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Abstract. The current challenge for the network systems is the reduction of human 

intervention in the fundamental management functions and the development of 

mechanisms that will render the network capable to autonomously configure, 

optimize, protect and heal itself, handling in parallel the emerging complexity.  

The in-network cognitive cycle will allow the continuous improvement of 

management functions of individual network elements and collectively of a whole 

network system. This paper proposes the software components for the engineering 

of an innovative self-managed future Internet system that will support visionary 

research through experimentation. 
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1. Introduction 

Communication networks are growing both in term of size and complexity. Existing 

systems have serious deficiencies in effectively addressing the changing landscape of 

application demand and traffic patterns. In order to address the increasing complexity, 

the embodiment of autonomic capabilities in Future Internet networks and management 

systems emerge as the most appealing solution. In this paper we present the concrete 

experimental steps that we are investigating in evaluating the application of autonomic 

management principles to real network systems and equipment. Firstly, we review the 

major ingredients of self-management, and describe in particular the Monitor-Decide-

Execute (MDE) loop concept. We then outline the architecture of the distributed 

software platform we are developing that implements these principles for the 

management of Future Internet networks. Finally, we apply the approach to the 

challenging problem of autonomic wireless network management. We conclude with a 

discussion of major challenges that lie ahead. 
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2. Network Systems Self-Management Background 

The management systems of future Internet networks are expected to embed autonomic 

capabilities in order to face the increasing complexity of communication networks that 

make them difficult to manage [1], [2]. This autonomic enablement implies that 

networks are able to self-manage their operational features (i.e. self-configure, self-heal, 

self-optimize, self-protect) [3]. Their behaviour is set from high-level policies that they 

implement by dynamically adapting network parameters (e.g., routing, protocols, queue 

sizes, radio frequencies) according to the varying network conditions (e.g., changes in 

topology, resource availability, traffic demands). 

Designing an autonomic system for network management involves several 

technologies and disciplines and has received significant research effort the last decade 

([4], [5], [6], [7]). Moreover, several European research projects are working towards 

this direction e.g., ANA [8], BIONETS [9], 4WARD [10]. On the implementation side, 

attempts are made to add more flexibility in network protocol design: Keller et al. 

propose a framework for self-composing protocol stacks in multiple compartments to 

replace the existing non-flexible Internet layers [11], and Manzalini provides a platform 

for autonomic services composition [12]. Focused on the middleware part of the 

framework, another research trend consists in integrating mobile agents in the network 

to collect distributed information or perform remote computations [13]. A combination 

of both mobile and stationary agents to manage mobile ones is proposed in [14]. 

Cognition development is an important aspect of future Internet self-managed 

systems, which complements and advances the automation of configuration actions. An 

in-network cognitive cycle will allow communication systems to improve their 

inference and reasoning capabilities, by exploiting the feedback from previous events 

or from historic data that are stored locally. In the literature, there are several simple or 

more complex multidisciplinary models for cognition development e.g., [15], [16]. 

However, the majority of them have not being designed considering the restrictions or 

capabilities that communication networks have. On the other hand, the cognitive 

models that refer to communication systems do not describe in many cases the 

available options and how they could be applied in a holistic networking context. Thus, 

there is the need to present how such ideas could be engineered in a real-world 

implementation. 

3. Cognition Development 

In the Autonomic Network vision, each network device (e.g., router, gateway, access 

point), is potentially considered as an autonomic element. The latter is capable of 

monitoring its network-related state and modifying it based on conditions that 

administrators have specified. This cognitive cycle consists in constantly monitoring 

this network state, making decisions and executing reconfiguration actions (see Figure 

1). The cognitive cycle is implemented in software, and the autonomic element 

executing this function is further referred to as the cognitive network manager (CNM). 

Thanks to its inference capability, a CNM can perform rapid detection of device 

anomalies or network services disruption, diagnose the root cause, compute possible 

corrective actions to finally select and enforce the one that best fits the operator’s goals 

and objectives. The monitoring process is carried out by the CNM’s sensors, while 

effectors perform the execution of reconfigurations. 
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Figure 1. Cognitive Network Managers implement the cognitive cycle 

 

Network devices are physically distributed and the configuration of particular 

element often interplays with other nodes’ configuration. As a consequence, the 

representation of the network context that each CNM uses for making decisions cannot 

be limited to its local point of view. The adoption of a centralized approach in order to 

provide this broader picture is not considered effective, since scalability and fault 

tolerance issues incur. Thus, cooperation among neighboring autonomic elements is 

required so as to exchange information that is necessary for the decision making 

process. 

Broadcasting messages throughout the entire network is not an efficient option, 

since the autonomic management system should limit the communication to a defined 

range. Considering that knowledge about an entire network is not necessary in order to 

make fast local decisions either, information exchange is limited to compartments 

(subsets of neighbouring network elements). As a consequence, each CNM makes local 

decisions based on a situated knowledge (i.e. information gathered and exchanged 

between neighbouring entities in the defined compartment view). Figure 2 represents 

the compartment view of two CNMs, namely A and B. In this example, the 

compartment is limited to a one hop neighbourhood, but this range can dynamically be 

extended if the capturing of a broader view of the network state is necessary. However, 

there is a trade-off between extending this local view and limiting the communication 

cost for the management of the compartment: the larger the compartment, the more the 

amount of exchanged information increases. 

In the case that information broader than the knowledge confined in the 

compartment view of a CNM is required for making some decisions (e.g., regarding 

end-to-end connectivity), the Domain Cognitive Network Manager (DCNM) is used. 

The DCNM, as it is depicted in Figure 2, is a more sophisticated CNM that can deal 

with higher-level knowledge, collected by a set of subsuming CNMs in the specified 

domain that it manages. Domain CNMs having this richer knowledge possibly 

complemented with interactions with other DCNMs, can proceed with global decision 

making, thus solving problems that standard CNMs cannot address locally, adjust 

policies to fit the desired system behaviour and learn from previous experiences to 

improve the impact of future decisions (upper part of Figure 1). 
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Figure 2. One-hop compartment views 

4. Engineering the Cognitive cycle for Network Management 

4.1. Software requirements 

Implementing the architecture described in section 3, where distributed cognitive 

managers are embedded in network elements, implies meeting several software 

requirements. First of all, the network management framework needs to be fully 

distributed in order to scale up to large or constrained networks and to be fault tolerant. 

Moreover, it should provide features that are necessary to implement the cognitive 

cycle. This includes functionalities allowing a CNM to: 

• perceive the network state and act on it 

• communicate with neighbouring entities 

• make fast decisions in order to deal with applications or services that are not 

tolerant to delays. 

This last point implies that a CNM manipulates knowledge (representation of the 

network context, operator policies). The distribution of entities means that knowledge 

is distributed. As a consequence, the knowledge representation must be uniform in 

order for entities to exchange understandable information. 

Besides the requirements that are needed in order to implement the cognitive cycle, 

a key issue for the viability of the proposed in-network management solution is the 

integration in network devices. The various characteristics of such equipment imply 

specific software requirements that should also be considered. In fact, devices in 

today’s networks are widely heterogeneous and often resource-constrained. In order to 

fit these characteristics, the software solution must be easily adaptable. Modularity is 

necessary not only to plug the platform easily on any type of devices but also to load 

only required parts of it on resource-constrained devices. 

4.2. Framework description 

The framework we have implemented in the Self-NET project [17] meets the 

requirements stated above. Developed in Java, its main characteristics are full 

distribution of cognitive entities and components modularity. A java-based solution has  
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Figure 3. Software modules of the Cognitive Network Manager 

 

been selected for the experimentation, since it offers platform-independence and 

embedded distributed computing features. However, alternative programming 

environments (e.g., scripting languages) could be selected, especially in the case of 

resource-constrained devices (e.g., wireless mesh network router). 

Figure 3 depicts the different components of the platform, which main benefit 

resides in the simplicity of adding, deleting or changing one of its components (e.g., 

network element controllers need to be adapted to the type of device the CNM is 

embedded in). This modularity has been brought by developing the framework in a 

component-oriented way, on top of OSGi (Open Services Gateway initiative) [18]. 

Each component of the cognitive network manager is implemented as a module, called 

a bundle in the OSGi terminology. 

Some of these modules undertake to capture the network context or to enforce the 

decided (re-)configurations: 

• Topology service: based on a regular exchange of hello messages, constructs, 

updates and exchanges adjacency tables that reflect the physical network topology. 

• Discovery service: maintains information concerning neighbouring cognitive 
network managers (e.g., IP addresses, network interfaces used to reach them). 

• Network Element Controller: gathers network equipment status and publishes 
these different pieces of information (interfaces, routing…) in the blackboard. It 

also provides means to enforce reconfigurations in the network device. 

The Blackboard is a key component of the framework. It provides writing and 
reading facilities in a shared space, where information are semantically organized in 

different topics. This component can be seen as the short-term memory of the system, 

where recently gathered information can be published or retrieved. 
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A Cognitive Network Manager needs to communicate with neighbouring entities. 

This function is assured by the Communication Service that provides communication 

functions with high-level semantics (communication acts, content identification). 

During the execution of the cognitive cycle, some specific tasks might be 

necessary (e.g., sending information periodically or computing some specific 

information needed for possible reconfigurations). Behaviours are in charge of these 
specific tasks and can be configured to be executed only once or periodically. The 

execution of a behaviour is triggered by the Scheduler. 
Finally, the reasoning capabilities of a CNM rely on the Inference Engine module, 

which can be seen as the brain of the system. The Jess inference engine has been 

integrated in our framework for such purpose [19]. A-priori knowledge is loaded into it. 

This a-priori knowledge is composed of operator policies and an ontology [20], which 

is the appropriate tool providing a uniform way to represent the “world” and capture a 

domain technical know-how. During the execution of the cognitive cycle, collected 

information are confronted to the policies defined by administrators to autonomously 

detect anomalies and face them. The inference engine makes high-level decisions that 

may need additional information for reconfiguring the network equipment. Such 

specific additional information are computed by behaviours and published in the 

blackboard. 

Each CNM and Domain CNM, runs this set of modules. The difference between 

them is mainly the level and scope of knowledge they manipulate. In fact, Domain 

CNMs manipulate richer knowledge, resulting from CNMs inferred data or coming 

from exchanges with other DCNMs. Moreover, computations and decisions a DCNM 

makes are different from those a CNMs processes. Being at a higher level, the response 

time of their decisions can be longer whereas CNMs role is to react fast. 

5. Experimentation on Capacity Optimization of Future Internet Wireless 

Networks 

One of the key target areas where Autonomic management can bring significant 

benefits is wireless networks. In such a wireless infrastructure, network (self-) 

management is particularly challenging because of the volatile and unpredictable nature 

of the wireless medium and the mobility patterns of terminal devices. Due to the strong 

demand for efficient wireless resources utilization, wireless network planning and 

management is a sophisticated task, which requires expert knowledge, especially in a 

dense urban environment. Network nodes (e.g., access points) that have several 

configuration capabilities and observe their local operational status should coordinate 

to improve overall performance and the complex problem of efficient wireless resource 

management that arises. A centralized approach is not effective due to scalability and 

complexity issues. Thus, a more localized and distributed architecture is necessary for 

the orchestration of the various heterogeneous or homogenous access points (APs). 

5.1. Radio Resource Allocation Problem in Wireless Networks 

The CNM model is applied to the coverage and capacity optimization of future Internet 

wireless network in order to illustrate how collective interaction of CNMs can 

automate and solve a network management problem about resource allocation. In order 

to present and test the key functionalities of the CNM model, we have selected a 

specific network management problem, from the family of coverage and capacity  
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Figure 4. Sample Wireless Topology and CNMs 

 

optimization of Future Internet wireless network.  

Particularly for IEEE 802.11a/b/g, efficient radio resource allocation in a dense 

urban environment can be quite a challenge, due to the finite number of interference-

free channels available. Channel allocation in IEEE 802.11a/b/g systems may result in 

conflict where more than one adjacent (in terms of radio coverage) access points use 

the same or different channels but with a substantial nonetheless spectrum overlap, thus 

causing a substantial drop in performance. Channel assignment is a determinant factor 

of performance in WLAN installations that requires intelligence and coordination to 

achieve maximum potential. 

In the huge mass consumer market segment targeted by modern WLAN 

technologies, the typical consumer does not possess the technical expertise required to 

fully comprehend and efficiently solve resource allocation problems e.g., frequency 

planning. Moreover, existing standards for popular wireless access technologies do not 

provide the capacity to interact with peers on the basis of local and exchanged 

information for purposes of improving coverage and capacity. Therefore, the 

introduction of an autonomic mechanism (i.e. CNM) that undertakes the discovery of 

conflicting frequency plans and initiates reactive measures to adapt frequency 

assignments, collaboratively among the concerned network elements is necessary. 

5.2. Cognitive Network Managers for dynamic optimization of Frequency Channel 

In this sub-section it is presented how the CNM framework is used in order to handle 

and automate the problem that is described in section 5.1. Moreover, the role of each 

component of the CNM is outlined. 

We consider a dense wireless network environment consisting of several APs (e.g., 

IEEE 802.11), each embedding the CNM, while a Domain CNM is assigned for the 

underlying APs (Figure 4). The CNM that is placed per AP undertakes a) to make 

deductions about its operational status b) to proactively prepare solutions to face 

possible problems and c) to react fast when a problem occurs by enforcing the 

anticipated reconfiguration actions, thus seizing the need for human intervention. 

In the context of the frequency allocation problem, the knowledge that the CNMs 

need in order to reason and make decisions refers to the operational status of an AP that 

is deduced through various metrics (e.g., Signal to Interference plus Noise Ratio, 

packet error rate, number of associated mobile devices). In order for a CNM to 

understand its current operational state, the metrics that it gathers from the AP are  
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new configuration (result(s) of 

behaviour(s) specific

computation(s))

7: Enforcement of the 
new configuration on 

the network 

equipment  
Figure 5. Flow Chart for internal interaction of CNM modules 

 

mapped to the concepts that are described in the ontology, including the concept of 

“InterferenceLevel”. Moreover, the decision making process relies on a set of policies 

defined by the operator. For instance in our use case, two rules can be defined: 

• A first one in order to estimate the level of interference (the value of threshold 
can be configured): 

If ( SINR ) >= threshold Then InterferenceLevel is HIGH 

• A second one in order to actually make the decision of changing the channel 

frequency to face a detected HIGH level of interference: 

If ( InterferenceLevel is HIGH ) Then ChangeFrequency 

 

The initial step of a CNM after its initiation includes the loading of the ontology 

and the rules that are defined above into the inference engine that is responsible for 

reasoning. The interactions of the CNM modules are briefly depicted in Figure 5, and 

the role of the essential CNM components instantiated for this particular scenario are 

presented as follows: 

• Step 1: at regular intervals of time, the Network Element Controller (NEC) 

provides updates of specific metrics and performance parameters of the access 

point (e.g., Signal to Interference plus Noise Ratio (SINR), packet error rate, 

number of associated devices, operational channel) and publishes these raw data 

into the appropriate topic of the blackboard (e.g., SINR values are published in a 

topic named “Interference”). 

• Steps 2 and 3: this step is composed of multiple tasks executed in parallel, where 

different components realize the following processes, respectively: 

o Inference Engine (2.2 and 3.2 in Figure 5): retrieves information stored in 

the different topics of the blackboard to check if expected conditions are met. 

In our example, measurements gathered by the NEC and stored in the 

blackboard are retrieved and compared to the defined rules in order to 

determine whether the interference level is acceptable (LOW or MEDIUM 

levels) or not (HIGH). In the case where interference level is considered 
HIGH, the second rule (presented above) is triggered thus producing the 
order of executing the action ChangeFrequency. 
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o Behaviours (2.1 and 3.1 in Figure 5): realize specific tasks regarding to the 

problem that a CNM addresses. For instance, in the described use case, a 

behaviour uses the Communication Service to exchange information with 

neighbouring CNMs (e.g., currently used channel). All the information that 

is received from neighbours is maintained in the Discovery Service. 

Another behaviour is in charge of executing the specific task of selecting the 

most appropriate frequency channel to use. To achieve this, needed 

information is retrieved from the corresponding topics in the blackboard 

(local metrics) or from the Discovery Service (frequency channels used by 

neighbours and number of devices connected to them). The most appropriate 

frequency channel is then selected by minimizing the objective function 

( , )
b

i i j

i a

w Overlap Ch Ch

=

∗∑ , where: 

- 
i

Ch is the channel of the APs that are sensed by the AP j, 

- 
i

w is the number of users that are connected per neighbouring AP, 

- ( , )
i j

Overlap Ch Ch  provides the level of channels i and j theoretical 

interference overlap. An example of this function is provided in [21]. 

The result of this channel selection is published in a dedicated topic of the 

blackboard, named “optimalFrequencyChannel”. 

• Step 4: in the case that the Inference Engine triggers a rule that orders a 

reconfiguration action, this last is published in a dedicated topic of the 

blackboard, named “actions”. For instance, the “changeFrequency” resulting from 
the second rule, in this use case, is stored in the topic “actions” of the blackboard 

in order for the Network Element Controller to deal with the corresponding 

reconfiguration in the following steps. 

• Steps 5, 6 and 7: these steps actually involve the Network Element Controller 

in dealing with the reconfiguration order. The NEC is triggered when an action is 

ordered in the respective topic of the blackboard (entitled “action”) and should 

change the network equipment accordingly. In the specific example, the action 

includes the change of the existing channel of the AP with the most appropriate 

value, computed by the corresponding behaviour and stored in the topic 

“optimalFrequencyChannel” of the blackboard. Finally, the NEC retrieves this 

optimal frequency channel and enforces the new configuration. 

As a result, the Cognitive Network Manager locally executing the cognitive control 

loop, as it is discussed in this section, provides an efficient way to optimize frequency 

channel allocation in a dense wireless network environment. 

Furthermore, the domain CNM supports the behaviours of local CNMs as well as 

some additional behaviours that emerge due to the greater spatial situation awareness 

and configuration capabilities that is collectively provided by the underlying CNMs. In 

the specific network management case the domain CNM can include the following 

behaviours: a) check the coverage levels of the network area, b) activate an Access 

Point, c) deactivate an Access Point. Similarly, the domain CNM uses the 

communication means that its device offers in order to provide the Topology service, 

the Discovery service, and the Communications service. 

The CNM model described above could be applied to various other network 

management problems, for coverage and capacity optimization, such as load balancing, 

handover parameter optimization, QoS parameter optimization or even for fault 

management tasks e.g., cell outage detection. 
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6. Conclusions 

The automation of the existing network management systems is very limited as well as 

their ability to collectively address complex management problems. The degree of 

cognition is very small, since machine learning techniques or reasoning tools are not 

extensively used. CNM attempts to provide the software architecture for a realistic and 

implementable self-managed network system. The inherent distribution of cognitive 

agents as well as components modularity, and the adoption of an open standard (i.e. 

OSGi) assure the applicability of CNM in the Future Internet. 
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