
On the Life-Cycle of BDI Agent Goals

John Thangarajah 1 and James Harland 2 and David Morley 3 and Neil Yorke-Smith 4

Introduction. Deliberation over courses of action to pursue is fun-
damental to agent systems. Agents designed to work in dynamic en-
vironments, such as a rescue robot or an online travel agent, must
be able to reason about what actions they should take, incorporating
deliberation into their execution cycle, reviewing decisions and tak-
ing corrective action with appropriate focus and frequency. Not only
must agents reason about the effects of their courses of action, they
must also consider the semantics of these corrective actions.

Systems based on the well-known Belief-Desire-Intention (BDI)
framework most often ascribe a set of goals to the agent, which is
equipped with various techniques to deliberate over and manage this
set. The centrality of reasoning over goals is seen in the techniques
investigated in the literature, which include subgoaling and plan se-
lection, detection and resolution of conflicts or opportunities for co-
operation [9], checking goal properties to specification [10, 5], fail-
ure recovery and planning [2], and dropping, aborting, or suspending
and resuming goals [7].

A variety of goals are described in the literature, including goals
of performance of a task, achievement of a state, querying truth of
a statement, testing veracity of beliefs, and maintenance of a condi-
tion [1, 11]. An agent must manage such a variety of goals, while
incorporating pertinent sources of information into its decisions over
them, such as preferences, quality goals, motivational goals, and ad-
vice [10]. The complexity of agent goal management stems from this
combination of the variety of goals and the breadth of deliberation
considerations. It is furthered because each goal can be dropped,
aborted, suspended, or resumed (as illustrated in Figure 1) at arbi-
trary times. While goals themselves are static (i.e., they are specified
at design time, and do not change during execution), their behaviour
is dynamic: a goal may undergo a variety of changes of state during
its execution cycle [5]. This evolution may include its initial adoption
by the agent, being actively pursued, being suspended and then later
resumed, and eventually succeeding (or failing). (Maintenance goals
have a subtle life-cycle: the goal is retained even when the desired
property is true; it is possible that such goals are never dropped.)

Our work analyzes the behaviour of the above types of goals, in-
cluding the behaviour when goals are aborted or suspended. We con-
sider the complete life-cycle of goals, from their initial adoption by
the agent to the time when they are no longer of interest, and all
stages in between; we account for the dynamics of plan execution
and sub-goaling. We develop a generic framework for goal states and
transitions that captures the life-cycle of goals—shown in summary
in Figure 1; the Active and Suspended states decomposed further [8]—

1 RMIT University, Melbourne, Australia, johnt@rmit.edu.au
2 RMIT University, Melbourne, Australia, james.harland@rmit.edu.au
3 SRI International, Menlo Park, USA, morley@AI.SRI.COM
4 SRI International, USA, and American University of Beirut, Lebanon, ny-

smith@aub.edu.lb

Pending Waiting

Suspended

Active
consider

re-activate (M)

respond

re-consider
re-activate 

(M)

activate (P,A)

activate (M)

suspend suspendre-activate 
(P,A)

suspend

T

T

TT

Figure 1. Goal life-cycle composed of abstract states. P – perform goal, A
– achieve goal, M – maintain goal, � – drop/abort/succeed/fail.

and a formal operational semantics that specifies the behaviour. The
value of this work for agent designers is a comprehensive and prin-
cipled set of mechanisms for goal management.

Scenario. Consider a team of three robots—Alpha, Bravo and
Charlie—that are searching for the survivors of an air crash. Each has
a limited battery life, and must return to its base to recharge within
four hours. The three robots search individually for survivors; when
one is found, each robot may call on the others for assistance to bring
the survivor to the base.

Initially Alpha is told to search a particular area. After 30 minutes,
Alpha finds a survivor with a broken leg. Alpha calls for help from
Bravo, as it will require at least two robots to carry the survivor. Once
Bravo arrives, both robots carry the survivor back to the base, and
then both resume searching. A little later, Alpha receives a call for
help from Bravo, who has found another survivor. It takes longer
than expected for Alpha to get to the location. Before Alpha arrives,
another message from Bravo is received, stating that the survivor has
been transported back to the base and so Alpha’s assistance is no
longer required. Alpha resumes its search. Later it receives a call for
help from Charlie, who has found a survivor. Once Charlie’s survivor
is safely back at the base, Alpha considers resuming its search, but
as it has only 30 minutes of battery life left, and as it predicts that it
will take at least 15 minutes of travel time to get to where it needs to
be, Alpha decides to recharge. Once this is done, Alpha resumes its
search. Eventually it completes searching its given area, finding no
more survivors, and returns to the base.

This example illustrates some of the complexity and richness of
goal deliberation and management and the need for a comprehen-
sive and principled approach. In the scenario, Alpha initially adopts
the performance goal of searching its assigned area; this goal is
suspended when a survivor is found, and later resumed. In the in-
terim times, Alpha adopts achievement goals (getting survivors to
the base), which it may have to abort (when Alpha is too late to help

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-1031

1031



Bravo). Alpha also has the important maintenance goal to monitor its
power usage and recharge when appropriate.

Goal Types. We consider three canonical types of goals:
perform(τ, S, F ): accomplish a task τ These goals-to-do demand
that a set of plans be identified to perform a task. A perform goal
succeeds if one or more of its plans complete execution; it fails oth-
erwise, such as if no plan is applicable or all applicable plans fail to
execute. Hence, the success condition S will express that “one of the
plans in the given set succeeds” to accomplish τ [12, 11]. The perform
goal also has a failure condition, F . If F is true at any point during
execution, the goal terminates with failure, and execution of all plans
is terminated. Example: Search a particular area for survivors.
achieve(S, F ): reach a state S These goals-to-be generate plans

to achieve a state, S, and should not be dropped until the state is
achieved or is found to be unachievable, signified by the condition F .
An achieve goal differs from a perform goal in that it checks its success
condition during plan execution and after a plan completes. If the
success condition S is true (at any point during execution), the goal
terminates successfully; if the failure condition F is true (at any point
during execution), the goal terminates with failure. Otherwise, the
goal returns to plan generation, even if the previous plan completed
successfully. Example: Ensure a survivor gets to the base.

maintain(C, π, R, P, S, F ): keep a condition C true Mainte-
nance goals monitor a maintenance condition, C, initiating a recov-
ery goal to restore the condition to true when it becomes false. More
precisely [3] we allow a maintain goal to be reactive, waiting until
the maintenance condition is found to be false, B |= ¬C, and then
acting to restore it by adopting a reactive recovery goal R; or to be
proactive, waiting until the condition is predicted to become false,
B |= π(¬C) (where π is some prediction mechanism, say using
lookahead reasoning, e.g., [9], and B is the set of agent’s beliefs) and
then acting to prevent it by adopting a proactive preventative goal
P . Although not specified in prior work, we insist that R and P be
achieve goals. The maintenance goal continues until either the success
condition S or failure condition F become true. Example: Ensure
that Alpha is always adequately charged.

Contribution. We have developed a rich and detailed specification
of the appropriate operational behaviour when a goal is pursued, suc-
ceeded or failed, aborted, suspended, or resumed. We (1) include so-
phisticated maintenance goals, along the lines of Duff et al. [3], that
encompass proactive behaviour (i.e., anticipating failure of a given
condition) as well as reactive behaviour (i.e., waiting until the con-
dition becomes false), and allow for different responses in each case.
This contrasts over most work on maintenance goals, in which only
the reactive behaviour is developed [11, 5]. We (2) develop an ap-
propriate set of states for goals (which generalizes the two states of
suspended and active of van Riemsdijk et al. [11]), and a set of opera-
tions to move goals between these states. These operations are richer
than previous works, by including suspending and resuming for all
the common goal types, and the corresponding state transitions can
be non-trivial. We provide a detailed specification elsewhere [8].

Our second area of innovation is to address execution of plans to
achieve goals within our semantics. The spirit of our work is shared
by Morandini et al. [5], who build on van Riemsdijk et al. by pro-
viding operational semantics for non-leaf goals, i.e., semantics for
subgoaling and goal achievement conditions. We (3) encompass the
same dynamic execution behaviour, but further consider plans as well
as goals. Thus we consider the execution cycle, not only the design
phase like Morandini et al.

We have designed a complete set of operational semantics using
the CAN agent specification language [6] and developed a prototype
implementation. The scenario described in this paper is successfully
executed. By developing the formal operational semantics for our
generic framework in CAN, we have not been tied to any particular
agent implementation. The prototype implementation, denoted Or-
pheus, consists of around 700 lines of platform-netural Prolog. It is
available from the authors at http://www.cs.rmit.edu.au/
˜jah/orpheus.

Summarized, the three key contributions of our generic framework
for goal states and transitions are (1) to encompass both goals of
accomplishment and rich goals of monitoring, (2) to provide the first
specification of abort and suspend for all the common goal types,
and (3) to account for plan execution as well as the dynamics of sub-
goaling. To the best of our knowledge, no existing framework for
goal operation accounts for all of these points.

Our work so far accounts for the life-cycle of each goal. We have
not sought to address overall agent deliberation, plan deliberation,
resource management, or plan scheduling. Thus far we have exam-
ined the same questions as Braubach et al. [1]; future research is to
address the other questions they pose. Likewise, we have not con-
sidered failure handling and exceptions. Our work is complementary
to generic or application-specific reasoning about goal interactions
(e.g., [9]), and to goal and plan selection. Future work is to estab-
lish and prove properties of the semantics (compare the top-down
semantic approach of Khan and Lespérance [4]), and to explore its
use within agent programming languages.

REFERENCES

[1] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf, ‘Goal represen-
tation for BDI agent systems’, in Proc. of ProMAS’04, (2004).

[2] L. de Silva, S. Sardina, and L. Padgham, ‘First principles planning in
BDI systems’, in Proc. of AAMAS’09, (2009).

[3] S. Duff, J. Harland, and J. Thangarajah, ‘On proactivity and mainte-
nance goals’, in Proc. of AAMAS’06, (2006).

[4] S. M. Khan and Y. Lespérance, ‘A logical framework for prioritized
goal change’, in Proc. of AAMAS’10, (2010).

[5] M. Morandini, L. Penserini, and A. Perini, ‘Operational semantics of
goal models in adaptive agents’, in Proc. of AAMAS’09, (2009).

[6] S. Sardiña and L. Padgham, ‘Goals in the context of BDI plan failure
and planning’, in Proc. of AAMAS’07, (2007).

[7] J. Thangarajah, J. Harland, D. Morley, and N. Yorke-Smith, ‘Suspend-
ing and resuming tasks in BDI agents’, in Proc. of AAMAS’08, (2008).

[8] J. Thangarajah, J. Harland, D. Morley, and N. Yorke-Smith, ‘Opera-
tional behaviour for executing, suspending and aborting goals in BDI
agent systems’, in Proc. of 8th Intl. Workshop on Declarative Agent
Languages and Technologies (DALT’10), (2010).

[9] J. Thangarajah, L. Padgham, and M. Winikoff, ‘Detecting and exploit-
ing positive goal interaction in intelligent agents’, in Proc. of AA-
MAS’03, (2003).

[10] A. van Lamsweerde, ‘Goal-oriented requirements engineering: A
guided tour’, in Proc. of Intl. Joint Conf. on Requirements Engineer-
ing (RE’01), (2001).

[11] M. B. van Riemsdijk, M. Dastani, and M. Winikoff, ‘Goals in agent
systems: A unifying framework’, in Proc. of AAMAS’08, (2008).

[12] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah, ‘Declarative
and procedural goals in intelligent agent systems’, in Proc. of KR’02,
(2002).

J. Thangarajah et al. / On the Life-Cycle of BDI Agent Goals1032


