
Nested Monte-Carlo Expression Discovery

Tristan Cazenave1

Abstract. Nested Monte-Carlo search is a general algorithm that

gives good results in single player games. Genetic Programming

evaluates and combines trees to discover expressions that maximize

a given evaluation function. In this paper Nested Monte-Carlo Search

is used to generate expressions that are evaluated in the same way as

in Genetic Programming. Single player Nested Monte-Carlo Search

is transformed in order to search expression trees rather than lists

of moves. The resulting program achieves state of the art results on

multiple benchmark problems. The proposed approach is simple to

program, does not suffer from expression growth, has a natural restart

strategy to avoid local optima and is extremely easy to parallelize.

1 Introduction

Recently Monte-Carlo Tree Search (MCTS) has been very successful

in games such as Go [2, 4], General Game Playing [3] and puzzles

[1]. We propose to adapt the method to discover expressions.

Expression discovery is usually addressed with Genetic Program-

ming [5]. In Genetic Programming a set of random expressions is

built, then the set of expressions is evolved for multiple generations.

At each generation the expressions are evaluated and sorted accord-

ing to their evaluation (i.e. their fitness or their score). The highest

rated expressions (i.e. individuals) of a generation are then breeded

to create the next generation. Breeding two expressions consists in

exchanging two subtrees of the two expressions represented as trees.

The principle underlying Genetic Programming is that the subtrees of

the expressions are building blocks that can be used to build new ex-

pressions. Subtrees that are useful in one expression are often useful

in other expressions and these successful subtrees guide the search

toward the good expressions. In contrast, NestedMonte-Carlo Search

favors expressions that have the same successful atoms at the start of

the stack representing the expression.

Genetic Programming can suffer from bloat (i.e. uncontrolled

growth of the expressions with increasing numbers of generations)

and from over-specialization which leads to a lack of diversity in the

population and to suboptimal expressions. Restart strategies are usu-

ally used to overcome this undesired behavior.

When using MCTS to generate expressions, the size of the gener-

ated expressions as well as the restarts of the algorithm are naturally

handled. In our experiments the expression generated with MCTS

are usually more simple and provide scores at least equivalent to the

scores of the expressions generated with Genetic Programming for

the same problems. Moreover the algorithm is more simple and re-

quires less tuning than Genetic Programming.

The second section explains Nested Monte-Carlo Search, the third

section details its application to expression discovery, the fourth sec-

tion gives experimental results for different problems.

1 LAMSADE, Université Paris-Dauphine, Paris, France, email:
cazenave@lamsade.dauphine.fr

2 Nested Monte-Carlo Search

The basic idea of Nested Monte-Carlo Search is to perform a princi-

pal playout with a bias on the selection of each move based on the

results of a Monte-Carlo tree search [1].

30 10201010 20 10 30 40

Figure 1. At each step of the principal playout shown here with a bold
line, an NMC of level n performs a NMC of level n − 1 (shown with wavy
lines) for each available move and selects the best one. At level 0, a simple

pseudo-random playout is used.

The base level of the search plays random games (i.e. playouts),

random moves are played until the end of the game at this level.

When the game is over the score of the position that has been reached

is sent back.

At each move of a playout of level 1 it chooses the move that

gives the best score when followed by a random playout. Similarly

for a playout of level n it chooses the move that gives the best score

when followed by a playout of level n − 1.
When a search at the highest level is finished and there is time left,

another search is performed at the highest level, and so on until the

thinking time is elapsed.

Nested Monte-Carlo search has been successful in establishing

world records in single player games such as Morpion Solitaire or

SameGame. It provides a good balance between exploration and ex-

ploitation and it automatically adapts its search behavior to the prob-

lem at hand without parameters tuning.

3 Nested Monte-Carlo Expression Discovery

Expressions are generated with sampling at level zero and with

nested searches at higher levels. The first subsection explains the

sampling algorithm. The second subsection explains the nested

search algorithm.

3.1 Random sampling

Expressions can be seen as trees. An atom is a node of a tree. A

terminal atom is a node that has no children, usually terminal atoms

are the variables and the constants of a problem. For example +, -, *,

/ are non terminal atoms since they have two children, whereas 1, 2,

3, x are terminal atoms.

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-1057

1057

In random sampling the tree is represented as a stack. Sampling

consists in randomly filling the stack, stopping when the expression

is complete (i.e. there are no more leaves to complete in the corre-

sponding tree). A maximum number of nodes is used to prevent too

large expressions. When the minimal number of potential nodes in

the final tree is greater than this threshold, only terminal atoms are

added to the tree in order to have less than the maximum number of

nodes.

3.2 Nested search

The nested search maintains a stack for each level of search. At a

given level; and at each step, all the possible atoms are tried and

followed by a lower level search. The atom that results in the best

expression is then chosen and the playout continues until the tree is

completed (i.e. there are no more leaves to develop in the tree).

Algorithm 1 Nested search

nested (index, numberLeaves, maximumNodes, level)

best expression ← {}
while numberLeaves > 0 do

for a in all possible atoms do

if index + numberLeaves < maximumNodes or nbChil-

dren (a) = 0 then

stack[level][index] ← a

index ← index + 1
numberLeaves ← numberLeaves + nbChildren(a) - 1

for i ← 0 to index do

stack[level − 1][i] ← stack[level][i]
end for

if level = 1 then

score = sample (index, numberLeaves,

maximumNodes)

else

score = nested (index, numberLeaves,

maximumNodes, level - 1)

end if

if score > score of best expression then

best expression← stack[level − 1]
end if

index ← index − 1
numberLeaves ← numberLeaves - nbChildren(a) + 1

end if

end for

stack[level][index] ← best expression [index]

numberLeaves ← numberLeaves +

nbChildren(stack[level][index]) - 1
index ← index + 1

end while

return score (stack[level])

4 Experimental Results

The algorithm was successfully applied to the Prime generating poly-

nomials problem, and to the Finite algebra problem.

The goal of the Prime generating polynomials problem [7] is to

find a polynomial that generates as many different primes in a row as

possible.

A level two nested search found + (* (- (+ (4 , 13) , * (1 , x)) ,

- (4 , x)) , 83) which generates 51 primes in a row and 40 different

primes. It is better than the polynomial found in [7] (x2 − 3x + 43)
that generates 43 primes in a row and 40 different primes.

The Finite Algebra problems consist in finding terms that satisfy

some equalities [6]. We did some tests on the A2 primal algebra from

[6].

For algebra A2, a nested level three search quickly found (after

8,704,083 evaluations) a discriminator term containing 31 operations

(in [6] an optimized GP found a 51 operations term after 238,000,000

evaluations). The 31 operations discriminator term is:

* (* (* (x , x) , * (x , * (* (* (* (* (* (y , * (x , x)) , x) , x

) , z) , * (* (z , x) , x)) , y))) , * (* (* (z , * (* (z , * (y , * (*

(* (* (z , y) , x) , z) , x))) , z)) , * (x , * (z , * (y , x)))) , * (

* (x , y) , * (* (* (z , y) , z) , x))))

5 Conclusion

Nested Monte-Carlo search improves much on random search for

difficult expression discovery problems. It is competitive with state

of the art Genetic Programming since it produces shorter expressions

that have equal or better scores with less evaluations for some prob-

lems such as the finite algebra problem or the prime generating poly-

nomial problem. Moreover it is a simple and easy to program algo-

rithm that keeps a good balance between exploration of new expres-

sions and exploitation of already found ones. It has a natural restart

strategy that ensures diversification and it avoids bloat. It is also very

easy to parallelize it massively, simply running the same algorithm

in parallel on many computers with a different random seed.

Concerning future works, it would certainly improve nested

searches to memorize the results of previous attempts in order to

direct its search. For example using a tree of previously evaluated

expressions would at least make the search faster because it would

not evaluate again a previously encountered expression, moreover

knowing the results of previous attempts contained in the tree could

help the algorithm direct its search. It would also be interesting to un-

derstand the properties of a problem that makes nested Monte-Carlo

Search relevant for it.

Acknowledgments

This work has been supported by French National Research Agency

(ANR) through COSINUS program (project EXPLO-RA ANR-08-

COSI-004)

REFERENCES

[1] Tristan Cazenave, ‘Nested Monte-Carlo search’, in IJCAI, pp. 456–461,
(2009).

[2] R. Coulom, ‘Efficient selectivity and back-up operators in monte-carlo
tree search’, in Computers and Games 2006, Volume 4630 of LNCS, pp.
72–83, Torino, Italy, (2006). Springer.

[3] Hilmar Finnsson and Yngvi Björnsson, ‘Simulation-based approach to
general game playing’, in AAAI, pp. 259–264, (2008).

[4] Sylvain Gelly and David Silver, ‘Achieving master level play in 9 x 9
computer go’, in AAAI, pp. 1537–1540, (2008).

[5] J. R. Koza, Genetic Programming: On the Programming of Computers

by Means of Natural Selection., MIT Press, Cambridge, MA, 1992.
[6] Lee Spector, David M. Clark, Ian Lindsay, Bradford Barr, and Jon Klein,

‘Genetic programming for finite algebras’, in Genetic And Evolutionary

Computation Conference, pp. 1291–1298. ACM New York, NY, USA,
(2008).

[7] James Alfred Walker and Julian Francis Miller, ‘Predicting prime num-
bers using cartesian genetic programming’, in Genetic Programming,
Volume 4445 of LNCS, pp. 205–216. Springer, (2007).

T. Cazenave / Nested Monte-Carlo Expression Discovery1058

