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1 INTRODUCTION

Qualitative spatial reasoning (QSR) is an established field of re-
search investigating qualitative representations of space that abstract
from the details of the physical world together with reasoning tech-
niques that allow predictions about spatial relations, even if pre-
cise quantitative information is not available [1]. Qualitative spatial
(and temporal) calculi are a sophisticated means to deal with im-
precise knowledge. A calculus is comprised of a set of relations,
e.g., {front,left,back,right}, and a set of operations. Besides standard
set-theoretic operations composition (◦) is the most important to per-
form constraint reasoning. Simplified, if A is left of B and B is left
of C, it can be derived that A is left of C (rA,B ◦ rB,C = rA,C ).

If a calculus needs to be extended by a property or two calculi
are combined, the composition operation for the compound calculus
must be given in order to perform any constraint reasoning. Previ-
ous results, e.g., regarding the INDU Calculus [6], show that rea-
soning on the basis of the individiual compositions (bipath consis-
tency) does not return the correct result in many cases. Therefore,
general approaches to deal with relation dependencies in combined
calculi have to be investigated. Wölfl et al. distinguish two different
categories: tight and loose combinations [8]. A loose combination is
given if the calculi are kept separately and specialized algorithms are
developed for solving biconstraint networks. In case of tight combi-
nations a new combined calculus is defined regarding the interdepen-
dencies of the calculi when determining the new base relations and
the results of the operations, i.e., composition and converse. They
evaluate tight combinations to be more expressive than loose combi-
nations. Several examples for tight and loose combinations are given.
For example, in [3] a biconstraint algorithm that works for a rather
large class of biconstraint networks with topological and qualitative
size information is developed. Similar, in [4] loose combinations of
RCC-8 and Rectangle Algebra, Cardinal Direction Calculus respec-
tively, are investigated. In case of the INDU Calculus a new com-
position table was derived by hand [6]. For details on the different
calculi mentioned sofar we refer to [1].

In this paper we take the position of tight combination of two cal-
culi. We present a well founded approach to combine two orientation
calculi based on their geometric dependencies. With this, we take a
step in the direction of a general approach to deal with relation depen-
dencies in combined calculi. We represent the dependencies by sets
of linear equations and inequalities, which can be solved by standard
methods, e.g., the Fourier-Motzkin elimination [7]. The set of equa-
tions and inequalities corresponds to the interdependency function in
the definition of tight combination in [8].
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In the next section we introduce the Oriented Point Relation Alge-
bra (OPRAm) and the Alignment Calculus (AC), which we exem-
plarily combine to a calculus called OPRA∗

m.

2 BASIC CALCULI

The domain of the Oriented Point Relation Algebra (OPRAm) [5]
is the set of oriented points (points in the plane with an additional
direction parameter). The calculus relates two oriented points with
respect to their relative orientation towards each other. The exact set
of base relations distinguished in OPRAm depends on the granu-
larity parameter m ∈ N. For each of the two related oriented points,
m lines are used to partition the plane into 2m planar and 2m lin-
ear regions. Fig. 1 shows the partitions for the cases m = 2 (a) and
m = 4 (b). The regions are numbered from 0 to 4m − 1, region
0 always coincides with the orientation of the point. An OPRAm

base relation consists of a pair (i, j) where i is the number of the
region of �A which contains �B, while j is the number of the region
of �B that contains �A (written as �A m∠j

i
�B). In case point positions

coincide (see Fig. 1(c)), the relation is determined by the number s
of the region of �A in which the orientation arrow of �B is positioned
We denote the set of base relations by BROPRAm .
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Figure 1. Two oriented points related at different granularities.

The domain of the Alignment Calculus (AC) is the set of oriented
lines. Given two oriented points (o-points) �A and �B, two oriented
lines are induced by their reference directions, which we call o-lines.
Four different base relations (BRAC) can be distinguished regarding
the angle between two o-lines: (1) parallel (P) (2) opposite-parallel
(O) (3) positive alignment (+), and (4) negative alignment (-).

For further details on the calculi we refer to [2].

3 COMPOSITION OF OPRA∗
m RELATIONS

The base relations of the combined calculus OPRA∗
m consist of

the OPRAm part ( m
m∠j

i or m∠s ) and a valid AC orientation
2 (o) resulting in o

m∠j
i , o

m∠s respectively. Given two OPRA∗
m

relations x
m∠j

i and y
m∠l

k a composition result can be derived

2 Not all orientations are possible for each OPRAm relation.
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on the basis of the separate composition tables of OPRAm and
AC, i.e., a

m∠t
s ∈ ( x

m∠j
i ◦ y

m∠l
k ), where a ∈ (x ◦ y) and

m∠t
s ∈ ( m∠j

i ◦ m∠l
k ). As example, Fig. 2 shows that bipath

composition provides incorrect results: given the base configuration
�A −

1∠3
0
�B and �B +

1∠1
0
�C (Fig. 2(a)) one of the resulting relations is

�A +
1∠3

3
�C (Fig. 2(c)) which is an invalid configuration considering

the base configuration.
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Figure 2. Examples of bipath composition results for OPRA∗
m relations

�A −
1∠3

0
�B and �B +

1∠1
0
�C.

In the following we present a method for computing compositions
of tight combination of OPRAm and AC . We assume three o-
points �A, �B, and �C that constitute a positively oriented proper tri-
angle, i.e., the vertices are positioned in counter clockwise order and
they are not collinear. We do not consider cases with at least two
coinciding o-points explicitly, as they can be processed in a similar
manner. We denote the three corresponding OPRA∗

m relations with
�A x

m∠j
i

�B, �B y
m∠l

k
�C, and �A z

m∠s
t

�C. Let the line that connects
the points A and C be denoted lAC . Then we call the angle between
lAC and the linear region from �A positioned clockwise next to it αt.
Likewise we define the angles αi, βj , βk, γl, and γs (cf. Fig. 3).
Using these notations we are able to find equivalent expressions for
the relations +, −, P , and O added in OPRA∗

m, e.g.,
�A O

m∠s
t
�C ⇐⇒ �A m∠s

t
�C and

(
αt + �t/2� · π

m
− (

γs + �s/2� · π
m

))
mod 2π = 0,

(1)

where �x� denotes the integral part of x. The interpretation of (1) is
as follows. The term αt + �t/2� · π

m
stands for the angle between

the o-point’s reference direction (0-th linear sector) of �A and the line
lAC . If this is equal to γs + �s/2� · π

m
which stands for the angle

between the reference direction of �C and lAC , then they make up
alternate interior angles arisen from the line lAC and the two ref-
erence directions. In the same way we can reformulate remaining
OPRA∗

m relations to conjunctions of OPRAm relations and lin-
ear equations/inequalities. Using this information in addition to the
constraints from the underlying triangle construction we can prune
incorrect results from the bipath composition (see Algorithm 1).
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Figure 3. An exemplary triangle configuration for �A x
m∠j

i
�B, �B y
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�C,
and �A z
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t
�C.

Algorithm 1: An algorithm for deriving OPRA∗
m composition

function: comp(r1, r2) with r1 = x
m∠j

i and r2 = y
m∠l

k

1: C = ∅
2: S = m∠j

i ◦ m∠l
k {OPRAm composition}

3: while S 	= φ do
4: Choose m∠s

t ∈ S
5: S = S\{ m∠s

t }
6: M = {a | a is a AC base relation conform to m∠s

t }
7: if |M | = 1 then
8: C = C ∪ { z

m∠s
t } with z ∈ M

9: else
10: while M 	= φ do
11: Choose z ∈ M
12: M = M\{z}
13: Generate systems of equations and inequalities w.r.t. z

m∠s
t and

apply Fourier-Motzkin elimination {cf. [7]}
14: if one of the systems has a solution then
15: C = C ∪ { z

m∠s
t }

16: end if
17: end while
18: end if
19: end while
20: return C {the composition result of r1 and r2}

4 CONCLUSION

In this paper, we sketched an approach for tight combination of two
calculi based on their algebraic specifications. The work presented
is a step in the direction for a general approach to deal with relation
dependencies in combined calculi. Based on the result we have been
able to identify the minimal set of base relations. For further details
we refer to [2].

As long as dependencies can be expressed by linear equations or
inequalities the interdependency function can be built in the manner
presented in this paper. If dependencies are of higher order, polyno-
mial systems solving methods (e.g., cylindrical algebraic decompo-
sition) are to be used.
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