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Abstract. Diagnosability is the property of a given partially ob-
servable system model to always exhibit unambiguously a failure
behavior from its only available observations in finite time after the
fault occurrence, which is the basic question that underlies diagno-
sis taking into account its requirements at design stage. However, for
the sake of simplicity, the previous works on diagnosability analy-
sis of discrete event systems (DESs) have the same assumption that
any observable event can be globally observed, which is at the price
of privacy. In this paper, we first briefly describe cooperative diag-
nosis architecture for DESs with autonomous components, where
any component can only observe its own observable events and thus
keeps its internal structure private. And then a new definition of co-
operative diagnosability is consequently proposed. At the same time,
we present a formal framework for cooperative diagnosability check-
ing, where global consistency of local diagnosability analysis can be
achieved by analyzing communication compatibility between local
twin plants without any synchronization. The formal algorithm with
its discussion is provided as well.

1 INTRODUCTION

Automated fault diagnosis has a significant economic impact on
the improvement of performance and reliability of complex discrete
event systems (DESs). This problem has received considerable atten-
tion from Artificial Intelligence community and Control community.
Generally speaking, diagnosis reasoning is to detect possible faults
that can explain the observations continuously received by a monitor
from a system. However, the accuracy of diagnosis depends on di-
agnosability of the system. Diagnosability is the property of a given
partially observable system model to always exhibit unambiguously
a failure behavior from its only available observations in finite time
after the fault occurrence, which is the basic question that underlies
diagnosis taking into account its requirements at design stage.

The idea of classical and centralized diagnosability analysis meth-
ods is to check the existence of indistinguishable behaviors leading to
different diagnosis decisions through either deterministic diagnoser
([5]) or twin plant construction ([2] and [8]). However, their knowl-
edge about the system is assumed to be a monolithic model, one au-
tomaton representing the entire complex system. This hypothesis is
normally unrealistic when dealing with real complex systems due
to the combinatorial explosion of the state space. So recently some
distributed approaches for this problem have been investigated ([3],
[4], [6] and [7]) to avoid building global objects. These distributed
approaches have whereas the same assumption that all observable
events in any component are globally observed, which means that
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there is still some global knowledge available and thus at the price of
privacy. We propose here a new formal framework for checking di-
agnosability of DESs with autonomous components, where any com-
ponent can only observe its own observable events and thus keeps its
internal structure private.

There are several objectives of this paper. The first one is the
new cooperative diagnosis architecture proposed for DESs with au-
tonomous components. Instead of deciding diagnosis with a se-
quence of global observations, the idea of cooperative diagnosis is
to make diagnosis decision with the cooperation of different compo-
nents by exchanging local diagnosis decisions with communication
information and then by analyzing their communication compatibil-
ity. The second one is to give the new definition of cooperative diag-
nosability for the cooperative diagnosis architecture with the formal
theoretical framework for its verification. Specifically, the original
diagnosability information is obtained from the local twin plant of
the component where the fault may occur and then its propagation to
other local twin plants is done by analyzing communication compat-
ibility without any synchronization, which greatly reduces the search
state space. The third one consists in the discussion about the effi-
ciency improvement by adopting a reasonable heuristic to choose the
next component for further exploitation in the algorithm.

The paper is organized as follows. In the next section, we first
model a DES with autonomous components as a set of finite state
machines (FSMs) and then briefly describe the cooperative diagnosis
architecture. Then Section 3 presents the formal theoretical frame-
work for cooperative diagnosability verification before the formal
algorithm is provided in Section 4 with its evaluation discussion.
Finally, some related works are referred to in Section 5 before the
conclusion.

2 PRELIMINARIES

In this section, we first describe how to model DESs with au-
tonomous components and then give some important concepts before
proposing cooperative diagnosis architecture for such systems.

2.1 System model

We consider a distributed DES composed of a set of autonomous
components {G1, G2,..., Gn} that communicate with each other by
communication events. Moreover, any component can only observe
its own observable events and thus can keep its internal structure
private. This kind of system is modeled by a set of FSMs with each
one representing the local model of one component.

Definition 1 (Local model). The local model of the component Gi is
a FSM, denoted by Gi = (Qi, Σi, δi, q

0
i ), where
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• Qi is the set of states;
• Σi is the set of events;
• δi ⊆ Qi × Σi × Qi is the set of transitions;
• q0

i is the initial state.

The set of events Σi is partitioned into four subsets: Σio , the set
of locally observable events, that can be observed only by its own
component Gi; Σiu , the set of unobservable normal events; Σif , the
set of unobservable fault events, and Σic , the set of unobservable
communication events shared by at least one other component, which
are the only shared events between components.

For the transition set, it is easy to extend δi ⊆ Qi × Σi × Qi to
δi ⊆ Qi × Σ∗

i × Qi in the following way: 1) (q, ε, q) ∈ δi, where ε
is the null event; 2) (q, se, q1) ∈ δi if ∃q′ ∈ Qi, (q, s, q′) ∈ δi and
(q′, e, q1) ∈ δi, where s ∈ Σ∗

i , e ∈ Σi.
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Figure 1: A system with three autonomous components: G1 (top), G2

(bottom left) and G3 (bottom right).

Figure 1 depicts a system with three autonomous components: the
events Oi denote locally observable events; the events Fi denote un-
observable fault events; the events Ui denote unobservable normal
events and the events Ci denote unobservable communication events.
Now we define the operation of synchronization between two FSMs.

Definition 2 (Synchronization). Given two FSMs G1 =
(Q1, Σ1, δ1, q

0
1) and G2 = (Q2, Σ2, δ2, q

0
2), their synchro-

nization is G1‖ΣsG2=(Q1 × Q2, Σ1 ∪ Σ2, δ1‖2, (q0
1 , q0

2)), where
Σs = Σ1 ∩ Σ2 is the set of shared events and δ1‖2 is defined as
follows:

• ((q1, q2), σ, (q′1, q
′
2)) ∈ δ1‖2, if σ ∈ Σs, (q1, σ, q′1) ∈ δ1 and

(q2, σ, q′2) ∈ δ2;
• ((q1, q2), σ, (q′1, q2)) ∈ δ1‖2, if σ /∈ Σs and (q1, σ, q′1) ∈ δ1;
• ((q1, q2), σ, (q1, q

′
2)) ∈ δ1‖2, if σ /∈ Σs and (q2, σ, q′2) ∈ δ2.

This operation can be extended to a set of FSMs by using its asso-
ciativity property. In the synchronization, any shared event always
occurs simultaneously in all components that define it and the re-
sult is a FSM whose state space is the Cartesian product of the state
spaces of the components. As a matter of fact, the global model of
the entire system is implicitly defined as the synchronized product
of all component models based on their shared events, here commu-
nication events. However, the global model will not be calculated in
our paper considering that the global knowledge of the whole system
will be required neither in our cooperative diagnosis architecture nor
during our cooperative diagnosability analysis. Details can be found
in the next sections. This obviously avoids the combinatorial explo-
sion of the state space. In the following, a subsystem simply denotes
a set of components, not the synchronized product of them.

Given a local model Gi, the prefix-closed language L(Gi) de-
scribes the local behaviors of the component Gi, where L(Gi) ⊆
Σ∗

i . Formally, the language L(Gi) is the set of words produced by
Gi: L(Gi) = {s ∈ Σ∗

i |∃q ∈ Qi, (q
0
i , s, q) ∈ δi}. In the following,

we call a word from L(Gi) a local trajectory in Gi and a sequence
q0σ0q1σ1... a local path in Gi, where σ0σ1... is a local trajectory
in Gi and for all i, we have (qi, σi, qi+1) ∈ δi. Given s ∈ L(Gi),
we denote the post-language of L(Gi) after s by L(Gi)/s, formally
defined as: L(Gi)/s = {t ∈ Σ∗

i |s.t ∈ L(Gi)}. The projection of
a trajectory s to locally observable event set Σio of Gi is denoted
by Pi(s). All the above notations applied to local model Gi can be
applied to the global model G in the same way. In our paper, we as-
sume that both the local behaviors and the local observable behaviors
of any component are live, which means that there is no local loop
containing only unobservable events.

Definition 3 (Relative set). Let Gi be a component in a system G,
the Gi relative set, denoted by 	Gi , is the set of Gi relative compo-
nents, where relative relation over the set of components is defined
as follows:

1. For a component Gj , if Gj shares at least one event with Gi, Gj

is a Gi relative component, denoted by Gi ↔ Gj;
2. The relative relation is the reflexive and transitive closure of the

relation defined by point 1.

Since the relation defined by point 1 of definition 3 is symmetric,
with point 2, the relative relation is actually an equivalence relation.

Definition 4 (Communication compatibility). In a system G, two lo-
cal trajectories s ∈ L(Gi), s′ ∈ L(Gj), where Gi �= Gj , are com-
munication compatible if they satisfy the following conditions:

• ∀σ ∈ s, σ ∈ Σic , if σ ∈ Σjc , then σ ∈ s′;
• ∀σ ∈ s′, σ ∈ Σjc , if σ ∈ Σic , then σ ∈ s;
• ∀(σ, σ′), where σ ∈ s, σ′ ∈ s, σ ∈ s′, σ′ ∈ s′, the occurrence

order of σ, σ′ in s is the same as that in s′.

Two local trajectories s of Gi and s′ of Gj are communication com-
patible if for any communication event σ in s(s′) that is also con-
tained in the communication event set of Gj(Gi), σ occurs also in
s′(s) and if all common communication events of s and s′ have the
same occurrence order. The communication compatibility of two lo-
cal trajectories in different components implies that they will not be
blocked when these two components are synchronized. This means
that communication information exchanging is sufficient to analyze
synchronization between components, which will play a central role
in our diagnosability analysis.

Lemma 1 In a system G, given two components Gi and Gj , Gi �=
Gj , if Σic ∩ Σjc = ∅, then ∀(s, s′), s ∈ L(Gi), s′ ∈ L(Gj), s is
communication compatible with s′.

This can be directly proved by definition 4. If there is no shared event
between two different components, then any local trajectory in one
component is communication compatible with any one in another
component.

2.2 Cooperative diagnosis architecture

In a system with autonomous components, to keep the internal struc-
ture private, each component can only observe its own locally ob-
servable events. When a fault f occurs in one component Gf , since
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Gf has no knowledge of internal structures of other components,
sometimes it cannot make a diagnosis decision by itself and thus may
require the cooperation of some other components that can often help
in deciding more precise diagnosis. To be clear, in the following, Gf

denotes the component where the considered fault f may occur.
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Figure 2: Cooperative diagnosis architecture for systems with au-
tonomous components.

Figure 2 illustrates our cooperative diagnosis architecture. Gf is
the component where the considered fault may occur and Gj ,Gk ,...,
Gm denote other components of the system. Each block Pi denotes
the projection of a local trajectory of Gi to the locally observable
event set Σio , which is to obtain local observations. Di is the local
diagnosis inference block for the component Gi. Now we briefly de-
scribe the idea of diagnosis procedure in this architecture as follows:

1. This procedure begins with the component Gf since it contains
the original diagnosis information. Its diagnosis block Df can in-
fer all possible local trajectories in Gf with their diagnosis from
local observable projection Pf . And thus the sequences of local
communication events in these corresponding trajectories can be
obtained.

2. Regarding all other components, we can deduce all possible lo-
cal trajectories without diagnosis information with only their lo-
cal observable projection. If Df cannot make diagnosis decision
by itself, it then informs the next component, suppose Gj , of its in-
ference, i.e., all possible diagnoses with their associated sequence
of local communication events in Gf . Note here that we only ex-
change the communication information between components and
thus still keep their internal structure private.

3. All possible local trajectories in Gj deduced from Pj can be syn-
thesized with the inference of Df by analyzing communication
compatibility of possible local trajectories in Gf and those in Gj ,
where the communication information is sufficient. Dj can thus
update possible diagnoses with their associated sequences of lo-
cal communication events in both Gf and Gj , consistent with Pf

and Pj . In other words, Dj keeps communication compatible lo-
cal trajectories in Gf and Gj with their associated diagnosis and
discards the incompatible ones. If Dj still cannot decide diagno-
sis, then in the same way, Dj informs the next component of its
inference. We repeat this step until one component can achieve a
final diagnosis decision.

3 THEORETICAL FRAMEWORK

Now we first recall classical diagnosability definition before defining
cooperative diagnosability for our cooperative diagnosis architecture.
Then, its verification strategy is presented, including the local twin
plant construction for the component Gf to obtain the original diag-
nosability information and the way to propagate it to other local twin
plants through communication compatibility analysis.

3.1 Cooperative diagnosability

A fault f is diagnosable in a system G iff its occurrence is deter-
minable when enough long events are observed from the system af-
ter the occurrence of f , which is formally defined as follows ([5]),
where sf denotes a trajectory in G ending with f and P (p) denotes
the projection of the trajectory p to the observable event set Σo of G.

Definition 5 (Diagnosability). A fault f is diagnosable in a system
G iff

∀sf ∈ L(G),∃k ∈ N,∀t ∈ L(G)\sf , |P (t)| > k ⇒
(∀p ∈ L(G), P (p) = P (sf .t) ⇒ f ∈ p).

The above definition states that for each trajectory sf in G, for each
t that is an extension of sf in G with sufficiently long observable
events, every trajectory p in G that is observation equivalent to sf .t
should contain in it f . Here the system is assumed to have a mono-
lithic model and the observable events are globally observed. The
diagnosability checking consists in searching for a pair of trajecto-
ries p and p′ satisfying the following conditions: 1) p contains f and
p′ does not; 2) p has arbitrarily long observations after the occur-
rence of f ; 3) P (p) = P (p′). Such a pair is called a critical pair

[1], which witnesses non-diagnosability.
Unlike the case where a monolithic model exists, our cooperative

diagnosis architecture implies that no one has the global knowledge
of the whole system and each component is autonomous. Definition
5 can be rephrased to be suitable for systems with autonomous com-
ponents, which we called cooperative diagnosability. A fault f is co-
operatively diagnosable in a system iff for each trajectory sf ending
with the fault f , after any extension t with enough long local ob-
servations of all components, we can be sure that f has effectively
occurred.

Definition 6 (Cooperative diagnosability). A fault f is coopera-
tively diagnosable in a system G, with a set of autonomous com-
ponents {G1, ...Gn}, iff

∀sf ∈ L(G),∃k ∈ N,∀t ∈ L(G)\sf , (∀i ∈ {1, ..., n}, |Pi(t)| >
k)⇒ (∀p ∈ L(G) (∀i ∈ {1, ..., n}, Pi(p) = Pi(s

f .t)) ⇒ f ∈ p).

In the cooperative diagnosability, we call a pair of trajectories p
and p′ an undecidable pair if they satisfy the following conditions,
which is similar to a critical pair in the classical diagnosability de-
scribed as above: 1) p contains f and p′ does not; 2) p has arbitrarily
long local observations of all components after the occurrence of f ;
3) ∀i ∈ {1, ..., n}, Pi(p) = Pi(p′). The main difference between a
critical pair and an undecidable pair is that for a critical pair, the two
trajectories have the same enough long global observations (the same
global occurrence order) with only one containing the fault, but the
two trajectories of an undecidable pair have the same enough long lo-
cal observations in each component without considering their global
occurrence order. From section 2.2, with such an undecidable pair,
there must exist at least one trajectory for which no diagnosis algo-
rithm in our diagnosis architecture can deduce the correct decision
and thus f is not cooperatively diagnosable in the system.

Now we are ready to state the following fundamental theorem.

Theorem 1 A fault f is cooperatively diagnosable in a system G iff
there is no undecidable pair in G.
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3.2 Local twin plant

The basic idea of a twin plant, described in [2], is to build a FSM
that compares every pair of trajectories to search for the pairs with
the same observations, but such that exactly one of them contains a
fault, i.e., critical pairs. We now describe how to construct local twin
plants of components. We first construct the local diagnoser for a
given component, which in turn serves to compute the corresponding
local twin plant.

Definition 7 (Local diagnoser). The local diagnoser of the compo-
nent Gi is a FSM, denoted by Di = (QDi , ΣDi , δDi , q

0
Di

) where

• QDi ⊆ Qi × F , F ⊆ 2
Σif is the set of states;

• ΣDi = Σio ∪ Σic is the set of events;
• δDi ⊆ QDi × ΣDi × QDi is the set of transitions;
• q0

Di
= (q0

i , ∅) is the initial state.

The transitions of δDi are those ((q, qf ), e, (q′, qf ′)) satisfying the
following condition, with (q, qf ) reachable from the initial state q0

Di
:

there is a transition path p = (q
uo1−−→ q1...

uom−−−→ qm
e−→ q′) in

Gi, with uok ∈ Σiu ∪ Σif , ∀k ∈ {1, ..., m}, e ∈ Σio ∪ Σic and
qf ′ = qf ∪ ({uo1, ..., uom} ∩ Σif ).

Then, the local twin plant of a component is obtained by synchro-
nizing its local diagnoser with itself based on the locally observable
events, which is to obtain all pairs of local trajectories with the same
local observations. The two identical local diagnosers are denoted by
Dl

i and Dr
i , left instance and right instance. Since this synchroniza-

tion is based on the set of locally observable events Σio , the non-
synchronized events are distinguished between the two instances by
prefixing them with L and R: in Dl

i (Dr
i ), each communication event

c ∈ Σic from Di is renamed by L : c (R : c) and all their locally
observable events unchange their names.

Definition 8 (Local twin plant). The local twin plant of the compo-
nent Gi is a FSM, denoted by Ti = Dl

i‖Σio
Dr

i , where Dl
i and Dr

i

are the left instance and right instance of the local diagnoser Di of
Gi.

Each state of a local twin plant is a pair of local diagnoser states
that provide two possible diagnoses with the same local observa-
tions. Given a twin plant state ((ql, ql

f )(qr, qr
f )), if the considered

fault f ∈ ql
f ∪ qr

f but f /∈ ql
f ∩ qr

f , which means that the occurrence
of f is not certain in this state, then this twin plant state is called an
ambiguous state with respect to the fault f . An ambiguous state cy-
cle is a cycle containing only ambiguous states. In a local twin plant,
if a path contains an ambiguous state cycle with at least one locally
observable event, then it is called a local critical path, which corre-
sponds to a pair of local trajectories with the same local observations
but exactly one of them contains the occurrence of the considered
fault. Note that local critical paths contain original diagnosability in-
formation and can be obtained only in the local twin plant of the
component Gf .

Figure 3 presents the local diagnoser and a part of the local twin
plant of the component G1. In the local twin plant, every state is
composed of one state label of Dl

i (top) and one state label of Dr
i

(bottom). The gray nodes represent ambiguous states with respect to
F1, which form an ambiguous state cycle. So the part of the local
twin plant depicted here is actually a local critical path since it con-
tains an ambiguous state cycle with one locally observable event O2.
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Figure 3: Local diagnoser D1 (top) and a part of local twin plant T1

(bottom) of component G1.

3.3 Diagnosability information propagation

The existence of a local critical path in the local twin plant of the
component Gf does not imply that f is not cooperatively diagnos-
able because its corresponding pair of trajectories in the system is not
necessarily an undecidable pair even though they are indistinguish-
able in Gf . In other words, there may exist another component, sup-
pose Gi, whose cooperation can possibly distinguish this pair when
the local observations of its two trajectories in Gi are different. How-
ever, since only the component Gf contains the fault information, the
projection of any undecidable pair on Gf must correspond to a lo-
cal critical path in the local twin plant of Gf . Thus the cooperative
diagnosability verification consists in checking the existence of local
critical paths that correspond to undecidable pairs.

A path �i in the local twin plant of Gi is communication compat-
ible with a path �j in the local twin plant of Gj if the corresponding
left (right) trajectory of �i in Gi is communication compatible with
the corresponding left (right) trajectory of �j in Gj . For example,
figure 4 presents a part of local twin plants T2, T3 of the components
G2, G3, respectively. The path of T2 and the path of T3 depicted
here are denoted by �2 and �3. The sequence of local communication
events in the corresponding left trajectory of �2 in G2 is {C1, C3∗}
and that in the left trajectory of �3 in G3 is {C3∗}. Note that C1 is
not contained in G3, then from definition 4, these two trajectories are
communication compatible. In the same way, the corresponding right
trajectory of �2 in G2 and that of �3 in G3 are also communication
compatible. Thus �2 is communication compatible with �3.

Definition 9 (Local critical path compatibility). In a system G, a
local critical path �f in the local twin plant of Gf is (communi-
cation) compatible in a subsystem G′, where Gf ⊆ G′, if ∀Gi ∈
G′\{Gf}, ∃�i, a path with enough long local observations in the
local twin plant of Gi, and this set of paths satisfy the following con-
ditions:

1. ∀Gi ∈ G′\{Gf}, �i is communication compatible with �f ;
2. ∀(i, j), i �= j, Gi ∈ G′\{Gf}, Gj ∈ G′\{Gf}, �i is communi-

cation compatible with �j .

If �f is compatible in G′, this set of corresponding local paths in
the local twin plant of each component in G′ that are mutually com-
munication compatible with each other are called (communication)
compatible path set for �f in G′. If a local critical path is com-
patible in the whole system G, then it is globally compatible. From
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Figure 4: Part of local twin plant T2 of G2 (top) and part of local twin
plant T3 of G3 (bottom).

definition 3 and lemma 1, any path in the local twin plant of any com-
ponent in 	Gf , Gf relative set, is communication compatible with
any path in the local twin plant of any component not in 	Gf . It fol-
lows that a local critical path compatible in 	Gf is globally compati-
ble. From figure 3 and figure 4, the local critical path in the local twin
plant T1, denoted by �f and presented in figure 3, is communication
compatible with both �2 and �3. Furthermore, �2 is communication
compatible with �3. Thus the compatible path set for �f in the sub-
system {G1, G2, G3} is {�f , �2, �3}. Since the system is composed
of these three autonomous components, �f is globally compatible.

Lemma 2 In a system G, there exists a local critical path that is
globally compatible iff there exists an undecidable pair.

Proof :
(⇒) Suppose there exists a local critical path �f that is globally com-
patible, but there does not exist an undecidable pair. Since �f is glob-
ally compatible, from definition 9, there must exist a compatible path
set for �f in the whole system. Due to their mutual communication
compatibility, this compatible path set, including �f , corresponds to
a pair of trajectories in the whole system such that they have the same
enough long local observations for all components but exactly one of
them contains the fault f , which is actually an undecidable pair (see
section 3.1). This follows that there exists an undecidable pair and
thus contradicts the assumption.
(⇐) Now suppose that there exists an undecidable pair, denoted by
p and p′, but there does not exist a local critical path being globally
compatible. The pair p and p′ being an undecidable pair first implies
that they correspond to a local critical path in the local twin plant of
Gf , denoted by �f , and then implies that ∀i ∈ {1, ...n}, we have
Pi(p) = Pi(p′), which forms a path in the local twin plant of each
component. Furthermore, since p and p′ are trajectories in the whole
system, their corresponding paths in all local twin plants, including
�f , must be mutually communication compatible with each other and
thus constitute a compatible path set for �f in the whole system. So
from definition 9, �f is globally compatible, which contradicts the
assumption.

Lemma 2 with its proof implies the equality between a local crit-
ical path that is globally compatible and an undecidable pair. Then
from theorem 1 and lemma 2, the major result of this paper can be
obtained as follows, which is the theoretical basis of our cooperative
diagnosability algorithm for systems with autonomous components.

Theorem 2 A fault f is cooperatively diagnosable in system G iff
there is no local critical path that is globally compatible.

4 ALGORITHM

Algorithm 1 presents the procedure of verifying cooperative diagnos-
ability through checking the existence of local critical paths being
globally compatible. As showed in the pseudo-code for this verifica-
tion procedure, algorithm 1 performs as follows. Given the input as
component models, the component Gf where the considered fault f
may occur, we initialize the parameters as empty, i.e., current subsys-
tem ̂Gs, set of compatible path sets for local critical paths in current
subsystem ℘̂ and set of connected components under consideration
̂Gc. The algorithm begins with the construction of local twin plant
of Gf , current subsystem being now Gf and ℘̂ updated by assigning
the set of local critical paths in Tf (line 3-5). After this, if ℘̂ is not
empty (line 6), which implies the existence of compatible path sets
for local critical paths in current subsystem and thus the existence
of local critical paths compatible in current subsystem, the algorithm
repeatedly performs the following steps:

1. If there exists at least one component directly connected with cur-
rent subsystem, i.e., sharing at least one event, but not involved
in current subsystem, the local critical paths compatible in cur-
rent subsystem need to be further checked for their communica-
tion compatibility in an extended subsystem (line 7,8).

2. After selecting a directly connected component Gi, we construct
its local twin plant Ti and extend the subsystem by adding Gi (line
9-11).

3. ℘̂ is now ready to be updated for current extended subsystem.
More precisely, before updating, each element in ℘̂ represents a
compatible path set for a local critical path in the precedent sub-
system. To update ℘̂, for each element in it, we check each path
of Ti, if one element can become a compatible path set for a lo-
cal critical path in current extended subsystem by adding one path
of Ti, then we update this element by adding this path. Note that
each element is updated by adding only one path of Ti but can
be updated for several times if there are several such paths in Ti.
In other words, one element in non-updated ℘̂ can be updated to
several elements in updated ℘̂. Otherwise, if there is no such path
in Ti, we remove this element from ℘̂. In this way, each element
of updated ℘̂ is a compatible path set for a local critical path that
is compatible in current extended subsystem (line 12).

4. If ℘̂ is not empty and there is no component directly connected
with current subsystem, then there exists at least one local criti-
cal path being globally compatible. In this case, ℘̂ is returned to
provide the corresponding compatible path sets that contain the
important information about why f is not cooperatively diagnos-
able (line 14).

Another reason that can stop the algorithm is the non-existence of
local critical path being globally compatible, which is the case of ℘̂
being empty (line 17). Empty ℘̂ implies that there is no compatible
path set for a local critical path in current subsystem and thus no local
critical path being globally compatible, which verifies cooperative
diagnosability of the system.

If f is cooperatively diagnosable in the system, we can improve
the algorithm efficiency by searching for a subset of 	Gf that is
sufficient to verify cooperative diagnosability through an appropri-
ate component selection strategy. Let ΣSc be the set of communi-
cation events in current subsystem. To choose next component for
further compatibility checking, we prefer to select the one, suppose
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Algorithm 1 Cooperative Diagnosability Checking Algorithm
1: INPUT: the system model G = (G1, ..., Gn); Gf , the compo-

nent where the fault f may occur
2: Initializations: ̂Gs ← ∅ (current subsystem considered); ℘̂ ← ∅

(set of sets of paths, each element represents a compatible path
set for a local critical path in current subsystem); ̂Gc ← ∅ (set
of components directly connected with current subsystem)

3: Tf ← ConstructLTP (Gf )

4: ̂Gs ← {Gf}
5: ℘̂ ← Update(℘̂, Tf )
6: while ℘̂ �= ∅ do

7: ̂Gc ← CollectDCC(G, ̂Gs)

8: if ̂Gc �= ∅ then

9: Gi ← SelectDCC(̂Gc)
10: Ti ← ConstructLTP (Gi)

11: ̂Gs ← ADD(̂Gs, Gi)
12: ℘̂ ← Update(℘̂, Ti)
13: else

14: return ℘̂
15: end if

16: end while

17: return ”f is cooperatively diagnosable in G”

Gi, such that |ΣSc ∩ Σic |, the number of communication events in
Gi contained also in the current subsystem, is maximum comparing
to other components to be selected. This is a reasonable heuristic
because more communication events of the selected component are
involved in current subsystem, more likely the compatible path sets
for local critical paths in current subsystem will be removed during
compatibility checking for the extended subsystem. In this way, the
involved components of the algorithm are as few as possible with
high probability.

5 RELATED WORKS

In [5], the authors introduced the first definition of diagnosability for
DESs and proposed a necessary and sufficient condition for testing it
by constructing a deterministic diagnoser for the entire system. The
main drawback is its exponential space complexity in the number
of system states. And then the authors of [2] and of [8] proposed
new algorithms with polynomial complexity in the number of system
states, which introduced the classical twin plant method.

However, all above approaches assume the existence of a mono-
lithic model of the entire system, which is normally unrealistic when
dealing with real complex systems. This is why recently distributed
approaches to solve diagnosability problem have been investigated.
The diagnosability problem of a system in a distributed way is first
introduced in [3] and is solved by synchronizing local twin plants un-
til a global critical path is detected. In the worst case, the global twin
plant still cannot be avoided. Then in [7], the proposed approach first
decides nondiagnosable states in each local twin plant by propagat-
ing diagnosability information. This is done by synchronizing rela-
tive local twin plants based on their connectivity with the local twin
plant of the component where the fault may occur. Then reduced lo-
cal twin plants are computed that only contain the parts relevant to
solve the diagnosability problem. And thus even in the worst case,
the concerned part is a subpart of the global twin plant. Then the
authors of [6] present a scalable jointree algorithm to decide diag-
nosability, where diagnosability information propagation as well as
the consistency checking between local twin plants are both done

through computing and passing messages on a jointree. Specifically,
the global consistency of each local twin plant is checked by syn-
chronizing itself with the corresponding computed message, which
is a FSM representing the behavior constraints imposed by other lo-
cal twin plants. Then diagnosability can be decided on these globally
consistent local twin plants.

All these distributed approaches are based on the assumption that
some global knowledge is available, i.e., all observable events can be
globally observed, which is at the price of privacy. Moreover, with
this assumption, these approaches, in the worst case, have exponen-
tial complexity in the number of components since they unavoidably
synchronize some part of local twin plants to decide diagnosability.
To the best of our knowledge, this paper is the first work to pro-
pose and solve cooperative diagnosability for DESs with autonomous
components, where the privacy of each component is kept as much
as possible. Furthermore, the cooperative diagnosability can be deter-
mined by only analyzing the communication compatibility between
local twin plants without synchronizing any part of them. So even in
the worst case, we can avoid exponential complexity in the number
of components. With suitable heuristics, the algorithm can further
reduce space complexity.

6 CONCLUSION

In this paper, we first describe the cooperative diagnosis architec-
ture for DESs with autonomous components and propose a new def-
inition of cooperative diagnosability. Then a formal framework for
cooperative diagnosability checking is put forward. The idea is to
search for local critical paths being globally compatible by analyz-
ing communication compatibility between local twin plants, whose
existence verifies non-diagnosability. At the same time, we discuss
how to improve our algorithm efficiency by adopting a reasonable
heuristic and thus with high probability, the involved components
are as few as possible. The main perspective to extend this work is
the further investigation of how to use our approach to improve the
system diagnosability level when it is not cooperatively diagnosable
considering that our algorithm returns the set of compatible path sets,
which contain the information about why the system is not coopera-
tively diagnosable.
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[4] Y. Pencolé, ‘Assistance for the design of a diagnosable component-based
system’, 17th IEEE International Conference on Tools with Artificial In-
telligence ICTAI’05, 549–556, (November 2005).

[5] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, ‘Diagnosability of discrete event system’, IEEE Trans-
actions on Automatic Control, 40(9):1555–1575, (1995).

[6] A. Schumann and J. Huang, ‘A scalable jointree algorithm for diagnos-
ability’, 23rd American National Conference on Artificial Intelligence
(AAAI-08), (July 2008).
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