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Abstract.

We model the problem of bidding in ad auctions as a
penalized multiple choice knapsack problem (PMCKP),
a combination of the multiple choice knapsack problem
(MCKP) and the penalized knapsack problem (PKP) [1].
We present two versions of PMCKP, GlobalPMCKP and
LocalPMCKP, together with a greedy algorithm that
solves the linear relaxation of a GlobalPMCKP opti-
mally. We also develop a greedy heuristic for solving Lo-
calPMCKP. Although our heuristic is not optimal, we
show that it performs well in TAC AA games.

1 INTRODUCTION

Most Internet advertising space is sold via ad auctions,
which operate as follows: Well in advance, a publisher
(e.g., a search engine or a newspaper’s web site) solicits
bids from advertisers on potential queries. Then, when a
user submits one of those queries to a publisher, the user
is shown sponsored search results (i.e., ads) alongside
organic results. The order in which the ads are displayed
is determined on-the-fly by the publisher, who runs an
auction based on the previously submitted bids. Finally,
if the user clicks on an ad, the corresponding advertiser
pays the publisher some amount.

In this environment, both publishers and advertisers
face difficult decision problems. The publishers must de-
termine costs-per-click (CPCs), and in which slots to
display the winning ads. The advertisers in turn must
decide what queries to bid on and the maximum CPC
they are willing to pay.

In 2009, the annual Trading Agent Competition
(TAC) introduced a simulated market game that facili-
tates experimenting with autonomous bidding strategies
for ad auctions. The TAC Ad Auctions (AA) game [2]
captures many of the difficulties associated with bidding
in real ad auctions, such as bidding on multiple queries
and setting budgets in the presence of noisy, delayed,
and only partial information. Our work makes use of
the TAC AA framework to experimentally evaluate au-
tonomous bidding strategies for ad auctions.

2 KNAPSACK PROBLEMS

MCKP Following [5], we view bidding in ad auctions
as a kind of multiple choice knapsack problem (MCKP).
MCKP is a generalization of the classic 0-1 knapsack
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problem (KP). In both problems, the objective is to fill a
knapsack of finite capacity with weighted items in a way
that maximizes the total value of the items taken. MCKP
generalizes KP in that the given items are divided into
sets, and at most one item can be taken from each set. To
see how MCKP naturally models bidding in ad auctions,
think of slots on a query’s search results page as a set of
items; then, taking one item from each set corresponds to
choosing one slot per query. The sales target corresponds
to the knapsack’s capacity, and the expected number of
sales associated with a slot corresponds to its weight.3

Let Q denote the set of all the given item sets (e.g.,
queries), and let Rq denote an enumerable set of items
(e.g., slots) in the set q ∈ Q. Let vqj ∈ R be the value
associated with taking the jth item in the set q, let wqj ∈
R

+ be the weight of this item, and let xqj be a binary
decision variable that takes on value 1 iff this item is
taken. Let C ∈ R denote the knapsack’s capacity. Using
this notation, we formulate MCKP as follows:

max
�x

∑
q∈Q

vqjxqj (1)

subject to
∑
q∈Q

∑
j∈Rq

wqjxqj ≤ C (2)

∑
j∈Rq

xqj ≤ 1 ∀q ∈ Q (3)

xqj ∈ {0, 1}, ∀q ∈ Q, j ∈ Rq (4)

Much like KP, an approximate solution to MCKP can
be obtained by running a greedy algorithm (GreedyM-

CKP) that solves the linear relaxation optimally [3].
GreedyMCKP actually converts an instance of MCKP
into an instance of KP with incremental items (after
removing dominated items; see [3]), and then solves the
resulting KP in the usual greedy fashion: incremental
items are taken in nonincreasing order of efficiency—
defined as value divided by weight—until the knapsack
has reached its capacity or there are no items left with
positive efficiencies. The incremental items are so-called
because taking the first k of them in the resulting KP is
equivalent to taking the kth item in the original MCKP.
In this way, a solution to this KP can be immediately
interpreted as a solution to the original MCKP.

PKP The penalized KP [1] is another generalization
of KP, where the hard constraint on capacity is replaced

3 Alternatively, the total advertising budget across queries
could correspond to the knapsack’s capacity, in which case
a slot’s expected cost-per-click times the expected number
of clicks would correspond to its weight.
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by a global penalty function p that depends on capacity
used. PKP generalizes KP because a hard capacity con-
straint can be encoded in a penalty function that returns
zero when the total weight of the items taken satisfies the
constraint and an exceedingly high penalty otherwise.

We call the original PKP GlobalPKP because the
penalty function is global. But in TAC AA the penalty
function is not global; it is local in the sense that it dif-
fers across queries. We formulate LocalPKP as follows:
given local penalty functions pj for all j = 1, . . . , n,

max
�x

n∑
j=1

(vj − pj(κ))xj (5)

subject to xj ∈ {0, 1}, ∀j = 1, . . . , n (6)

Here κ =
∑

j wjxj . (GlobalPKP is the special case of
LocalPKP in which pj = p, for all j.)

By redefining efficiency as marginal profit divided by
weight, the usual greedy algorithm for solving the linear
relaxation of the knapsack problem solves GlobalPKP
optimally, assuming p is convex [1]. The marginal profit

μj of an item j is the incremental value of that item
less its incremental penalty. In the case of GlobalPKP,
μj = vj − p(κ′) + p(κ). Here κ′ = κ+ wj .

We extend this greedy algorithm (GreedyGlobalPKP)
to one that heuristically solves LocalPKP (GreedyLo-
calPKP) by calculating marginal profit as follows:

μj = vj −

⎛
⎝ ∑

{i|xi=1}

pi(κ
′) + pj(κ

′)

⎞
⎠+

⎛
⎝ ∑

{i|xi=1}

pi(κ)

⎞
⎠

Whereas GreedyGlobalPKP is O(n log n) (items are sorted
by marginal profit once, in a preprocessing step), Greedy-
LocalPKP is O(n2) because marginal profit varies with
capacity used differently for different items. This creates
the need to first update marginal profits and then search
through the items that have not yet been taken for one
of maximal efficiency during each iteration. Still, Greedy-
LocalPKP does not solve LocalPKP optimally.

PMCKP Like MCKP, in PMCKP items are divided
into sets, and at most one item can be taken from each
set. Like PKP, penalty functions that depend on capac-
ity used appear in the objective function. Formally, we
define LocalPMCKP as follows: given values vqj ∈ R and
local penalty functions pqj , for all q, j,

max
xqj

∑
q∈Q

∑
j∈Rq

(vqj − pqj(κ)) xqj (7)

subject to
∑
j∈Rq

xqj ≤ 1 ∀q ∈ Q (8)

xqj ∈ {0, 1}, ∀q ∈ Q, j ∈ Rq (9)

(GlobalPMCKP is the special case of LocalPMCKP in
which pqj = p, for all q, j.)
Theorem If the penalty function p is convex, then
GreedyMCKP with efficiency defined as marginal profit
solves the linear relaxation of GlobalPMCKP optimally.
Proof Sketch It suffices to note that a global penalty
function does not change the set of dominated items. �

We solve LocalPMCKP using yet another greedy al-
gorithm, GreedyLocalPMCKP, which incorporates ideas
from both GreedyMCKP and GreedyLocalPKP. First, we
modify GreedyMCKP to eliminate dominated items based

on their marginal profits instead of their values. But
then we can no longer eliminate all dominated items
in a preprocessing step (again, because marginal profit
varies with capacity used differently for different items).
Consequently, GreedyLocalPMCKP eliminates dominated
items during each iteration. Second, following GreedyLo-

calPKP, GreedyLocalPMCKP, searches through the items
that have not yet been taken for one of maximal effi-
ciency during each iteration.

Eliminating dominated items requires sorting. Hence,
GreedyLocalPMCKP is O

(∑n

i=1
i log i

)
= O(n2 log n),

where n is the total number of items across item sets. In
fact, in our experiments, we run HybridMCKP, an O(n2)
algorithm that searches through the items that have not
yet been taken during each iteration, but eliminates dom-
inated items in a preprocessing step.

3 RESULTS AND CONCLUSION

The table below lists the mean scores and variances
across 60 games played by the the best seven agents
in the TAC AA agent repository and HybridMCKP. Hy-
bridMCKP placed second. We believe this result is of in-
terest, and that it speaks to the strength of our approach
to bidding in TAC AA, because unlike TacTex [4], Hy-
bridMCKP does not rely on any sophisticated modelling
techniques (e.g., HMMs) tailored to the TAC AA game
to estimate quantities like click probabilities and conver-
sion probabilities, which are used to compute the values
and penalty functions that define the TAC AA instance
of PMCKP. Instead, HybridMCKP uses WEKA—off-the-
shelf machine learning software. It remains to further
study the performance of knapsack-based bidding heuris-
tics using more sophisticated models.

Agent Mean Variance

TacTex 80.76 10.0
HybridMCKP 77.83 11.5
AstonTAC 76.30 9.2
Munsey 73.41 10.2
EPFLagent 72.43 9.8
QuakTAC 70.61 14.8
MetroClick 70.15 8.8
Mertacor 68.31 8.9
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