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Abstract. The POSSIBLE WINNER problem asks, given an election
where the voters’ preferences over the candidates are specified only
partially, whether a designated candidate can be made win. Betzler
and Dorn [1] proved a result that is only one step away from a full di-
chotomy of this problem for the important class of pure scoring rules
in the case of unweighted voters and an unbounded number of candi-
dates: POSSIBLE WINNER is NP-complete for all pure scoring rules
except plurality, veto, and the scoring rule with vector (2 1 1 0),
but is solvable in polynomial time for plurality and veto. We take the
final step to a full dichotomy by showing that POSSIBLE WINNER is
NP-complete also for the scoring rule with vector (2 1 1 0).

1 Introduction

The computational complexity of problems related to voting systems
is a field of intense study (see, e.g., [3]). The voters are commonly
assumed to provide their preferences over the candidates via com-
plete linear orderings of all candidates. However, in many real-life
settings, this is often not the case: Some voters may have preferences
over only some candidates, or it may happen that new candidates are
introduced to an election after some voters have already cast their
votes. It thus seems reasonable to assume only partial preferences
from the voters. Konzcak and Lang [5] were the first to study voting
with partial preferences, and they proposed the POSSIBLE WINNER

problem that (for any given election system) asks, given an election
with only partial preferences and a designated candidate c, whether
c is a possible winner in some extension of the partial votes to linear
ones. This problem was studied later on by other authors (see, e.g.,
[6, 1]). In particular, Betzler and Dorn [1] established a result that
is only one step away from a full dichotomy result3 of the POSSI-
BLE WINNER problem for the important class of pure scoring rules
(for unweighted voters and any number of candidates). They showed
NP-completeness for all but three pure scoring rules, namely plural-
ity, veto, and the scoring rule with scoring vector (2 1 1 0). For
plurality and veto they showed that this problem is polynomial-time
solvable, but the complexity of POSSIBLE WINNER for the scoring
rule (2 1 1 0) was left open. Taking the final step to a full di-
chotomy result, we show that POSSIBLE WINNER is NP-complete
also for the scoring rule with vector (2 1 1 0).
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3 Dichotomy results are particularly important, as they completely settle the

complexity of a whole class of related problems by providing an easy-to-
check condition that tells the hard cases apart from the easily solvable cases.
For example, Hemaspaandra and Hemaspaandra [4] provided a dichotomy
result for the manipulation problem in scoring rules with weighted voters.

2 Definitions and Notation

An election (C V ) is specified by a set C = {c1 c2 cm} of can-
didates and a list V = (v1 v2 vn) of votes over C. In the most
common model of representing preferences, each such vote is a lin-
ear order4 of the form ci1 ci2 · · · cim where {i1 i2 im} =
{1 2 m}, and cik ci means that candidate cik is (strictly) pre-
ferred to candidate ci . A voting system is a rule to determine an
election’s winner(s). Scoring rules (a.k.a. scoring protocols) are an
important class of voting systems. Every scoring rule with m can-
didates is specified by a scoring vector α = (α1 α2 αm) with
α1 ≥ α2 ≥ ·· · ≥ αm, where each α j is a nonnegative integer. For
an election (C V ), each voter v ∈ V gives a j points to the candidate
ranked at jth position in his or her vote. Summing up all points a can-
didate c ∈ C receives from all voters in V , we obtain score(C V )(c),
c’s score in (C V ). Whoever has the highest score wins the election.
If there is only one such candidate, he or she is the unique winner.
Betzler and Dorn [1] focused on so-called pure scoring rules. A scor-
ing rule is pure if for each m ≥ 2, the scoring vector for m candidates
can be obtained from the scoring vector for m− 1 candidates by in-
serting one additional score value at any position subject to satisfying
α1 ≥ α2 ≥ ·· · ≥ αm. We will study only the pure scoring rule that for
m ≥ 2 candidates is defined by the scoring vector (2 1 1 0): The
first candidate gets two points, the last candidate gets zero points,
and the m− 2 other candidates get one point each. We thus distin-
guish between the first, a middle, and the last position in any vote.

The POSSIBLE WINNER problem is defined for partial rather than
linear votes. For a set C of candidates, a partial vote over C is a
transitive, antisymmetric (not necessarily total) relation on C. For any
two candidates c and d in a partial vote, we write c� d if c is (strictly)
preferred to d. If a candidate c is preferred to each candidate from a
set D of candidates, we write c � D to mean c � d for all d ∈ D. A
linear vote v′ over C extends a partial vote v over C if v ⊆ v′, i.e., for
all c d ∈C, if c � d in v then c d in v′. A list V ′ = (v′1 v′2 v′n)
of linear votes is an extension of a list V = (v1 v2 vn) of partial
votes if for each i, 1 ≤ i ≤ n, v′i ∈V ′ extends vi ∈V .

For a voting system E , the POSSIBLE WINNER problem is defined
as follows: Given a set C of candidates, a list V of partial votes over C,
and a designated candidate c ∈ C, is there an extension V ′ of V to
linear votes over C such that c is a winner of election (C V ′) under
voting system E ? (This defines the problem in the nonunique-winner
case; for its unique-winner variant, simply replace “a winner” by “the
unique winner.”) Due to space we focus on the nonunique-winner
case; the unique-winner case can be handled as described in [1].

4 A linear order L on C is a total, transitive, and antisymmetric relation on C,
i.e., (i) for any two distinct c d ∈C, either cLd or dLc; (ii) for all c d e ∈C,
if cLd and dLe then cLe; and (iii) for all c d ∈C, if cLd then dLc does not
hold. Note that antisymmetry of L implies irreflexivity of L.
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3 The Final Step to a Full Dichotomy Result

Our proof of Theorem 2 below uses the notion of maximum par-
tial score defined in [1]. Let C be a set of candidates, c ∈ C, and let
V = V ∪V p be a list of votes over C, where V contains only lin-
ear votes and V p contains partial votes such that c’s score is fixed,
i.e., the exact number of points c receives from any v ∈V p is known,
no matter to which linear vote v is extended. For each d ∈ C−{c},
define the maximum partial score of d with respect to c (denoted by
smax

p (d c)) to be the maximum number of points that d may get from
(extending to linear votes) the partial votes in V p without defeating c
in (C V ′) for any extension V ′ of V to linear votes. Note that for any
such V ′, smax

p (d c) = score(C V ′)(c)− score(C V )(d). The following
lemma will be helpful.

Lemma 1 (Betzler and Dorn [1]) Let α = (α1 α2 αm) be any
scoring rule, let C be a set of m ≥ 2 candidates with designated
candidate c ∈ C, and let V p be a list of partial votes in which the
score of c is fixed. Suppose that the following two properties hold:
(1) There is a candidate d ∈ C−{c} such that smax

p (d c) ≥ α1|V p|.
(2) For each c′ ∈ C−{c}, the maximum partial score of c′ with re-
spect to c can be written as a linear combination of the score values,
smax

p (c′ c) = ∑m
j=1 n jα j , with m = |C|, n j ∈ N, and ∑m

j=1 n j ≤ |V p|.
Then a list V of linear votes can be constructed in polynomial

time such that for all c′ ∈C−{c}, score(C V )(c
′) = score(C V ′)(c)−

smax
p (c′ c), where V ′ is an extension of V p to linear votes.

Theorem 2 POSSIBLE WINNER (both in the nonunique-winner
case and in the unique-winner case) is NP-complete for the pure
scoring rule with scoring vector (2 1 1 0).

Proof. Membership in NP is obvious. Our NP-hardness proof is by
a reduction from the NP-complete HITTING SET problem which is
defined as follows: Given a finite set X , a collection S = {S1 Sn}
of nonempty subsets of X (i.e., /0 	= Si ⊆ X for each i, 1 ≤ i ≤ n), and
a positive integer k, is there a subset X ′ ⊆ X with |X ′| ≤ k such that
X ′ contains at least one element from each subset in S ?

Let (X S k) be a given HITTING SET instance with X =
{e1 e2 em} and |S | = n. From (X S k) we construct a
POSSIBLE WINNER instance with candidate set C = {c h} ∪
{xi x1

i xn
i y1

i yn
i z1

i zn
i | 1 ≤ i ≤ m} and designated can-

didate c. The list of votes V = V ∪V p consists of a list V of lin-
ear votes and a list V p of partial votes. V p consists of three sub-
lists, V p

1 , V p
2 , and V p

3 . In particular, V p
1 contains k votes of the form

h � C − {h x1 xm} � {x1 xm}, V p
2 contains the following

2n+1 votes for each i, 1 ≤ i ≤ m:
vi : h �C−{h xi y1

i } � {xi y1
i }

v j
i : y j

i �C−{y j
i z j

i h} � h for 1 ≤ j ≤ n
w j

i : x j
i �C−{x j

i y j+1
i z j

i } � y j+1
i for 1 ≤ j ≤ n−1

wn
i : xn

i �C−{xn
i zn

i h} � h

and V p
3 contains for each i, 1 ≤ i ≤ n, the vote Ti �C−{Ti h} � h,

where Ti contains the candidates xi
j , j ∈ { | e ∈ Si}, correspond-

ing to the elements in Si, 1 ≤ i ≤ n. For each i, 1 ≤ i ≤ m, and j,
1 ≤ j ≤ n, the maximum partial scores are: smax

p (xi) = |V p| − 1,

smax
p (x j

i ) = |V p|+ 1, smax
p (y j

i ) = smax
p (z j

i ) = |V p|, smax
p (h) ≥ 2|V p|.

By Lemma 1, V ensures that all candidates other than c can get only
their maximum partial scores with respect to c in the partial votes.

If S has a hitting set of size k then c is a possible winner in
(C V ), via extending V p to linear votes as follows:

ei ∈ X ′ ei 	∈ X ′
V p

1 : h · · · xi
V p

2 : vi : h · · · xi y1
i h · · · y1

i xi

v j
i 1 ≤ j ≤ n : y j

i · · · z j
i z j

i y j
i · · · h

w j
i 1 ≤ j n : z j

i x j
i · · · y j+1

i x j
i · · · y j+1

i z j
i

wn
i : zn

i xn
i · · · h xn

i · · · h zn
i

V p
3 : xi

j · · · h for some j ∈ { | e ∈ Si}
Conversely, assume that c is a possible winner for (C V ). Then

no candidate may get more points in V p than his or her maximum
partial score with respect to c. Since at most k different xi may take a
last position in V p

1 , at least n−k different xi must take a last position
in vi. We will now show that for those xi it is not possible that a
candidate x j

i takes a first position in any vote of V p
3 . Fix any such xi.

Since xi takes the last position in vi, y1
i takes a middle position in this

vote and gets one point. The only vote in which the score of y1
i is not

fixed is v1
i . Without the points from this vote, y1

i already gets |V p|−1
points, so y1

i cannot get two points in v1
i , and z1

i takes the first position
in v1

i . Without the points from w1
i , z1

i gets |V p| points and must take
the last position in w1

i . The first position in w1
i is then taken by x1

i , so
x1

i cannot take a first position in a vote from V p
3 . Candidate y2

i gets
one point in w1

i , and by a similar argument as above, x2
i is placed

at the first position in w2
i . Repeating this argument, we have that for

each j, 1 ≤ j ≤ n, x j
i is placed at the first position in w j

i and thus
cannot take a first position in a vote from V p

3 . This means that all
first positions in the votes of V p

3 must be taken by those x j
i for which

xi takes the last position in a vote from V p
1 . This is possible only

if the x j
i are not at the first position in w j

i . Thus z j
i must take this

position. Due to the maximum partial scores of these candidates, this
is possible only if z j

i takes the last position in v j
i . Then y j

i takes the
first position in this vote. This is possible, since y j

i can take a middle
position in vi for j = 1, and in v j

i for 2 ≤ j ≤ n. Hence all x j
i , where xi

takes the last position in the votes of V p
1 , may take the first position

in the votes of V p
3 , and the ei corresponding to those xi must form a

hitting set of size at most k for S . �

Elkind et al. [2] introduced the notion of swap bribery. Here, an ex-
ternal agent seeks to make a distinguished candidate c win the elec-
tion by bribing some voters to swap two consecutive candidates in
their preference order. Since POSSIBLE WINNER is a special case of
their swap bribery problem, Theorem 2 implies that the swap bribery
problem for the scoring rule (2 1 1 0) is NP-hard as well.
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