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Abstract 

A core challenge in biomedical data integration is to enable 
semantic interoperability between its various stakeholders as 
well as other interested parties.  Promoting the adoption of 
worldwide accepted information standards along with com-
mon controlled terminologies is the right path to achieve this. 
Our paper describes a solution to this fundamental problem 
by proposing an approach to semantic data integration based 
on information models serving as a common language to rep-
resent health data coupled with technology that is able to rep-
resent the data semantics. We used the HL7 v3 Reference In-
formation Model (RIM) [1] to derive a specific data model for 
the integrated data, the Web Ontology Language (OWL) [2] 
to build an ontology that harmonizes the metadata from the 
disparate data sources, the Unified Modeling Language 
(UML) [3] to model the data representation, and the Object 
Constraint Language (OCL) [4] to specify UML model con-
straints. To illustrate the approach, we use the Essential Hy-
pertension Summary CDA document and related models from 
Hypergenes, a European Commission funded project [5] ex-
ploring the Essential Hypertension disease model. 
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Introduction 

Biomedical information repositories typically contain data 
related to a specific clinical domain with semantics unique to 
the originating systems [6]. These disparate data sources pose 
a challenge for data integration [7] that is paramount for im-
proved patient-centric care [8], as well as for secondary use of 
the data for analysis of aggregated data in context of clinical 
research, public health surveillance, and decision support [9].  

In this paper, we depict a complete solution to this fundamen-
tal problem by proposing an approach to semantic data inte-
gration using healthcare standard information models, ontol-
ogy-based metadata harmonization, technology for creating 
and constraining data models, and an engine for instance gen-
eration. 

The solution we present, as depicted in Figure 1, starts with a 
clinical domain expert creating an ontological representation 

of the information elements or variables of interest needed for 
a particular study. Based on past experiences, the clinical do-
main expert does not care about explicit data format, but only 
that certain data elements are required for further analysis. 

 

Figure 1 – Solution Activity Diagram 

Our approach is intended to work over multiple, heterogene-
ous data sources by using models based on international stan-
dards for healthcare semantics and interoperability. Using 
standard exchange formats, along with a set of constraints, 
serves to unify data into a semantically unambiguous format 
that makes operations on the data straightforward from a tech-
nological standpoint. The healthcare IT domain expert, famil-
iar with healthcare data representation methods and standards, 
creates healthcare interoperability models. Mappings between 
the ontological representation and healthcare interoperability 
models enable the instance generation engine to produce the 
standard instances in the last step. 

IT industry-standard modeling languages form the bridge be-
tween the clinical and healthcare IT domains and user roles 
required for proper integration of healthcare data. The clinical 
domain expert works with a “more intuitive” ontology-based 
approach using semantic web technologies to represent the 
metadata needed for harmonization, while the healthcare IT 
domain expert uses software modeling languages to create 
model-based representations of the standard format, apply 
constraints to this format for a domain of interest, and, in col-
laboration with the clinical domain expert, create mappings 
between the ontological representation of the variables of in-
terest and the standard-based information models. The anno-
tated model created by the healthcare IT domain expert at de-
sign time, is then used by the instance generation engine at 
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runtime in order to transform the data to the standard format 
that conforms to the constrained model. 

Background & Related Work 

The HL7 v3 Reference Information Model (RIM) is used to 
derive consistent health information standards such as labora-
tory, problem and goal-oriented care, public health, and clini-
cal research.  It is an ANSI and ISO-approved standard that 
provides a unified health data ‘language’ to represent associa-
tions between entities who play roles that participate in acts. 
For example, a person entity plays a role of a surgeon who 
participates in a procedure act, and so forth. Acts may relate to 
other acts through “act relationships”, thus providing a mecha-
nism to describe complex actions.  

Clinical Document Architecture (CDA) [10] is a constrained 
subset of the RIM that specifies terminology-encoded structure 
and semantics for clinical documents. These documents can be 
serialized to XML that conforms to a published W3C XML 
Schema. In most applications, the general CDA structure is 
further constrained by a set of templates that are standardized 
and published in an implementation guide, such as the Conti-
nuity of Care Document (CCD) [11]. Healthcare applications 
that produce or consume XML instances for CDA must in-
clude the appropriate template identifiers, as specified in the 
implementation guide. For example, a CDA instance that in-
cludes the template identifier “2.16.840.1.113883.10.20.1.28” 
indicates that the instance conforms to the CCD problem ob-
servation. 

Most CDA template specifications, such as CCD, are written 
using structured English expressions that are based on the 
XML schema element relationships. These conformance 
statements are usually implemented using Schematron rules to 
augment the CDA XML schema. Our work, however, includes 
methods and open source software tools for representing CDA 
documents and template constraints using the Unified Model-
ing Language (UML) and the Object Constraint Language 
(OCL). Details and examples of this approach are described in 
the Methods and Results sections of this paper. 

The UML modeling language is dominant among IT domain 
users, whereas clinical domain experts often work with formal 
ontology definitions. The Web Ontology Language (OWL) is 
a semantic markup language for publishing and sharing on-
tologies on the World Wide Web. It is endorsed by the World 
Wide Web Consortium (W3C) [12]. OWL is often used as the 
framework for converging distinctive terminologies into a sin-
gle coherent ontology; many successful examples exist in clin-
ical research and medical informatics domains [13, 14].  

There has been some prior work in both using OWL ontolo-
gies in conjunction with instance generation [15], and in using 
OWL to add semantic annotations to UML information models 
[16]. These methods are applied and extended to support onto-
logical mapping, representation modeling, formal constraining, 
and instance generation in our research. 

Methods 

Users 

The use case diagram in Figure 2 illustrates the primary activi-
ties involved in our approach and the user roles required to 
perform these activities. 

 

Figure 2 – Use Case Diagram 

The clinical domain expert is responsible for creating the core 
ontology. The core ontology contains conceptual abstractions 
for a given clinical research domain and includes all the data 
elements required for secondary use by clinical researchers. 
The cohort ontology contains data elements and terminology 
specific to a data source. The cohort ontology is created by the 
clinical domain expert for each cohort that wishes to partici-
pate in the data integration. Using common ontology develop-
ment tools such as Protégé [17], mappings are created between 
these cohort ontologies and the core ontology. This process is 
described in greater detail in the next sub section. 

The healthcare IT domain expert is responsible for creating the 
CDA template model using a UML tool. The CDA template 
model contains classes, attributes, and relationships that are 
used to further constrain the CDA model to a particular clini-
cal research domain. There are implicit relationships between 
classes in the template model and concepts in the core ontol-
ogy. These relationships are made explicit by creating map-
pings on the CDA template model as UML annotations, 
providing the basis for generating the annotated template 
model. 

The artifacts produced by these different users and the rela-
tionships between them are captured in Figure 3 below. 

 

Figure 3 – Artifact Relationships 

Data Integration 

Healthcare data integration involves harmonization, validation, 
normalization, and transformation into standard structures that 
are accepted by the healthcare and medical research communi-
ties. Relationships between data items are often defined im-
plicitly, e.g., in documentation or as tacit knowledge of ex-
perts. These implicit relationships must be expressed in an 
explicit and standard way so that analysis algorithms not aware 
of the implicit semantics can use them effectively. 
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Harmonization 
Integration of data from dissimilar data sources must first un-
dergo a process of conceptual harmonization, i.e. convergence 
of the sources metadata to a single and agreed-upon terminol-
ogy. For example, blood pressure measurements from three 
different cohorts of essential hypertension are outlined in Fig-
ure 4. This outline depicts the underlying data model for the 
blood pressure measurements taken by the three cohorts. 

 
Figure 4 – Various blood pressure measurement schemes 

Comparing data between the different cohorts is not a trivial 
task.  The metadata is named differently, so how can one de-
duce that: Cohort 1 “Office BP”, Cohort 2 “Base BP”, and 
Cohort 3 “Anamnestic BP” all refer to the same conceptual 
data? Furthermore, looking at Ambulatory Blood Pressure 
findings one can see that Cohort 1 temporal divisions are to 
“Morning, Daytime, Evening, and Nighttime”, whereas in Co-
hort 3 we find “Daytime and Nighttime” only;  Cohort 2 blood 
pressure observations relate to four and eight weeks after start 
of therapy, thus completely incomparable to the above data.  

Using OWL, we leveraged technology used for semantic web 
representation, to map all cohort variables to a core ontology 
able to represent the base conceptual terms for the target do-
main, e.g. Essential Hypertension. A schematic diagram is 
shown in Figure 5. 

 
Figure 5- Ontology schematic diagram,  

left side is a screen capture of ontology using Protégé 

The process starts by creating a cohort class (OWL class) for 
each metadata variable, thus each cohort contains a flat list of 
cohort classes. We then map each cohort variable in accor-
dance with harmonization effort to a core ontology class by 

specifying an equivalent class relationship. In case of n:1 
mapping, cohort instances (OWL individuals) are created, 
allowing the class to maintain 1:1 mapping, and additional 
parameters (as Data Properties) are added to capture the in-
stance disparities. Thus, following the example shown in Fig-
ure 4, Cohort 2 Ambulatory Blood Pressure would contain one 
class with two individuals, having a temporal parameter to 
specify for four or eight weeks after therapy. 

Normalization & Validation 

Having crossed the hurdle of defining metadata in comparable 
terms, one is left with the challenges of deducing and validat-
ing data values for each metadata variable under the cohort’s 
data model, as well as normalizing values in correspondence to 
harmonized standard units. This task is a complex one due to 
differences in units of measurement, classifications, and diver-
sity of protocols. We do not elaborate here on these efforts. 

Transformation to Intermediate Data Representation 

Data is first extracted via a suitable adapter from data source 
proprietary formats, such as an excel file or MySQL database, 
and copied into a generic data container. The data container is 
conceptually a map where the key is a cohort variable and the 
value is the matching value. Additional inference is performed 
by the instance generation engine receiving both the data con-
tainer and the ontology as input. 

Capturing Data Semantics 

Having similar sets of metadata represented in an agreed-upon 
terminology provides the basis for semantic interoperability 
[18].  Biomedical data is typically complex, consisting of as-
sociations and dependencies between discrete data items as 
well as between common structures. Consider the example in 
Figure 4. In Cohort 2, the Ambulatory Blood Pressure is 
measured while the subject is treated by a medication called 
Losartan. Associating the act of observing the blood pressure 
and the act of administering the drug will explicitly represent 
the semantics. This relationship is crucial to physician as the 
significance of high blood pressure while under a Losartan 
regimen is different than under other circumstances. To cap-
ture the full context of the data, these kinds of associations 
should be established during the data integration process when 
the experts responsible for the data source can provide the 
implicit semantics often hidden in unstructured documentation 
or in their minds.  

As described in the background, the HL7 v3 RIM provides a 
unified ‘language’ to represent such relationships and context. 
CDA, as a RIM-derived domain specific standard, facilitates 
the explicit representation of the rich semantics of healthcare 
data. Referring back to the examples discussed above, the 
blood pressure measurements are represented as CDA obser-
vations and, when appropriate, these observations are associ-
ated with a substance administration of Losartan. 

CDA Model 

The CDA UML model was created as an implementation 
model that is primarily based on two artifacts: (1) the CDA 
Refined Message Information Model (R-MIM) from HL7 and 
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(2) the CDA XML Schema. This implementation model was 
developed to support the existing code generation and seriali-
zation mechanisms present in the Eclipse Modeling Frame-
work (EMF) [19]. The model was imported into an EMF mod-
el and ultimately transformed into a set of Java classes. The 
Java classes in conjunction with a set of additional utility 
classes make up the base runtime API that can be used to pro-
duce, consume and validate instances of CDA. 

Template Modeling &Annotation 

The template model is a domain-specific model that constrains 
the CDA model. Classes in a template model extend those in 
the CDA model. Constraints are modeled using directed asso-
ciations, property redefinitions, and OCL expressions. The 
CDA Profile for UML is used to capture additional metadata 
needed during model transformation and at runtime. Annota-
tions on template model elements including UML classes and 
properties are used to describe all core ontology variables and 
their possible parameterizations, each appearing at a unique 
location in the template model.  Annotations are used to map 
between the core ontology and the CDA template model. After 
an annotated template model has been created, it is trans-
formed into an implementation model which leads to the gen-
eration of a domain-specific API for constructing and validat-
ing instances. 

Instance Generation Engine 

The instance generation engine takes a data container that con-
tains data values corresponding to variables in the cohort on-
tology as input and produces CDA document instances that 
conform to the template model. Using the ontology mappings, 
which were specified by the clinical domain expert at design-
time, it resolves each variable in the data container to a corre-
sponding variable in the core ontology. Annotations from the 
template model are then used to map core ontology variables 
to unique paths in the output tree and store data values in the 
leaves of the tree. Values that were specified as default or 
fixed in the template model such as template identifiers and 
coded attributes are also generated automatically. Addition-
ally, we support a registry of CDA templates that enables in-
stance validation. 

Results & Discussion 

In the frame of Hypergenes, an FP7 European Commission 
funded project exploring the Essential Hypertension disease 
model, we had to deal with 18 historical cohort data sources 
with diverse clinical and environmental data. We chose HL7 
v3 RIM meta-model and data types for data representation and 
CDA as our data model.  Additionally we needed to apply a 
template to constrain CDA to a document specialized for de-
scribing an Essential Hypertension Summary document (EH-
CDA). Needless to say it was a perfect opportunity to put the-
ory to test. In this section we will describe how the technology 
was used as well as illustrate a concrete example based on 
work done for Hypergenes project. 

Essential Hypertension Ontology 

Hypergenes project assimilated clinical data from 18 cohort 
data sources. The harmonization process involved consulting 
with scientific experts in order to elucidate exact intention in 
each data element. The metadata was discussed at length in 
order to identify the list of variables, their meaning, variable 
associations, value ranges, and additional parameterization. 
The core ontology taxonomical structure was built based on 
data analysis of preliminary results and the macro-classes of 
intermediate phenotypes and environmental risk factors de-
fined for Essential Hypertension. The core ontology was used 
as a reference for mapping the variables in each of the cohorts. 

Essential Hypertension Template Model 

Once metadata was fully accounted for, we created a template 
model that constrains CDA to Essential Hypertension report.  
Figure 6 depicts an excerpt pertaining to Blood Pressure Find-
ing; the full model comprising of several hundred templates.  

 

Figure 6 – Blood Pressure Observation in template model 

The BloodPressureFinding class in the EH-CDA template 
model extends the Observation class from the CDA model. 
The template identifier was specified in a property of the 
<<cdaTemplate>> stereotype. Additionally, the code attribute 
was used to capture metadata about the specific code in 
SNOMED-CT. This gives the template precise semantics from 
a clinical perspective. The directed associations in the diagram 
(e.g. VitalSignsSection to BloodPressureReading) were con-
verted into equivalent OCL constraints during the model-to-
model transformation. 

Instance Generation for Essential Hypertension 

The model in Figure 6 was used to generate a runtime API that 
enabled the creation of the CDA XML instance of a Blood 
Pressure finding depicted in Figure 7 below. 
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Figure 7 – EH-CDA Blood Pressure finding Observation 

As the hypertension model contained hundreds of templates to 
model we used the Jena API, Eclipse UML2 API, and models 
for CDA, data types, and vocabulary from the MDHT project 
to programmatically generate the template model from a mi-
nimal complete, conforming instance [20]. The template mod-
el was decorated with annotations that map variable names 
from the core ontology to relative paths in the instance. We 
used a depth first traversal of the template model to convert 
these relative paths into a map of variable to absolute paths. 
Given an incoming record (i.e. data container), variables were 
extracted and used to look up the absolute path which was in 
turn used to construct the corresponding path of objects in the 
instance. We followed this approach for 11,472 records com-
ing from 4,000 patients deriving from 18 historical cohorts of 
Hypergenes project. Each record contained up to 1500 unique 
data elements or variables that mapped to the same number of 
paths in the output instance. 

Conclusion 

In this paper we discussed a model-driven approach for inte-
grating biomedical data using three complementary technolo-
gies. We used semantic technology in the form of an ontology 
definition language (namely OWL) to describe data elements 
of interest for a particular clinical research domain. We dis-
cussed the use of XML-based healthcare interoperability stan-
dards for clinical data and the role they play in semantic inter-
operability across multiple data sources. Finally, we discussed 
the use of UML to bridge the gap between the clinical domain 
expert and the healthcare IT domain expert and to facilitate the 
generation of a runtime that produces conforming instances. 
We validated our approach by using it to integrate clinical data 
in the EU-funded Hypergenes project. 
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