
Data-Driven Detection of Recursive Program Schemes
Martin Hofmann and Ute Schmid 1

Abstract. We present an extension to a current approach to in-
ductive programming (IGOR2), that is, learning (recursive) pro-
grams from incomplete specifications such as input/outout examples.
IGOR2 uses an analytical, example-driven strategy for generaliza-
tion. We extend the set of IGOR2’s refinement operators by a further
operator – identification of higher-order schemes – and can show that
this extension does improve speed as well as scope.

1 Introduction

The automated synthesis of programs has been a research topic in
AI and software engineering since about forty years. From the per-
spective of AI, this research investigates the abilities and program-
ming and domain knowlesge which enables human problem solvers
to construct program code fulfilling some desired input/output be-
havior. From the perspective of software engineering, this research
could lead to the development of automated or semi-automated as-
sistance tools for software developpers.

In principle, there are two major classes of approaches: (1) Deduc-
tive, knowledge-based approaches relying on complete specifications
in some formal language and (2) inductive approaches relying on in-
complete specifications, typically in the form of input/output (I/O)
examples which illustrate the desired behavior of a program [8]. Our
work is concerned with the latter approach – that is, inductive pro-
gramming (IP). IP is a special branch of machine learning where
inductive generalisation must cover all given I/O examples correctly.

Historically, IP started with two-step approaches to the synthesis
of Lisp programs where a small set of positive examples was first
transformed into program traces and these traces where generalized
into recursive functions by some method of regularity detection [10].
Afterwards, some approaches of inductive logic programming (ILP)
where applied to learning recursive sets of clauses [2]. Simultane-
ously, evolutionary approaches were applied to solving IP problems
[6]. During the last decade, interest in IP decreased in AI and ma-
chine learning and at the same time, interest increased in the func-
tional programming community [9].

There are two types of approaches tackling the IP problem, analyt-
ical, example-driven approaches and enumerating, generate-and-test
approaches. The classical, two-step methods belong to the first type
since recursive generalization is based on detecting regularities in
the examples. Evolutionary approaches, such as ADATE belong to
the second type since hypothetical programs are first generated and
afterwards evaluated by testing their performance on the examples.
In ILP examples for both types can be found. For example, the se-
quential covering algorithm of FOIL is a generate-and-test approach,
while GOLEM works by generalizing over examples [4].

1 Faculty Information Systems and Applied Computer Science, University of
Bamberg, email: {martin.hofmann, ute.schmid}@uni-bamberg.de

Our own approach, IGOR2 is an analytical approach to functional
IP [5]. IGOR2ś scope of inducible programs and the time efficiency
of the induction algorithm compares favorably with ILP and other ap-
proaches to inductive programming [4]. In the following, we present
a current extension of IGOR2ś generalization strategy which is based
on detection of higher-order program schemes. On the one hand, this
extension can speed-up the synthesis process, on the other hand, it al-
lows automated induction for a wider class of programs without fur-
ther background knowledge. Using schemata to constrain the search
space is a well established technique in many fields of AI research.
However, reduction of search typically comes at the prize of reduced
scope, since only such problems can be solved which are covered by
the pre-specified schemas. In our approach, instantiation of a generic
program schema is included as preferred strategy. If no schema can
be matched, induction proceeds using the original, generic strategy
for regularity detection.

2 The IP System IGOR II

IGOR II is an analytical, functional inductive programming system.
Contemporary functional languages such as ML or HASKELL define
functions using patterns for case distinction and rely on the defini-
tion of data types. These characteristics are reflected in construc-
tor term rewriting systems [11]. IGOR II is defined in this frame-
work and implemented in HASKELL. Its key features are termination
by construction of both, its algorithm and the generated programs,
handling of arbitrary user-defined data types, utilisation of arbitrary
background knowledge, automatic invention of auxiliary functions
as subprograms, learning complex call relationships (e.g. tree- and
nested recursion), allowing for variables in the example equations,
simultaneous induction of mutually recursive target functions, and
the adhoc use of program schemes without user interaction.

Input for IGOR II consists of (a) a set of non-recursive equations
specifying the I/O examples of the target function, (b) definitions of
all used data types by means of constructors, and (c) optional defini-
tions of background knowledge, also as non-recursive equations. The
output of IGOR II is a program hypothesis in form of a set of recur-
sive term rewriting rules with the following guaranteed characteris-
tics [5]: All I/O examples are covered. The hypothesis is a recursive
generalization which is minimal with respect to the number of case
distinctions, the number of rules and the syntactical complexity of
rule bodies.

The algorithm of IGOR II can be outlined as follows: First initial
rules are constructed as least general generalisation [7] of the exam-
ple equations with resulting patterns as generalisation of the example
inputs and rule bodies as generalisation of the example outputs. If the
resulting rule bodies contain unbound variables, successor hypothe-
ses are computed applying all following three methods: (1) Partition-
ing of the inputs by replacing one pattern by a set of disjoint more

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-1063

1063



specific patterns or by adding a predicate to the condition. (2) Replac-
ing the body by a (recursive) call of a defined function, where finding
the argument of the function call is treated as a new induction prob-
lem. (3) Replacing the sub-terms in which unbound variables occur
by a call to new sub-programs. In cases (2) and (3) auxiliary func-
tions are invented, abducing input/output examples for them.

Recently,(4) a further method using program schemes was added.
Contrary to many other systems such as MAGICHASKELLER, DI-
ALOGS-II, or ADATE, which are also capable of dealing with
schemes, no additional user knowledge is required. In Constructive
Algorithmics [1], a subfield of functional programming, it is well
known, that inductive data types have genuine universal properties.
There structure induces morphisms, i.e. program schemes, uniquely
defining mappings to any other type. Catamorphisms, for example,
uniquely define a scheme for structural recursion over a given induc-
tive type. We are able [3] to detect those properties in the provided
examples and use them for synthesis, if applicable.

3 Empirical Analysis

To our knowledge is IGOR II the only system using recursion
schemes in an analytical inductive way. Previous tests showed that
it is faster or at least as fast as any other comparable analytical IP
system . With all generate-and-test approaches it can compete w.r.t
to time efficiency and also with most of them w.r.t. expressiveness
[4]. Therefore, we tested our system only against its old implemen-
tation on a set of various example problems. The old version without
schemes always applied all three operators at once. The new prefers
hypotheses which use recursion schemes and only applies the other
operators when the new one is not applicable.

All tests have been conducted under Ubuntu 7.10 on an Intel
Dual Core 2.33 GHz with 4GB memory. For IGOR II the HASKELL-
implementation version 0.7.1.2 has been used. The code of the sys-
tem, as well as the example specifications and a batch file with
all tests can be obtained from http://www.cogsys.wiai.
uni-bamberg.de/effalip/download.html.

Table 1 shows the number of loops taken by the algorithm to find
the correct solution for both, with templates and without. The row
speedup is rounded to natural numbers. We did not include the run-
times, because the difference between both settings are not signif-
icant and a deviation within milliseconds is beyond an acceptable
accuracy of measurement. To give a general impression of time effi-
ciency, an overall runtime statistics is included.

Table 1. Algorithm loops needed for solution

a
d
d
N

a
l
l
o
d
d

a
n
d

d
r
o
p

e
v
e
n
s

f
i
b

,a
d
d

p
r
e
o
r
d
e
r

h
a
n
o
i

l
a
s
t
s

l
e
n
g
t
h
s

m
i
r
r
o
r

o
d
d
/
e
v
e
n

p
o
w
s
e
t

,+
+

r
e
v
e
r
s
e

r
e
v

,l
a
s
t

r
e
v

,+
+

s
u
m

z
e
r
o
s

without 13 � � � 23 173 5 5 5 1581⊥ 4 2/2 76
⊥ 10 11 159 6 6

with 2 3 2 2 3 173 3 5 3 2 1 2/2 5 2 2 2 2 2
speedup 7 – – – 8 1 2 1 2 791 4 1/1 15 5 6 80 3 3

⊥ wrong solution, � timeout

Runtime statistics in seconds
0.001 min, 139.761 max, 4.509 avg., 0.008 median, 24.295 std.dev.

We can conclude from the test setting that using catamorphisms
as program schemes reduce the complexity of the search. Exam-
ples where IGOR II has been lost in search space (allodd, evens,
lengths) are now solvables. The performance remains unchanged

for problems where a catamorphism is not applicable (hanoi) or the
background knowledge was suboptimal (reverse,last).

4 Conclusion

Contrary to previous approaches to incorporate program schemes,
where either an (often very well) informed expert user has to pro-
vide a template in advance, or templates are used simply on suspi-
cion, regardless whether they are target-aiming or not, we presented
an approach to detect the applicability of a program scheme in the
provided I/O examples. We utilise the universal property of catamor-
phisms introduce those schemes where appropriate and underpinned
the benefits with an empirical analysis.

Ttheory about functional programming has already formalised
many further morphisms with certain properties, which are worth to
be looked at and tested for applicability. An idea could be to organ-
ise program schemes in a decision tree, where schemes in the same
subtree share certain properties. By descending this tree, appropriate
schemes can be selected from specific to general.

REFERENCES

[1] Richard S. Bird and Oege De Moor. Algebra of Programming,
volume 100 of International Series in Computing Science. Pren-
tice Hall, 1997.

[2] P. Flener. Logic Program Synthesis from Incomplete Informa-
tion. Kluwer Academic Press, Boston, 1995.

[3] Martin Hofmann. Data-driven detection of catamorphisms —
towards prolem specific use of program schemes for inductive
program synthesis. In Proceedings of the 11

th Symposium on
Trends in Functional Programming, Oklahoma City, 2010.

[4] Martin Hofmann, Emanuel Kitzelmann, and Ute Schmid. Analy-
sis and evaluation of inductive programming systems in a higher-
order framework. In A. Dengel, K. Berns, T. M. Breuel, F. Bo-
marius, and T. R. Roth-Berghofer, editors, German Conference
on Artificial Intelligence (KI’08), volume 5243 of LNAI, pages
78–86. Springer-Verlag, 2008.

[5] Emanuel Kitzelmann. Analytical inductive functional program-
ming. In M. Hanus, editor, Proceedings of th 18th International
Symposium on Logic-Based Program Synthesis and Transforma-
tion (LOPSTR 2008, Valencia, Spain), volume 5438 of LNCS,
pages 87–102. Springer, 2008.

[6] Roland Olsson. Inductive functional programming using in-
cremental program transformation. Artificial Intelligence,
74(1):55–83, March 1995.

[7] G.D. Plotkin. A note on inductive generalisation. In B. Meltzer
and D. Michie, editors, Machine Intelligence 5, pages 153–163.
Edinburgh University Press, Edinburgh, 1969.

[8] Ute Schmid. Inductive Synthesis of Functional Programs –
Learning Domain-Specific Control Rules and Abstract Schemes.
Number 2654 in LNAI. Springer, Heidelberg, 2003.

[9] Ute Schmid, Emanuel Kitzelmann, and Rinus Plameijer, editors.
Approaches and Applications of Inductive Programming Third
International Workshop, AAIP 2009, Edinburgh, UK, Septem-
ber 4, 2009, Revised Papers, volume 5812 of LNCS, Heidelberg,
2010. Springer.

[10] P. D. Summers. A methodology for LISP program construction
from examples. Journal ACM, 24(1):162–175, 1977.

[11] Terese. Term Rewriting Systems, volume 55 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University
Press, 2003.

M. Hofmann and U. Schmid / Data-Driven Detection of Recursive Program Schemes1064


