable in
BL

P . The process behavior B′U
P specifies a process where –regardless

of the concrete execution– no exception will be raised, whereas BL
P

admits an execution that fails. Consequently, if we assume that SEC2t4

produces a different value than the observed value r21 and on this
value the upper path of the second occurrence of X1 is taken, and
REM produces a different value than s1 or s2 then we are guaranteed
a process behavior which rules out exceptions.

4 DIAGNOSIS MODEL

In “black box” application domains such as Web Services the com-
plete behavior relation Ai(Ii, Oi) is unknown. However, we can

G. Friedrich et al. / Diagnosing Process Trajectories Under Partially Known Behavior 113



exploit the available knowledge which on one hand specifies the I/O
tuples that must be contained in a behavior relation and on the other
hand describes which I/O tuples are forbidden. For each activity Ai a
behavior relation Ai(Ii, Oi) is defined to include the nil -description,
all observations gathered from executions of activities, and possibly
other known concrete I/O behaviors. This set of predefined behaviors
is denoted by Pre. Some domains of the variables of Ai may be
known, e.g., control variables, while others are only partially known
(e.g. the output of SAMPLE). If we observe a value v of a variable
O whose domain is only partially known, and v is not contained in
this domain, we extend the domain with a new symbol representing v.

Additional requirements constraints Rei determine whether the
behavior of an activity Ai must be deterministic. Rei is a constraint
expression over the variables in Ai(Ii, Oi) specifying which value
combinations for activity variables Ii, Oi are allowed in the behavior
relation. For our purposes it is sufficient if Rei refers to known domain
values of Ii, Oi. These constraints are local to an activity and do not
depend on the behavior of any other activity. The set of requirements
for all activities is denoted by Re. The requirement that activity
behaviors must be totally defined is part of Rei.

Definition 6 (Diagnosis Problem) A diagnosis problem DP =
〈P,Obs,Pre,Re〉 consists of a process P , a set of I/O behaviors
Obs observed from executions, a set of predefined behaviors Pre,
and a set of requirements Re. Let P = 〈A,V, ∅, {E}〉 with activities
A = {A1, . . . , An}. Let Obs = {ob1(v̂1, ŵ1), . . . , obq(v̂q, ŵq)}
be the set of observed I/O behaviors of activity executions, where
obj(v̂j , ŵj) ∈ Obs is the observed execution of an activity occur-
rence Aij . The set of all observed execution behaviors of an activity
Ai is denoted by obi. obi ⊆ Ai(Ii, Oi), Ai(Ii, Oi) ∈ Pre for
i ∈ {1, . . . , n}. Process variable E indicates success or failure of
any execution of P .

Note that without loss of generality, the definition limits P to a
single output and does not mention process inputs: the inputs that were
observed in executions are modeled as outputs of the START activity.
Furthermore, the decisions that establish if a process execution is
successful (typically referred to as an “oracle”) are explicitly encoded
in the guard activities of the process. Note that we do not require that
the criteria are completely known and formalized. Rather, the behavior
of guard activities is also determined by observations in Obs. Our
model implies that if a guard activity determines that its input values
violate a process constraint, a vector containing nil values will be
assigned to its output variables. By the definition of the SSA form and
the behavioral relations, nil will be propagated to the END activity
by the subsequent activities. Hence, it is sufficient to verify that the
END activity does not receive a nil value to verify that the process
execution complies with all guards.

For example, the behavior PreX1 of x1(C,W, Y,N) is given by
the set {x1(t,nil ,nil ,nil), x1(nil , X,nil ,nil) | X ∈ DW } ∪
Obs where Obs contains the observations
{x1(t, r11, t,nil), x1(t, r21,nil , t)}. The requirements ReX1

for the XOR behavior are given by the following sentence:
x1(C,W, Y,N) ⇒

[(C = nil ∨W = nil) ⇔ Y = nil ∧N = nil ]∨
[(C �= nil ∧W �= nil) ⇔ Y �= N ]

In addition ReX1 includes the property that X1 must be deterministic
and totally defined.

If a failure occurred (indicated by a guard raising an exception)
either during process execution or repair planner guided re-execution,
some activity executions must have produced incorrect values. In
other words, specific activity behaviors in the process are faulty, and
the behavior definition must be restricted so that the incorrect I/O
behaviors cannot occur. Conversely, behaviors do not need to be
removed if their execution cannot result in a failure.

Let BP be a process behavior. For a set of tuples Δ, BP \Δ is the
process behavior where from each behavior relation in BP the tuples
of Δ are removed.

Definition 7 (Diagnosis) Let DP = 〈P,Obs,Pre,Re〉 be a diag-
nosis problem with P = 〈A,V, ∅, {E}〉. A subset Δ ⊆ Obs of
activity executions is a diagnosis for DP iff there exists a process
behavior BP such that

1. Each A′
i(Ii, Oi) ∈ BP is a superset of Ai(Ii, Oi) \ Δ for

Ai(Ii, Oi) ∈ Pre

2. Each A′
i(Ii, Oi) ∈ BP is consistent with Rei ∈ Re

3. BP �|= ∃X̃ E : P (∅, X̃, E) ∧ E = nil .

Δ is minimal if no Δ′ ⊂ Δ is a diagnosis for DP .

The first condition expresses the key concern that the executions
should be consistent with existing non-faulty activity behaviors, but
omit the faulty behavior tuples. The second condition formalizes the
expectation that activity executions must also satisfy general known
requirements like totally defined. The third is the error-freeness con-
dition for the diagnosed and repaired execution.

Hence, a diagnosis Δ rules out certain observed behaviors of ac-
tivities, such that no process execution conforming to the remaining
assumed-correct behavior relations in BP can lead to a failure. We say
Δ is accepted as a diagnosis iff there exists a correct process behavior
BP that extends Pre \Δ. A minimal diagnosis preserves as much as
possible the observed behavior. If the same behavior of an activity is
observed multiple times in an execution (e.g. sample(t, spec1, t, s1))
then either all of these executions must be correct or all must be faulty.
This assumption introduces dependencies between activity executions
and may affect the diagnosis probability. Devising suitable probability
models is beyond the scope of this paper.

As examples, consider the following diagnosis scenarios assuming
that the process was executed until the first execution of the guard
returns a failure. All the behavior relations of the activities contain
just the observed I/O behaviors and the nil -description. Re contains
the usual restrictions on the allowed behavior of processing activities
and control activities. If Δ = ∅ then E = nil is reachable, so Δ = ∅
is not a diagnosis. If Δ = {sample(t, spec1, t, s1)} then we can
construct behavior relations for all activities such that Pre \Δ is ex-
tended and the process behavior is correct. For example, the execution
of SAMPLE generates a new value for which we can assume that the
guard does not signal a failure. However, if Δ = {sec1(t, s1, t, r11)}
then it is not possible to generate a correct process behavior by extend-
ing Pre\Δ. Whatever value SEC1 generates, either the upper branch
or the lower branch of the first occurrence of X1 in P is taken. In both
cases, s1 will be assigned to S4 and therefore the guard will output
nil (as in the original execution). Thus, Δ = {sec1(t, s1, t, r11)} is
not a diagnosis, as it does not prevent the exception.

In the following presentation we will assume that P is acyclic.
This does not limit the representation of observed execution traces
(traces are usually represented as partially ordered set of activities).
Loops must be taken into account when projecting unseen behavior
forward through the process, using common techniques to determine
a sufficient number of unfoldings that cover all possible looping
behaviors [6].

5 SYMBOLIC REPRESENTATION

To verify if Δ is a diagnosis, behavior relations A′
i(Ii, Oi) of activi-

ties Ai ∈ A must be found that include the tuples of Ai(Ii, Oi) \Δ,
are consistent with Rei, and no guard fails, i.e. E = nil cannot be
reached. If no such set of behavior relations exist then Δ is not a
diagnosis. Consequently, all possible behavior relations of Ai have to
be explored. If all domains of I/O variables of Ai are known we can
enumerate all behaviors which are superset of Ai(Ii, Oi) \ Δ and
consistent with Rei. However, if domains are only partially known
then we have to deal with unknown values.

We adopt the principle of symbolic execution [5] from program
analysis to deal with unknown behaviors. In symbolic execution,
unknown values of input and output variables of program statements

G. Friedrich et al. / Diagnosing Process Trajectories Under Partially Known Behavior114



are represented as symbols. Every occurrence of an activity Ai in the
process P may produce a new, yet unseen value for a variable whose
domain is partially unknown.

For an activity Ai and an output variable O of this activity, we
inject unique symbols s1, . . . , sp into the domain DO , where p is the
number of occurrences of Ai in P . The domain DO may be used
multiple times by the same activity but also by other activities as a
domain for output variables.

For example, assume that activities SEC1 and SEC2 use the same
domain D for their data output. From observations we know that
{r11, r21} ⊂ D. Both SEC1 and SEC2 can produce symbolic values
y1 and y2 that represent yet unseen values in D. Since the symbolic
values are not constrained further, both activities may output an ar-
bitrarily chosen value —the same value or different values— in D.
Hence the symbolic behavior relation must consider the cases where
both activity executions result in the same symbolic value and where
the values differ.

In the following we construct every possible behavior of activities
given a diagnosis problem and a Δ ⊆ Obs.

Let A be an activity with input variables I = 〈U1, . . . , Us〉 output
variables O = 〈Us+1, . . . , Ut〉, and let DUk denote the domain of
variable Uk. The set of all input vectors of an activity is wI =
{〈w1, . . . , ws〉 |w1 ∈ DU1 , . . . , ws ∈ DUs}. Likewise the set of
all output vectors of an activity is wO = {〈ws+1, . . . , wt〉 |ws+1 ∈
DUs+1 , . . . , wt ∈ DUt}.

Based on the I/O vectors we can construct all possible behavior
relations of activities. However, in such a relation, for each input
vector, at most p output vectors need to be defined, since the activity
can only occur p times in P ; on each occurrence a different output
vector can be returned. If an activity is deterministic then just one
output vector is created for each possible input vector. Consequently,
the set of possible behaviors for an activity Ai is defined by behavior
relations where for each input vector p output behaviors are chosen.
The same output vector may be selected multiple times.

A′
i(Ii, Oi) = {⋃w

I
∈w

I
{〈wI , w1〉 , . . . , 〈wI , wp〉}|w1 ∈

wO, . . . , wp ∈ wO}
All the possible behavior descriptions in A′

i are extended by the set
of tuples considered to be correct, i.e. Ai(Ii, Oi)\Δ for Ai(Ii, Oi) ∈
Pre, and by the nil -description. In addition, we eliminate all behavior
descriptions in A′

i that are inconsistent with requirements Rei. We
generate the possible behavior for all activities which have variables
with a partially unknown domain, such as processing activities, guards,
XOR-splits, and φ-activities. The result is a set of possible process
behaviors BP for a diagnosis problem and a Δ ⊆ Obs.

For example, the domain DW of x1(C,W, Y,N) is extended to
contain all of {r11, r21, y1, y2} (and nil as the only other value).
Every possible behavior of X1 includes the tuples in PreX1 (shown
earlier) and must be consistent with ReX1. That is, the behavior on
inputs {r11, r21,nil} is fixed, but there are four different behaviors
which differ just on the outputs provided for inputs {y1, y2}:
{x1(t, y1, t,nil), x1(t, y2, t,nil)}, {x1(t, y1,nil , t), x1(t, y2, t,nil)},
{x1(t, y1, t,nil), x1(t, y2,nil , t)}, {x1(t, y1,nil , t), x1(t, y2,nil , t)}.

Based on the possible process behaviors BP for a diagnosis prob-
lem DP and a diagnosis Δ we can state the following property which
is exploited for the generation of diagnoses:

Property 1 Let DP = 〈P,Obs,Pre,Re〉 be a diagnosis prob-
lem with P = 〈A,V, ∅, {E}〉 and BP the set of possible process
behaviors generated for a subset Δ ⊆ Obs as described above.

Δ is a diagnosis for diagnosis problem DP iff there is a process
behavior Bp ∈ BP s.t. Bp �|= ∃X̃ E : P (∅, X̃, E) ∧ E = nil .

Proof sketch: (⇐) : This is trivially fulfilled by the construction of
BP . All activity behaviors in BP are supersets of Ai(Ii, Oi) \Δ, are
consistent with Rei, and Bp does not trigger an exception.

(⇒) : If there exists a diagnosis Δ for DP then there exists a
process behavior BP s.t. BP �|= ∃X̃ E : P (∅, X̃, E) ∧ E = nil . An

instantiation of the variables in BP |= ∃X̃ E : P (∅, X̃, E) corre-
sponds to a process execution and defines behavior tuples for activities
Ai. Values not covered by observations are replaced by a symbol. By
construction, at least one symbolic value is available for each oc-
currence of Ai. The introduction of symbolic values cannot trigger
an exception, and all constraints in Rei remain satisfied, since both
cannot contain symbolic values. Thus, if a constraint is fulfilled for
an arbitrary unknown value it is also fulfilled for a symbolic value.
Ai remains to be totally defined after the substitution. The tuples
of all process executions where the unknown values are replaced by
symbolic values define behavior relations which are included in some
behavior relation generated by our construction of BP . It follows that
if there is a process behavior BP for which Pre \Δ can be correctly
extended, then there exists a process behavior B′

P in the set of gener-
ated possible process behaviors BP which is also a correct extension
of Pre \Δ. We have constructed a decision method which correctly
and completely determines if a set Δ ⊆ Obs is a diagnosis. �

Given our example process, observations and the diagnosis can-
didate Δ = ∅, all Ai(Ii, Oi) in the process behaviors of the gener-
ated set BP contain their observed execution behavior. Therefore, in
each process behavior of BP , E = nil is reachable. Consequently,
there is no B′

P which is a correct extension of Pre \ Δ. Hence,
Δ = ∅ is not a diagnosis. However, if the observed execution be-
havior sample(t, spec1, t, s1) is removed, then only symbolic (un-
seen) output values remain to be assigned to S1. Therefore, we can
construct behaviors for REM , GUARD , and all other activities
such that the guard is not triggered for any execution. Therefore,
{sample(t, spec1, t, s1)} is indeed a valid diagnosis.

6 Diagnosis Computation and Evaluation

Because all domains of the variables are finite, logic programming
systems and model checkers can be used to concisely express all pos-
sible process behaviors and check whether E = nil is reachable. The
search for minimal, irreducible, or leading diagnoses can be imple-
mented by standard methods, such as HS-tree generation, combined
with appropriate minimization procedures, such as QuickXplain.

We conducted an empirical evaluation to determine the diagnostic
accuracy that can be expected from our model, compare it with pre-
vious approaches, and assess the computational resources required.
We sourced process examples from the literature, such as [4], and
generated additional (artificial) processes to obtain a comprehensive
benchmark suite of 200 processes. Each process comprised 5–79
activities chosen from 3–9 different types of activity, and each pro-
cess included up to 22 xor decision nodes. Activities were assembled
into complex processes based on a randomized graph grammar to
ensure process control and data flow are well-defined. For each ac-
tivity type, a set of observed behaviors was generated randomly to
yield the observed process behaviors and exceptions. Two execution
paths were generated for each process. The number of activities oc-
curring in an execution path varied from 5–65 activities. The resulting
benchmark suite of 400 process executions covers a wide range of
different process structures, and, to the best of our knowledge, is more
comprehensive than any other available benchmark.

We implemented the diagnosis framework in Eclipse Prolog. Each
process was compiled into a finite domain constraint satisfaction
problem which captured the structural and behavioral links between
the activities. Concrete and symbolic values were encoded as integers
to leverage efficient constraint solvers. We used additional variables to
model correctness assumptions and the selection of possible behaviors.
The constraint system was then used to isolate the maximal subsets of
the observed process behaviors that did not result in an exception.
Our results are summarized in Table 1, aggregated by process size.
The columns show the average number of activities in a process
(Size), the number of process executions considered in our study
(N), the average number of decision nodes in a process (Xor), the
average number activities in each execution trace (Trace), the num-

G. Friedrich et al. / Diagnosing Process Trajectories Under Partially Known Behavior 115



Size N Xor Trace Dep. Symb. Imp. Time (s)
0–9 48 0.67 8.04 3.98 3.50 0.10 0.12

10–19 100 3.10 16.84 6.40 4.63 0.16 1.07
20–29 124 5.21 27.16 8.97 4.89 0.45 5.43
30–39 60 7.67 33.43 9.67 5.37 0.59 16.85
40–49 28 10.21 41.64 12.36 6.31 0.50 74.52
50–59 12 12.17 35.17 10.42 6.29 0.32 124.22
60–69 16 14.62 30.75 9.12 4.50 0.40 130.63
70–79 6 17.00 35.67 9.33 2.00 255.80
0–79 400 5.85 24.95 8.19 4.82 0.29 14.56
Table 1. Comparison of dependency- and symbolic diagnosis model

0
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

0
1

0
2

0
3

0
4

0

Symbolic Model

Dependency

Model
Executed

Activities

N
u

m
b

e
r 

o
f 

M
in

im
a

l 
D

ia
g

n
o

s
e

s

20 40 60 80

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Number of activities

T
im

e
 (

s
e

c
o

n
d

s
)

Figure 2. Process size vs. result size and diagnosis time

ber of minimal diagnoses obtained from dependency-based models
(Dep) and from our model (Symb), the mean relative improvement
(Imp= 1− Symb/Dep), and the average diagnosis time in seconds
(Time) to compute all diagnoses using the symbolic model. Accuracy
is measured as the fraction of activity behaviors that need not be
examined given a set of diagnoses. Note that Imp may be larger than
1− Symb/Dep since some instances exceeded the five minute time
limit for the symbolic model. The blank cell denotes “no improve-
ment” and is caused by too few symbolic results. Hence, Imp is a
conservative estimate and may improve further with faster algorithms.

The results show that the symbolic model yields significantly more
accurate results than simpler dependency-based models. The symbolic
model on average eliminated three diagnoses, but could shorten the
result by as much as 20 diagnoses. Overall, the number of diagnoses
dropped by roughly 30% compared to dependency-based models. Our
model on average implicated only 21% of the executed activities.
Figure 2 shows a bar plot of the additional spurious diagnoses that are
incurred when moving from a more precise diagnosis model (lower
bars in the diagram) to a more abstract model (mid- and upper bars).
The greatest reduction of the diagnosis ratio was observed for process
executions that contained a large number of activities. Among all
diagnoses, 90% were single-fault explanations, 9.5% double-faults,
and 0.5% triple-faults.

The measured execution times indicate that the symbolic model
also performed well in those scenarios that are most relevant for
practical application. Figure 2 shows a scatter plot of the diagnosis
times. In 75% of all cases, the result was obtained after just 5.3
seconds. On average, all minimal diagnoses were obtained after 14.56
seconds of CPU time.4 Our results confirm that the model is sufficient
to address the majority of practical process diagnosis scenarios, where
the number of activities is virtually always less than 50. (Larger
scenarios are usually decomposed hierarchically, where the number
of activities on each level is small. Our model is particularly suited for
hierarchical diagnosis, since no detailed specification of the abstract
activities’ behavior is required.) We believe that further optimization
of our naı̈ve implementation will improve these results.

7 RELATED WORK

Dependency tracking techniques are well-known techniques for
model-based diagnosis of programs [12] and Web Services [1]. The
approach has been employed to diagnose Web service workflows built

4 The data were obtained from Eclipse 6.1 on Intel P4@1.86GHz with 6Gb
RAM running Linux 2.6.

from BPEL models [13]. The semantics of the service are expressed as
an automaton and diagnosis is conducted by tracing backwards along
the dependencies when a fault occurs. These mechanisms correspond
to the dependency-based approach in our evaluation.

Expressive constraint models have been developed to increase the
accuracy of model-based debugging of imperative programs [7, 9].
While our processes are much simpler “programs”, we cannot rely
on the precise behavioral specification of the programs required by
the earlier approaches. Instead, we exploit specific behavior instances
observed at run time and embrace a symbolic representation to address
the problem of incomplete information.

Related work on planning for diagnosis [8] has been concerned
with fault explanation by constructing sequences of events that lead to
a particular set of observations given a set of operations. In contrast,
we assume that the process structure is given and fixed but the effects
of each activity may not be entirely known.

Logging mechanisms facilitating compensation of failing transac-
tions have also been analyzed [2]. However, the paper focuses on
sequential compensation and does not identify diagnoses.

8 CONCLUSION

In this paper we pointed out the limitation of dependency tracing
methods and motivated the necessity to reason with multiple possible
activity behaviors including the propagation of symbolic values. We
proposed a diagnosis approach which (1) can deal with partial knowl-
edge about activity behaviors and (2) does not assume that activities
are executed in an order as defined in the process. Both properties are
necessary in diagnosis/repair scenarios where only limited behavior
knowledge is available. We introduced symbolic values to deal with
unknown behavior and obtained a complete and correct diagnosis
method, provided a correct and complete model of the known activity
behavior and the constraints on the possible behaviors are given. In
our evaluation we empirically confirmed the increased precision of
our method and its feasibility for practical applications.

Acknowledgements The research project is partially funded by the
Austrian Research Promotion Agency (Project 813806 - C2DSAS)
and by the Australian Research Council (Grant DP0881854).

REFERENCES

[1] L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi, M. Segnan,
and D. Theseider Dupré, ‘Enhancing web services with diagnostic capa-
bilities’, in European Conference on Web Services, (2005).

[2] Debmalya Biswas, ‘Compensation in the world of web services compo-
sition’, in SWSWPC, pp. 69–80, San Diego, (2004).

[3] Ron Cytron et al., ‘Efficiently computing static single assignment form
and the control dependence graph’, ACM TOPLAS, 13(4), 451–490,
(1991).

[4] G. Friedrich, M. Fugini, E. Mussi, B. Pernici, and G. Tagni, ‘Exception
handling for repair in service-based processes’, IEEE TSE, (2010).

[5] James C. King, ‘Symbolic execution and program testing’, Commun.
ACM, 19(7), 385–394, (1976).

[6] D. Kroening and O. Strichman, ‘Efficient computation of recurrence
diameters’, in VMCAI, volume 2575 of LNCS, pp. 298–309, (2003).

[7] Wolfgang Mayer and Markus Stumptner, ‘Evaluating models for model-
based debugging.’, in Proc. ASE, pp. 128–137. IEEE, (2008).

[8] Sheila A. McIlraith, ‘Explanatory diagnosis: Conjecturing actions to
explain observations’, in KR, pp. 167–179, (1998).

[9] M. Nica, J. Weber, and F. Wotawa, ‘How to debug sequential code by
means of constraint representation’, in Proc. DX Workshop, (2008).

[10] Yannick Pencolé and Marie-Odile Cordier, ‘A formal framework for
the decentralised diagnosis of large scale discrete event systems and
its application to telecommunication networks’, Artif. Intell., 164(1-2),
121–170, (2005).

[11] R. Reiter, ‘A theory of diagnosis from first principles’, Artif. Intell.,
23(1), 57–95, (1987).

[12] F. Wotawa, ‘On the relationship between model-based debugging and
program slicing’, Artif. Intell., 135(1-2), 125–143, (2002).

[13] Y. Yan, P. Dague, Y. Pencolé, and M. Cordier, ‘A model-based approach
for diagnosing fault in web service processes’, Int. J. Web Service Res.,
6(1), 87–110, (2009).

G. Friedrich et al. / Diagnosing Process Trajectories Under Partially Known Behavior116


