
Vectorial Pattern Databases
Carlos Linares López1

Abstract.
In this work, a new approach for creating Pattern Databases

(PDBs) is suggested that induces non-consistent heuristic functions
just by recognizing feasible (yet admissible) heuristic values. This
approach serves to generalize even further the BPMX propagation
rule, that will work now even in directed graphs. Experiments in dif-
ferent state spaces show a noticeable improvement over the Scalar
Pattern Databases.

1 Introduction

Pattern Databases (PDBs) are simply hash tables which store, for
every pattern (or arrangement of symbols in the abstracted state),
the minimum number of moves required to place the symbols as they
appear in the abstracted state space for the very first time in their goal
location. So far, PDBs are admissible heuristic functions.

After setting up an abstraction for a given state space, the resulting
PDB is usually a consistent heuristic function. However, it has been
suggested that inconsistent heuristic functions can perform better in
practice than consistent heuristic functions [4], because it is possible
to propagate these inconsistencies through the search tree generated
when solving a particular problem.

Moreover, it has been studied how to spot unfeasible heuristic val-
ues when using PDBs so that it is possible to increment their value
while preserving the admissibility of the resulting heuristic func-
tion [3]. While the method devised applies in principle to disjoint
PDBs, it has been also investigated how to extend the same idea to
MAX PDBs [2], though this is still an open problem.

The paper is arranged as follows: first, Vectorial PDBs are intro-
duced as a means for generating inconsistent heuristic functions by
recognizing feasible values with MAX PDBs. Some experiments are
reported immediately after.

2 Vectorial MAX Pattern Databases

Instead of storing just the minimum distance to the first occurrence of
each pattern in a given abstract state space ψi, Vectorial PDBs store
the distance to a successive number of ocurrences of the same pattern
in an array, Hi. The j-th component of this array, Hi[j], stores the
distance to the j-th occurrence of the pattern referenced in each case.
The number of occurrences of the same pattern is denoted as pattern
generation depth, d. The procedure for computing these vectors is the
same as the one used for computing the Scalar PDBs: a backwards
breadth-first search suffices to compute a Vectorial PDB

The key observation is that abstractions are homomorphisms —
i.e., all transitions in the original state space are preserved in the ab-
stracted state space. Hence, a path from any node to the goal state,

1 Planning and Learning Group, Universidad Carlos III de Madrid. Avda.
de la Universidad, 30 - 28911 Leganés, Madrid (Spain) email: car-
los.linares@uc3m.es

shall be mapped to a path in every abstraction ψi as well. Since the
length of the same path in the abstract space shall be less or equal
than its length in the original state space:

• If two (or more) Vectorial PDBs return vectors Hi such that their
first component, Hi[0], is always the same, there is no reason to
believe that the path traversed in every abstraction is not equal
to the path to be traversed in the original state space. Thus, the
resulting heuristic estimate shall be Hi[0].

• Otherwise, if two (or more) Vectorial PDBs return different val-
ues for the first component, it is clear that both PDBs have tra-
versed different paths to different nodes with the same pattern. In
the Scalar case, the best one can do is to pick up the maximum of
all of them. However, in the Vectorial setting, if there are still more
components in each vector to examine, one can scale up through
each vector looking for an agreement between all of them, as in
the previous case. If any is found, this should be the heuristic es-
timate to return; otherwise, the maximum of all components shall
be returned.

Figure 1 shows different cases that can arise in the comparison of
two vectors, H1 and H2, from two different abstractions explored
with a pattern generation depth d = 2. The final heuristic value has
been highlighted in bold face. The key observation is that a heuristic
value is returned only if an agreement is found (or could be found
as in figure 1(a) where 12 could be met by H2 as well) among all
the Vectorial PDBs considered, since only in this case it can be con-
cluded that the same path might have been found by all abstractions.

Furthermore, since every Hi provides a number of distances to
the target pattern, it is possible to compute more than a single value.
All these feasible values are stored in a vector denoted as H . When
applicable this technique can lead to inconsistent heuristic values that
result from picking up only feasible values.

To prove that Vectorial PDBs can result in inconsistent heuristics,
an example is provided. Assume that the values returned by two Vec-
torial PDBs generated with a pattern generation depth equal to 2 for
the same node n are H1 = {13, 14} and H2 = {13, 15}. According
to the procedure depicted above the first heuristic value shall be 13,
since this is the first value agreed by both H1 and H2. Assume now
that the vectors retrieved for a descendant n′ are H′

1 = {12, 15} and
H′

2 = {14, 16}. Since there is no coincidence between both vectors
the resulting value is 16, which is inconsistent (assuming an edge
cost equal to 1) with the heuristic estimate of its ancestor, 13, but
still admissible.

Since the heuristic function induced by Vectorial PDBs is incon-
sistent, after expanding node n and generating a child, n′, the Path-
max propagation rules (and, if possible, the Bidirectional Pathmax
propagation rule) can be applied, so that the heuristic value of the
descendant is likely to be updated. Consider figure 1(d). In this case,
H = {10, 13}. The first value, 10, is included in H because it ap-

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-1059

1059



H1 H2

12
13

10
11

(a)
H1 H2

12
13

11
12

(b)
H1 H2

11

13

10

12

(c)
H1 H2

10

13

10

12

(d)
H1 H2

10

13

11

13

(e)

Figure 1. Two Vectorial Pattern Databases generated with d = 2

pears both in H1 and H2. Next, 12 is skipped since there is clearly
no path of length 12 in the first abstraction. Finally, 13 can be safely
included in H even if it did not appear in H2 since it is the next plau-
sible length. After generating a descendant n′, assume its vector is
H ′ = {10, 14} but before returning to its parent, the (Bidirectional)
Pathmax propagation rules have updated its value to 14. Under these
circumstances, node n can update its heuristic value to 13, since that
is the largest value in its vector H which is less or equal than 14. Very
importantly, this update rule can be applied both if the state space is
directed or not.

3 Results

Unfortunately, it can be proven that this technique does not improve
over Scalar PDBs in those domains where there are operators which
do not affect the constants mapped by a particular PDB as in the
Pancake or the Rubik’s Cube. Thus, the puzzles M12 and M24 have
been selected since they have operators that affect all locations at the
same time [1]. Besides, they do add some interesting properties such
as the fact that the underlying state space is directed.

Since the Scalar PDBs are consistent for the M12, the IDA∗ has
been used for a pattern generation depth, d = 1. However, since
Vectorial PDBs result in a inconsistent heuristic, the Pathmax prop-
agation rules have been used along with the feasibility analysis sug-
gested in the previous section with two different pattern generation
depths, d = 2, 3.

d 4-4 4-4-4
1 96829 45315
2 71767 (74.1%) 39932 (88.1%)
3 64875 (66.9%) 36804 (81.2%)

Table 1. Results in the M12 Puzzle (number of generated nodes)

Table 1 shows the number of nodes generated when solving 800
instances in the M12 with either Scalar PDBs (d = 1) or Vecto-
rial PDBs —d = 2, 3. Two different arrangements of patterns have
been tried: 4-4 and 4-4-4. An arrangement denoted as n − n (or
n − n − n) takes two (or three) successive groups of length n each
and maps them into distinct abstractions. It is clear that using Vec-
torial PDBs leads to a reduction of 25.9% in the 4-4 setting, from
96,829 to 71,767. In the case of the 4-4-4 arrangement, the reduction
is smaller and only a little bit larger than 10%.

Regarding the M24, the first set of experiments involved only 12
constants —to be denoted as 12-M24. Table 2 shows the number of
generated nodes when solving 1000 instances randomly generated
for different arrangements of PDBs and pattern generation depths,
d = 1, 2, 3. As it can be seen, when going from Scalar PDBs (d = 1)

d 5-5 6-6 4-4-4
1 33112637 4842120 166040667
2 21142126 (63.8%) 3024885 (62.4%) 105878854 (63.7%)
3 18790477 (56.7%) 2682071 (55.3%) 90663551 (54.6%)
4 18106592 (54.6%) 2588118 (53.4%) 85226273 (51.3%)

Table 2. Results in the 12-M24 Puzzle (number of generated nodes)

to Vectorial PDBs (d = 2) it is possible to save about 35% the num-
ber of nodes generated with d = 1. Successive pattern generation
depths only improve marginally and asymptotically to roughly half
the number of nodes.

d 6-6-6
1 87856
2 81086 (92.2%)

Table 3. Results in the 24-M24 Puzzle (number of generated nodes)

Table 3 shows the number of nodes generated when solving 1000
random instances with 24 constants —denoted now as 24-M24. The
savings in this case are very moderate mainly because the Scalar PDB
implementes a very informed heuristic function so there is not much
room for improvement. Nevertheless, it can be proven that the search
tree developed both in M12 and M24 creates a number of terminal
nodes at each level which is bounded by the Fibonacci sequence so
that these small savings translate into large subtrees being pruned.

ACKNOWLEDGEMENTS

This paper significantly benefited from discussions with Gabriele
Röger, Malte Helmert, Álvaro Torralba, Vidal Alcázar and Daniel
Borrajo. This work has been partially supported by the Spanish
MICINN under project TIN2008-06701-C03-03

REFERENCES
[1] Igor Kriz and Paul Siegel, ‘Rubik’s cube inspired puzzles demonstrate

math’s ”simple groups”’, Scientific American, (July 2008).
[2] Fan Yang, ‘Exploring infeasibility for abstraction–based heuristics’, in

Search in Artificial Intelligence and Robotics: 2008 AAAI Workshop, pp.
134–139, Chicago, USA, (July 2008).

[3] Fan Yang, Joseph C. Culberson, Robert Holte, Uzi Zahavi, and Ariel
Felner, ‘A general theory of additive state space abstractions’, Journal of
Artificial Intelligence Research, 32, 631–662, (June 2008).

[4] Uzi Zahavi, Ariel Felner, Jonathan Schaeffer, and Nathan Stutervant, ‘In-
consistent heuristics’, in Proceedings of the Twenty-Second Conference
on Artificial Intelligence (AAAI-07), pp. 1211–1216, Vancouver, British
Columbia, Canada, (July 2007).

C. Linares López / Vectorial Pattern Databases1060


