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Abstract. The stable marriage problem (SM) has a wide
variety of practical applications, ranging from matching resi-
dent doctors to hospitals, to matching students to schools, or
more generally to any two-sided market. In the classical for-
mulation, n men and n women express their preferences over
the members of the other sex. Solving an SM means find-
ing a stable marriage: a matching of men to women with no
blocking pair. A blocking pair consists of a man and a woman
who are not married to each other but both prefer each other
to their partners. It is possible to find a male-optimal (resp.,
female-optimal) stable marriage in polynomial time. However,
it is sometimes desirable to find stable marriages without fa-
voring a group at the expenses of the other one. In this paper
we present a local search approach to find stable marriages.
Our experiments show that the number of steps grows as lit-
tle as O(nlog(n)). We also show empirically that the proposed
algorithm samples very well the set of all stable marriages of
a given SM, thus providing a fair and efficient approach to
generate stable marriages.

1 Stable marriage problems

A stable marriage (SM) problem [2] consists of matching
members of two different sets, usually called men and women.
Each person strictly ranks all members of the opposite sex.
The goal is to match the men with the women so that there
are no two people of opposite sex who would both rather
marry each other than their current partners. If there are no
such pairs (called blocking pairs) the marriage is “stable”.
For a given SM instance, let M and M ′ two stable marriages.
M dominates M ′ iff every man has a partner in M which
is at least as good as the one he has in M ′. Under the par-
tial order given by this dominance relation, the set of stable
marriages forms a distributive lattice [5]. Gale and Shapley
give a polynomial time algorithm (GS) (O(n2)) to find the
stable marriage at the top (or bottom) of this lattice [1]. The
top of such lattice is the male optimal stable marriage, Mm,
that is optimal from the men’s point of view. This means that
there are no other stable marriages in which each man is mar-
ried with the same woman or with a woman he prefers to the
one in Mm. The GS algorithm can also be used to find the fe-
male optimal stable marriage (that is the bottom of the stable
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marriage lattice) just replacing men with women. A common
concern with the standard Gale-Shapley algorithm is that it
unfairly favors one sex at the expense of the other. This gives
rise to the problem of finding “fairer” stable marriages. Previ-
ous work on finding fair marriages has focused on algorithms
for optimizing an objective function that captures the hap-
piness of both genders [3]. A different approach is to ask if
one can define a fair procedure to generate stable marriages.
In this respect, it is natural to investigate non-deterministic
procedures (such as local search) that can generate a random
stable marriage from the lattice with a distribution which is
as uniform as possible.

2 Local search on SMs

Local search [4] is one of the fundamental paradigms for solv-
ing computationally hard combinatorial problems.

Given a problem instance, the basic idea underlying local
search is to start from an initial search position in the space of
all solutions (typically a randomly or heuristically generated
candidate solution), and to improve iteratively this candidate
solution by means of typically minor modifications. At each
search step, we move to a position selected from a local neigh-

borhood, chosen via a heuristic evaluation function. The eval-
uation function typically maps the current candidate solution
to a number such that the global minima correspond to solu-
tions of the given problem instance. The algorithm moves to
the neighbor with the smallest value of the evaluation func-
tion. This process is iterated until a a solution is found or
a predetermined number of steps is reached. To ensure that
the search process does not stagnate in unsatisfactory candi-
date solutions, most local search methods use randomization:
at every step, with a certain probability a random move is
performed rather than the usual move to the best neighbor.

Given an SM problem P , our local search algorithm starts
from a randomly generated marriage M . Then, at each search
step, we compute the set BP of blocking pairs in M and the
neighborhood, which is the set of all marriages obtained by
removing one of the blocking pairs. Consider a blocking pair
bp = (m, w) in M , m′ = M(w), and w′ = M(m); where
M(x) is the partner of x in M . Then, removing bp from M
(written M\bp) means obtaining a marriage M ′ in which m is
married with w and m′ is married with w′, leaving the other
pairs unchanged. Among the neighbors, we move to one with
the least number of blocking pairs. To avoid stagnation in
a local minimum of the evaluation function, at each search
step we perform a random walk with probability p which re-
moves a randomly chosen blocking pair in BP from the cur-
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rent marriage M . In this way we move to a randomly selected
marriage in the neighborhood. The algorithm terminates if a
stable marriage is found or when a maximal number of search
steps is reached. The number of blocking pairs may be very
large. Also, the removal of some of them would surely lead to
new marriages that will not be chosen by the move. This is
the case for the so-called dominated blocking pairs. Let (m, w)
and (m, w′) two blocking pairs. Then (m, w) dominates (from
the men’s point of view) (m, w′) iff m prefers w to w′. We
therefore consider only undominated blocking pairs.

Since dominance between blocking pairs is defined from one
gender’s point of view, to ensure gender neutrality, at the
beginning of our algorithm we randomly choose a gender and,
at each search step we change the role of the two genders.

3 Experimental results

We tested our algorithms on randomly generated sets of SM
instances. We generated stable marriage problems of size n
by assigning to each man and to each woman a preference
list uniformly chosen from the n! possible total orders of n
persons. We studied how fast we converge to a stable mar-
riage, by measuring the ratio between the number of blocking
pairs and the size of the problem during the execution. Let
us denote by 〈b〉 the average number of blocking pairs of the
marriage found for SMs of size n after t steps. Then the ex-
perimental results (Figure 1) show a very good fit with the

function 〈b〉 = an22
−bt

n , where a and b are constants com-
puted empirically (a ≈ 0.25 and b ≈ 5.7). Moreover, the
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average number of blocking pairs, normalized by dividing it
by n, decreases during the search process in a way that is inde-
pendent from the size of the problem. We can use function 〈b〉
to conjecture the runtime behavior of our local search method.
Consider the median number of steps, tmed, taken by the al-
gorithm. Assume this occurs when half the problems have one
blocking pair left and the other half have zero blocking pairs.
Thus, 〈b〉 = 1

2
. Substituting this value in the equation for 〈b〉,

and grouping constant terms, we get tmed = cn(d+2log2(n)).

Hence, we can conclude that tmed grows as O(nlog(n)). Figure
2 shows how the experimental data fits function tmed.

We also evaluated the sampling capability of our algorithm
over the lattice of stable marriages of a given SM. To do this,
we randomly generated 100 SM instances for each size be-
tween 10 and 100, with step 10.

We first measured the distance of the found stable mar-
riages (on average) from the male-optimal marriage. Given
an SM P , consider a stable marriage M for P . The distance
of M from the top of the lattice, Mm, is the number of arcs
from M to Mm in the Hasse diagram of the stable marriage
lattice for P . For each SM instance, we compute the average
normalized distance from the male-optimal marriage consid-
ering 500 runs. Then, we compute the average Dm of these
distances over all the 100 problems with the same size. If
Dm = 0, it means that all the stable marriages returned coin-
cides with the man-optimal marriage. On the other extreme,
if Dm = 1, it means that all stable marriages returned coin-
cide with the female-optimal one. Figure 3 shows that, for the
stable marriages returned, the average distance Dm from the
male-optimal stable marriage is around 0.5.

We also consider the entropy, that is, the uncertainty asso-
ciated with the outcomes of the algorithm. Let f(Mi) the fre-
quency that we find a marriage Mi for an SM instance P . The
entropy E(P ) for each SM instance P (i.e., for each lattice)
of size m is then: E(P ) = −

P
i=1∈{1..|S|} f(Mi)log2(f(Mi)),

where S is the set of all possible stable marriages of P . In an
ideal case, when each node in the stable marriage lattice has
a uniform probability of 1/m! to be reached, the entropy is
log2(|S|). On the other hand, the worst case is when the same
stable marriage is always returned, and the entropy is thus 0.
Since we have 100 different problems for each size, we com-
pute the average of the normalized entropies for each class of
problems with the same size: En = 1

100

P
100

i=1
E(Pi)/log2(|Si|),

where Si is the set of stable marriages of Pi. Figure 3 shows
that we are not far from the ideal behavior: the normalized
entropy En starts from a value of 0.85 at size 10, decreasing
to above 0.6 as the problem’s size grows. Considering En and
Dm together, it appears that the algorithm samples the stable
marriage lattice very well.
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