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Abstract. Human behavior, both individually and socially, is aimed at maximizing  
some objective functions, and this is directly reflected in energy dynamics. New 
issues are emerging now, such as the unpredictability of some renewable sources 
generation and the new technologies enabling real time energy optimized use in 
smart cities. Here the role of the Future Internet in the smart grids is addressed, in 
particular enlightening how the anticipatory knowledge of the future occurrences 
of the energy consumption dynamics may be effectively promptly exchanged 
between competing actors. 
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1. Introduction 

Nowadays more than 50% of the overall population of the world lives in urban 
contexts, contexts that are involved in a “natural” evolution process towards “smart” 
cities. The growing of this percentage makes smart urban environments dense and 
complex spaces, in which the energy distribution component, known as smart power 
grid, day after day presents a growing need of a new distributed intelligence in order to 
effectively manage all the incoming issues. Furthermore, the reduction of the carbon 
footprint of the cities is a pressing issue, necessitating a sophisticated control and 
management of the energy use on both the supply and demand sides over all aspects of 
city life. Much of the current studies on smart cities focus on this aspect. Future 
Internet [1] in a smart urban environment appears to us as the most effective tool that 
can enable the infrastructure to manage, control, optimize, and improve these aspects at 
both the micro- and the macro- level. For example, the detection of some repetitive 
events happening locally in real life, might impact on more cooperating or competing 
entities, suggesting the accounting and propagation of such events because of the 
expected consequences maturing elsewhere. This work is exactly focused on how to 
model, measure, monitor, optimize and control complex interdependent event flows 
happening in power grids, representing a significant infrastructure characterizing smart 
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cities. The use of Future Internet (FI), providing the means for a multiplicity of services, 
enabling the management of many different aspects of urban life, will be proposed and 
discussed in detail. 

Human beings, especially in smart cities, rely on external sources of energy in 
order to achieve their personal and social goals. They consume every day a 
combination of different kinds of energy for above-mentioned dynamic processes, 
taking the real-time electric energy from the smart power grids. Nowadays, the energy 
in power grids is monitored using smart metering devices, but the load forecasting and 
control systems are separate fieldbus/SCADA entities, considering the under-frequency 
and shapes, but ignoring at all the human behavior influence on them because of the 
complexity [2]. Becoming smart requires a proactive awareness and semantic 
knowledge about the processes happening in real life. Modern electric energy networks 
have a distributed grid structure [3] with static nodes. Smart grids were originally 
designed following the top down approach, but they have been gradually adapted to 
accept bi-directional energy flows coming from the distributed energy generation, such 
as photovoltaic (PV hereafter) one. Since the PV production is weather-dependant, 
because of the solar activity, the season and the clouds, it is intrinsically characterized 
by production drops. In particular the cloud migration is a continuous natural process, 
which replicates the drops manifesting in one point of the topology at other nodes after 

t time elapsed. The monitoring of the PV drop due to the clouds shows a great 
industrial interest. The local negative PV production dynamics anticipate the future 
energy production drops at other locations, permitting to set up in advance some 
control actions which enable the optimization and management of the blackout 
conditions, as shown in Fig. 1. 

Figure 1 – Cooperating photovoltaic plants 

Future Internet plays a new role: it interlinks completely independent fieldbus 
systems in one system-of-system topology, enabling new business scenarios impossible 
in the near past. The broadband communication supports the automated transactions at 
static nodes in real time, publish-subscribe assures the prompt actuation, while mobile 
and wireless loops extend the mobility. However the “intermittent” entities – not 
managed by current paradigms -  go off-line frequently and stay in the gap between the 
Internet of Services (IoS hereafter) and Internet of Things (IoT hereafter). Future 
Internet can solve the extended cooperation business challenge, linking smart city 
entities in a way, permitting the optimization of the individual (profit) and collective 
(low carbon footprint) goals and generating concrete social benefits. Real time 
knowledge about causes of events becomes an IoT entity, capable to predict, rule and 
optimize the behavior of the whole network. It can be shared and made available, 
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bringing the anticipatory knowledge about the relevant events which are going to 
happen at other sites. Hereunder we exploit this potential of Future Internet by one 
concrete photovoltaic distributed generation application class, showcasing how to 
network autonomous stakeholders in optimizing multi-agent cooperative system. 

2. Anticipatory knowledge for extended cooperation 

Currently the energy production is highly distributed with a significant contribute 
from small PV and wind plants which complement the energy needs of smart cities. 
Independent business actors run the above power stations injecting the produced energy 
into the grids. Their local fieldbus systems are not necessarily integrated in TCP-IP 
networks. Individually they try to maximize profits taking autonomously the energy 
trading commercial decisions. The decision making is based on the local information 
about the energy production dynamics, without any cooperation with the competing 
neighborhood. The renewable PV and wind energy is in some extent unpredictable 
because it depends on weather conditions which limit the maximum percentage of 
available renewable energy. The weather forecast can be provided to the individuals by 
different sources, including locally installed sensors and weather stations, but 
nowadays this information is not exchanged among the different energy production 
plants, which not necessarily have awareness about each other. The negative energy 
production dynamics satisfy the cause-effect relationship while the mobility of the 
clouds is a process that evolves and propagates continuously over the space. The lack 
of the anticipatory knowledge about the forthcoming production drops is a drawback of 
the independent distributed generation. Here we propose the knowledge sharing 
between PV power plants. The knowledge in advance of  the expected production drop 
enables to set up a better load management strategy, offering an additional t time for 
the real time decision making. The transformation of the topology composed by 
autonomous PV generation entities in an inter-linked multi-agent cooperative topology 
able to process the anticipatory knowledge, eliminates the above-explained drawback 
and offers an improved energy efficiency. Let us observe a number of photovoltaic 
plants ubiquitously available in a smart city, which are interconnected – thanks to FI - 
and share the digitized energy events. The first plant that discovers negative energy 
production dynamics (“energy fall” event) now propagates this knowledge to 
neighborhood, advising about the cloud movement (Fig. 2). 

Figure 2 – An example of the use of anticipatory knowledge propagation over a FI infrastructure for 
forecasting PV production drops due to bad weather conditions in interconnected smart power grids. 
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The cooperating neighbors calculate their respective ti times and estimate the 
events which are going to happen in a near future. The elaborated forecast, based on the 
anticipatory knowledge, can be used now to perform an anticipatory control, enhancing 
the efficiency of the cooperative load management strategies and optimizing the future 
energy injection/trading flows (Fig. 3). 

In the liberalized energy markets, the price changes in real time and the users – 
energy consumers or renewable sources producers – should trade energy automatically, 
using advanced data management algorithms. This approach will give the possibility of 
choosing from different energy partners in real time, but it will require the exact 
information about the own - both current and expected - energy dynamics scheme. The 
precision and the accuracy of the estimation should be sufficient to cover time slots, 
corresponding to the expected commercial transactions, hourly or daily. This requires a 
real time data analysis plus the correlation of the available (historical) data with the real 
time conditions. In a PV distributed generation context, the wrongly estimated cloud 
variability might result in economic losses and energy imbalance, a factor to account 
before contracting any power selling. We propose a reference application class which 
comprises local weather sensors, the forecast, and (multi-agent) intelligent algorithms, 
contributing in the short-term trading decision. The knowledge of the exact position 
and displacement of the clouds is relevant to the neighbors, because it permits to 
forecast their sites’ future load conditions; thanks to the FI, this knowledge can now be 
shared, enabling the collective optimization of the expected energy resources. 
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Figure 3 – Anticipatory knowledge about photovoltaic energy production dynamics 

In addition, the above-said decisions – as a new entity - might be also shared for a-
posteriori assessment, introducing further self-learning and self-correction capabilities 
in the distributed cognitive system. The complexity of this example highly increases; 
however it exemplifies the use of the anticipatory knowledge in smart power grids. 

3. New challenges 

In a new forthcoming business scenario the local automated networks over fieldbus 
will be integrated as entities of the FI system-of-system, contributing in the creation of 
the new cognitive distributed smart power grid. In order to improve the predictability it 
is necessary to overcome the local unmanageability of the aggregated entities, 
proposing them some extended cooperation advantages. An issue is the integration of 
the billions of fieldbus subsystems (transformers LV/MV/HV separate physically PLC 
lines), and the WWW Legacy, challenging the adoption of intermediate servers and 
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ubiquitous computing. Drawbacks of this approach are that the fieldbus protocols to 
integrate are different, in any case they bring some vulnerability, and the data flows are 
intense. The main research question now is how FI will help to ensure the real time 
proactive manageability of smart cities. Among the additional research questions we 
see: 1) how to calculate the expected timing/duration of the phenomena manifesting at 
a given node; 2) how to estimate precisely the entity of the expected transaction; 3) 
how to optimize the future flows and so on. The support comes from the semantic 
awareness about the dynamics of  complex evolving systems. 

We anticipate a possible architecture and define some tools for enabling an open 
electricity market managed in real time through IoT and IoS components, bridging 
between fieldbus components and IP network and allowing new roles for stakeholders. 
In our vision smart metering devices perform the real time energy digitization and the 
relevant events filtering, broadcasting them for the further elaboration done by 
intelligent servers with cognitive capabilities. The energy consumption dynamics are 
correlated with the formalized knowledge in Ontology about the firm relationships 
impacting on the energy dynamics. For example the Fuzzy rule “IF cloud THEN 
photovoltaic drop” permits to trigger the anticipatory knowledge and proactive reaction 
in a distributed context. The collective decision making in an inter-linked smart grid 
becomes a self-managed entity, offering a higher efficiency and safety. The capability 
to support real time transactions with digitized energy between prosumers on the open 
liberalized energy markets appears pre-competitive today, but it changes the way of 
operating power grids, because B2B automated operations by service delivery platform 
become new e-services and replace Legacy. 

The FI will bring the openness to different business models already existing on the 
market and will support in particular new models, ensuring new roles for digital energy 
brokers, such as energy advisors, user needs consultants and other advanced functions. 
Service platform, being enriched by knowledge technologies, contribute in semantic 
understanding of the events; this enables self-configurability and adaptation to the 
changing requirements of the evolving markets, nowadays still in their definition phase. 
Moreover, the FI services create borderless B2B marketplace of the global energy 
services, enabling to operate from different geo-political realities, eliminating the 
national diversities and making other technical aspects transparent for the final users. 

4. Future Internet for smartness 

Modern smart cities, and smart power grids as integral part of them, can be seen as 
a common distributed information space, where people interoperate using the artifacts 
with communication capabilities. This topology from the ICT viewpoint has a structure 
shown on Fig. 4, where arrows show the information and knowledge exchange. 
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Since smart city with an embedded power grid is a distributed environment, it can 
be assumed as a system-of-system topology in which a continuous information and 
knowledge flows exist.  

The main backbones of this topology are served by TCP-IP connectivity, where the 
power line supports the data communication over the local topologies such as 
households and industries, by linking the fieldbus of the devices belonging to the same 
voltage segments. This solution requires an additional technical solution to overcome 
the limitation imposed by the physical peculiarity of the voltage transformers, by 
physically separating High Voltage (HV), Medium Voltage (MV), and the Low 
Voltage (LV) segments that should be considered as linked layers, integrated in the 
global Web. The collection of the automated metering devices [4] belonging to a given 
power grid becomes the set of the static nodes – IoT entities – and it defines the 
topology of the distributed environment. 

Take into account that the Web of communicating electric devices it is not only an 
abstract distributed environment, but it is an important candidate for e-business in a 
liberalized electricity market, that it is made possible by information about the real 
asset (energy), such as digital information representing the real energy in the virtual 
Internet of Things world [5]. Since the storage-less smart power grids have static nodes, 
a suitable commercial policy aims to make the energy trend of the nodes as much 
predictable as possible. In this sense, the cooperation between multi-agent PV systems 
and electric vehicle will play a crucial role electric in future smart cities, since electric 
vehicles can be used as local storage units [6] for PV energy production. For those 
reasons, a predictable oncoming scenario is expected to rely on dynamic FI nodes, 
which aspects are discussed in [7]. 

The experience about the management of users energy demand will trigger the 
decision-making tools that operate in smart power grids, and it will also make available 
the possibility to realize the best clustering of the virtual communities [8].  

5. Distributed and cooperating photovoltaic grid 

Energy management by means of FI requires high computational capability in order to 
realize a real-time optimization of energy production, distribution, storage and 
consumption in smart cities, villages and also rural areas [9, 10]. In fact, it is possible 
to conceive an energy hub as a micro-grid where electrical loads and small generation 
systems (such as renewable energies in the range of 25-100kW) are integrated into a 
Low Voltage (LV) distribution network with micro-storing systems (composed e.g.. by 
the integration of electric vehicle into the grid infrastructure). By this point of view, an 
energy hub appears as a micro-marketplace since it should be composed by generation 
units, storing devices and a small number of consumers and it can operate 
interconnected to the main distribution grid or in autonomous way in case of external 
fault. By integrating FI into the architecture of energy hubs, it is possible to have 
instant access to load forecasting, demand side management, economic scheduling of 
micro-generators and to trade energy and information with local providers [11].  

FI network is a framework where energy is produced, distributed, stored and used 
by systems that are deeply connected each other. New high-voltage and low-losses 
underground lines can be designed with 'smart' feature nodes that will provide 
consumers with sophisticated information and easy-to-use tools in order to increase the 
efficiency of the network with a sensible reduction of costs. In such a smart system, 
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customers will be equipped with smart measuring instruments that report their real-
time power consumption to the authority that will be able to optimize the energy 
production in order to reduce the number and the size of energy demand peaks. The 
distributed information management techniques contribute in the above domain since 
the nodes of the power grid are ubiquitously distributed and integrated by FI. Further 
details on this topic can be found in [12]. 

Load forecasting has always been crucial for the effectiveness of the electrical 
system. Power load forecasting is a area of interest for many companies that rely upon 
traditional prediction methods [13]. However, since the relationship between power 
demand and load parameters is nonlinear, it is difficult to model the behavior of the net 
by using traditional prediction methods.  

Since the complexity of this scenario requires the capability to predict the 
dynamics of the system and to offer an optimal management it has been proposed the 
application of an Artificial Neural Network (ANN) integrated to an optimization 
algorithm in order to create a predictive model of the physical system and to provide an 
efficient control of resources and information [8]. To implement this approach, 
evolutionary optimization procedures adaptively and dynamically analyzing consumer 
profiles have been defined. Through FI smart cities provide a complex amount of data 
with a relevant number of profiles, which can be effectively managed in real-time by 
evolutionary neuro-fuzzy tools. 

In recent years, renewable energy sources have increased the complexity of this 
scenario: solar power is getting more and more important as an alternative and 
renewable energy source, especially for small autonomous electrical power systems, 
villages and also rural areas. PV plants can also be connected to the traditional grid for 
energy distribution, but variations in solar power can cause, in general, voltage and 
frequency fluctuations.  

Advanced forecasting through evolutionary computation techniques provide 
utilities with reliable production predictions and the opportunity to plan for additional 
power supply and to make proactive actions. This aspect can have an impact on the 
economic balance of the systems especially in an integrated smart grid solution 
perspective. These tools provide the ability to use stored energy or electric vehicle load 
to firms and renewable productions, increasing their intrinsic value. On the other hand, 
in this way the system-plant management is capable to plan appropriate preventive 
maintenance strategies in order to minimize energy losses due to unproductive 
suspensions. It can be estimated savings up to 0.5 M$/MW per year adopting these 
predictive algorithms in the renewable energy sector and at least the 10% of these are 
due to an optimized operating efficiency [14, 15]. 

It is possible to increase the solar power penetration if suitable measures are taken 
concerning solar radiation forecasting. This procedure may also affect the energy 
efficiency of the conventional power stations, since it affects the operating point of 
power units. Solar power forecast is therefore important for the efficiency of load 
management in the system and it can rely on the use of ANNs, as  suggested in 
literature [16]. 

Artificial Neural Networks (ANNs) are particularly appealing because of their 
ability to model an unspecified nonlinear relationship between load and weather 
variables. In fact, the complex nature of many engineering problems may involve Soft 
Computing techniques in order to solve optimization tasks. In particular an ANN is an 
adaptive system that changes its structure based on external or internal information that 
flows through the network during the learning phase. Among many ANN 

7



implementations, the multilayered perceptron (MLP) is a well-known universal 
approximate and has been extensively used in engineering. It consists of an input layer, 
one or more hidden layer, and an output layer. In a MLP, the function f(x) is defined as 
a recursive composition of other functions gi(x), thus leading to the network structure 
depicted in Fig. 5, where the dependencies between variables are represented by the 
connections among neurons. The input composition in each neuron is made by a 
nonlinear weighted sum,  

xgwkxf
i

ii  (1) 

where k(x) is a nonlinear activation function which models the activity of biological 
neurons in the brain. This function is modeled in several ways; the most common is the 
hyperbolic tangent, which ranges from -1 to 1: 

 k(x) = tanh(x) (2) 

Figure 5 – Simplified view of the implemented feed-forward ANN with details on input, output, and 
hidden layers. 

One of the most critical phase in managing an ANN is the training one, when the 
best weights of the neural connections have to be defined. There are three major 
learning paradigms, each corresponding to a particular abstract learning task: 
supervised learning, unsupervised learning and reinforcement learning. 

Supervised learning is commonly used for tasks like pattern recognition, 
classification, regression and approximation. The supervised learning paradigm can be 
also applied to speech recognition. Its implementation includes a function that provides 
continuous feedback on the quality of solutions obtained thus far. 

In supervised learning, we are given a number N of set of example pairs (xi, yi),
where xi  X, yi  Y, and the aim is to find a function   f : X  Y that matches the 
examples. In other words, ANN wish to infer the mapping implied by the data; the cost 
function is related to the mismatch between the proposed mapping and the data and for 
this reason it must contains prior knowledge about the problem domain. The 
parameters of the network have to be optimized in order to reach a good and accurate 
output. Therefore the learning process should result in finding the weights 
configuration associated to the minimum output error, namely the optimized weights 
configuration. A commonly used cost is the mean-squared error which tries to 
minimize the average squared error between the network's output, f(x), and the target 
value y over all the example pairs.  
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The MLP can be trained by several strategies, such as gradient descent based 
strategies, like the Error Back-Propagation algorithm (EBP) or evolutionary methods, 
like GA or PSO [17]. For network training, a data set of geometrical configurations of 
the patch is generated and the corresponding phase delays are estimated. 

Trained ANN is tested on a Validation Set (VS) in order to validate its ability to 
properly reconstruct the correct data model. When the training is performed, the rms
errors of both the training and validation processes decrease with increasing iterations. 

As shown in fig. 5, weather prediction is a key input when the ANN is used for 
forecasting. But, in case of rapid changes in solar radiation or temperature at the 
analyzed day, the produced power changes greatly with respect to the forecast value. In 
traditional prediction methods the ANN uses a pattern of comparable data to learn the 
trend of the days with very like weather. However, learning all similar days' data is 
quite complex, and it does not help if weather conditions change suddenly. Therefore, 
it is necessary to integrate the neural network structure with real time information 
coming from local meteorological stations and, in particular, from surrounding regions 
and cities, where the weather change has already occurred. FI infrastructures among 
smart cities could provide the integration of all these data by real-time connecting all 
the sources of useful information for the load and energy production forecasting. 

The results reported in fig. 6 show a more accurate forecasting obtained by using 
traditional weather forecasts. The integration of real-time information helps to estimate 
and correct the uncertainty in the weather forecast. 
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Figure 6 – Real time information integrating PV plants in smart cities 

6. Conclusions 

Future Internet deeply changes smart cities enabling new distributed business 
transactions on e-markets: it transforms former competitors in entities cooperating in 
the optimization of the collective social functions. The role of the anticipatory 
knowledge and its business contribute by considering a network of distributed 
photovoltaic generators that make possible an inter-operable system in smart power 
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grid have been addressed. A Use Case on how one Internet of Things digital entity can 
enable an extended collaboration and knowledge management in smart grids has been 
presented. The Use Case about photovoltaic plants has been selected as representative 
of the concrete business potential, justifying the research effort required. In particular 
the authors suggest some models of the solar radiation based on artificial intelligence, 
such as ANNs, in order to improve the efficiency of short-range forecasting. Moreover, 
this predictive model has been enhanced by the integration with the real-time 
information coming from the surroundings, in the framework of the future IoT. Better 
predictability and observability improve the ratio between renewable and non-
renewable energy. Future work will be related to the development of new algorithms to 
support FI dynamic entities and experimentations. 
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