
Creating a Reference Architecture for 
Service-Based Systems

A Pattern-Based Approach 
Vanessa Strickera, Kim Lauenrotha, Piero Corteb, Frédéric Gittlerc,

Stefano De Panfilisb, and Klaus Pohla

aUniversity of Duisburg-Essen, Germany
bEngineering Ingegneria Informatica S.p.A., Italy

cHP Hewlett Packard European Laboratories – Bristol, UK

Abstract. The variety of technologies and standards in the domain of service-
based systems makes it complex to build architectures which fit specific project
contexts. A reference architecture accompanied by guidelines for deriving context-
specific architectures for service-based systems can ease this problem. The 
NEXOF-RA project is defining a reference architecture for service-based systems
that serves as a construction kit to derive architectures for a particular project 
context. Experience in developing the reference architecture over the last two 
years has shown that the service-oriented context results in different and 
sometimes contradicting demands for the reference architecture. Therefore, the 
development of a single and integrated reference architecture is not feasible. 
Instead, for constructing the reference architecture, the project has chosen a
pattern-based approach that allows the consideration of different types and 
demands of service-based systems. Thus it can deal with contradicting demands of 
different types of service-based systems and is extensible to include new future 
trends of service-based systems. This paper will present the structure of the 
pattern-based reference architecture and explain how it addresses the needs of a 
reference architecture for service-based systems.

Keywords. Service-Based Systems, Service-Oriented Architecture, Reference 
Architecture, Pattern-Based Reference Architecture.

1. Introduction 

Shaping the Future Internet around the new service-oriented paradigm has become an 
important task in research and industry, especially, considering the importance of this 
infrastructure as information, service, and networking means to the overall society 
world-wide. Taking the open world assumption of the Internet into account, the path 
towards the Future Internet reveals an omnipresent trend towards the integration and 
federation of heterogeneous service-based systems (SBS) from various domains.
Different trends like software as a service, cloud computing, Internet of Services, 
Internet of Things, and web 2.0/3.0 result in the need for different types of architectures 
to support these different SBSs. Thus, the Future Internet needs to be architected in a 
way that allows the integration and federation of these SBSs.

Considering the large number of technologies and standards that emerged to 
address different aspects of architectures for SBSs, defining a specific architecture that 

-

Towards the Future Internet
G. Tselentis et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-539-6-149

149



meets designated requirements is not an easy task. A reference architecture for SBSs as 
it is created within the NEXOF-RA 1 project under the umbrella of the European 
Technology Platform NESSI 2

The need to capture and address the different (sometimes contradicting) 
requirements of different types of SBSs and their characteristics has resulted in the 
adoption of a pattern-based approach within the NEXOF-RA project. The pattern-based 
approach has been implemented to allow the derivation of specific architectures for 
specific contexts in different domains following the generally known idea of 
architectural or design patterns (cf. 

(Networked European Software & Services Initiative) 
will allow providing guidance in this process. NEXOF, the NESSI Open Service 
Framework, is “[…] an integrated, consistent and coherent set of technologies and 
associated methods and tools […]”. 

[3], [4]). In this sense, the approach fosters the 
creation of a reference architecture as a system of patterns as described by Buschmann 
et al. (cf. [5], [6]) that can be composed to a specific architecture according to specific 
requirements. Accordingly, each different type of SBS is described by a system of 
patterns. In comparison to other existing reference architectures such as the OASIS 
reference architecture, this pattern-based reference architecture allows the integration 
and federation of different types of SBSs as well as the possibility to cope with new 
emerging trends in the future.

In its ambition to provide a reference architecture that allows the easy derivation 
and creation of specific architectures, the pattern-based reference architecture can be 
seen as a construction kit that provides a system architect with necessary instruments.
This ambition raises different expectations going beyond the scope of traditional, well-
known architectures. This paper presents the structure of the reference architecture that 
has been defined around the pattern-based approach considering all these goals. 

In order to develop a reference architecture that addresses the creation of SBSs the 
first step is to choose a structure for this reference architecture. This means to 
understand the goals the reference architecture needs to satisfy and to identify the 
elements that constitute the reference architecture. Related work that addresses these 
questions for traditional reference architectures in software engineering is discussed in 
Section 2. Section 3 discusses the implications for the pattern-based reference 
architecture based on the related work and explains why its goals go beyond traditional 
reference architectures known in the software engineering community. In Section 4 the 
resulting structure of the pattern-based reference architecture, its individual elements 
and their relationships is explained. Furthermore, the relevance of the different 
elements for deriving specific architectures is explained. In Section 5 finally, the 
presented results are discussed critically and an outlook on future work is given.

2. Structures of Traditional Reference Architectures

Reference architectures and the definition of their content have a long tradition in 
software engineering as well as information science research. They play an important 
role because of several reasons. Different authors classify them in a slightly different 
way but one main reason for their usage that all definitions have in common, is the 
notion of reuse to ease the creation of new systems by building upon proven knowledge 

1 www.nexof-ra.eu
2 www.nessi-europe.com

V. Stricker et al. / Creating a Reference Architecture for Service-Based Systems150



and experience. By proposing a framework for a systematic reuse of knowledge and 
software they can for example shorten development time while increasing the quality.
“As shown for the reuse of software artifacts in software engineering, it is assumed that 
this reuse is especially efficient if it is not performed ad hoc but systematic, planned, 
and supported by sound methods.” [11]

Reference architectures can be refined and adapted to derive different specific 
architectures [7]. Bass et al. [10] also consider reference models to be an important 
artifact accompanying reference architecture construction and usage: “A reference 
model is described as a division of functionality together with data flow between the 
pieces. […] Arising from experience, reference models are a characteristic of mature 
domains. [...] Whereas a reference model divides the functionality, a reference 
architecture is the mapping of that functionality onto a system decomposition.” 

In the following two different classifications of reference architectures and their 
characteristics are presented which served as a basis for deriving the goals, and the 
structure of the pattern-based reference architecture.

2.1. Beneken

Beneken [8] defines a reference architecture as an abstract software architecture 
that defines structures and types of software elements as well as their possible 
interactions and responsibilities applicable for all systems in this domain. Beneken 
distinguishes between three different types of reference architectures.

Functional reference architectures separate the functional range of systems into 
logical functional concerns. The collaboration and the data flow between those 
concerns as well as their responsibilities and hierarchical dependencies are 
specified.
Logical reference architectures define structures using layers and components as 
well as their hierarchy and communication dependencies. Defining the structure in 
an implementation manner without making implementation decisions or using 
specific technologies is the primary focus of this type. 
Technical reference architectures define components as a unit of implementation 
and deployment and determine a specific technology to realize them. Several 
technical reference architectures can adhere to one logical reference architecture. 
Components that are defined in the technical reference architecture refine 
components of the logical reference architecture.
These different types of reference architectures are designed to achieve different 

goals. While a functional reference architecture will be relevant in the early phases of 
the software development, a technical reference architecture will most likely be used
when the detailed architecture needs to be specified and implemented. Beneken also 
distinguishes the following different elements and related views that should be 
documented by the reference architectures:

Architectural overviews only provide an informal description of the coarse-grained 
structure of the software systems in a specific domain.
Textures describe the structures, principles, and design concepts that are frequently 
used in software systems of a specific domain. Structures of components can be 
described in terms of their responsibilities, communication dependencies, and 
potential interfaces. Principles that address crosscutting aspects can be described,
by defining design and implementation rules as well as policies. 

V. Stricker et al. / Creating a Reference Architecture for Service-Based Systems 151



Reference interface specifications describing external visible behaviour allow 
components to become independent of any implementation and thus exchangeable.
Infrastructures described by a reference architecture constraint the communication 
dependencies between components as well as the behaviour of the system during 
runtime. This view defines which basic services are provided by the used resources.
While functional reference architectures most likely only provide an architectural

overview and name some of the interfaces, the logical and technical reference 
architectures provide views for the overview, the textures, the interfaces as well as the 
infrastructure focusing on different aspects. The infrastructure, for example, would
only be described in its fundamental elements in a logical reference architecture while 
it would be fully and precisely described in a technical reference architecture.

2.2. Vogel et al.

Vogel et al. [9] also define reference architectures as a means to combine general 
architectural knowledge and experiences with specific requirements to derive an 
architectural solution in a certain context: “They [reference architectures] define 
structures of systems, essential building blocks, their responsibilities, and their 
collaboration.” Reference architectures can be used by a system architect to derive a 
specific architecture specification. They differentiate between different types of 
reference architectures focusing on their usage context:

platform-specific reference architectures should be adopted without any adaptation 
industry specific reference architectures focus on the needs of companies in a
specific area
industry crosscutting reference architectures cover more than one industry 
product line architectures describe architectures for similar software products
The description of the reference architectures should be based on well known and 

proven principles, types, and patterns. For each reference architecture a reference 
model should be defined that captures the functionalities and the information flow 
between functional blocks of a problem space addressed by a certain reference 
architecture. The reference architecture specifies how functional building blocks are 
distributed on system building blocks as well as their responsibilities and collaborations. 
In order to enable the usage of the reference architecture, sufficient documentation and 
guidelines towards a stepwise adaptation should be provided. These documentations 
should provide a mapping between the reference model and the reference architecture 
and describe which architectural means, decisions, and impacts have been considered.

3. Towards the Pattern-Based Reference Architecture

The basic research on reference architectures presented in the last section was used 
within the NEXOF-RA project to identify the implications for the pattern-based 
reference architecture for SBSs.

3.1. Implications for the Reference Architecture

On the one hand, the reference architecture for SBSs should provide a framework that 
allows the integration of research results, allowing the identification of gaps in the 

V. Stricker et al. / Creating a Reference Architecture for Service-Based Systems152



current solution landscape. To construct such a reference architecture, existing 
solutions, standards and technologies should be used and combined in a way that 
reasonable system architectures can be derived. This is a crucial aspect of the reference 
architecture since there are already hundreds of standards and partial solutions out there 
and there is no need to invent from scratch. 

On the other hand, the reference architecture aims at being a construction kit from 
which specific architectures can be derived allowing SBSs to be integrated, federated,
and also to be implemented. The ambition of the pattern-based reference architecture is 
that all steps that need to be performed from the requirements to the real 
implementation of a SBS can be supported by providing all these architecture views. 
The pattern-based reference architecture furthermore tries to address several domains 
and not only one as it is generally assumed for reference architectures. Although, all of 
the addressed architectures are defined for SBSs, these systems can be very different in 
their goals, scope, and needs. 

Considering these ambitions the reference architecture developed in the NEXOF-
RA context cannot be classified as one of the above mentioned types (cf. Beneken [8])
of reference architectures without any overlaps. It needs to specify different views
providing functional aspects, a logical decomposition but also technical information.
The elements addressed by Beneken in the architectural overview, the textures, the 
interfaces, and the infrastructure views should all be provided in the pattern-based
reference architecture.

In order to cope with these needs a well defined structure has been developed for
the reference architecture. The pattern-based reference architecture is aimed to be 
domain independent and will be accompanied with a sound methodology and tools to 
be properly instantiated into a broad range of application domains by a number of end-
user communities (including Large, Medium, and Small Enterprises) on different 
technologies. This reference architecture will mainly consist of a set of integrated 
specifications recommending different solutions.

The central part of the reference architecture depicts a system of patterns as 
described by Buschmann et al. (cf. [5], [6]) that allows the integration of different 
families of systems addressing different types of SBSs, e.g. a family for Enterprise 
SOA or the Internet of Services. However, the specification of this pattern system is 
not sufficient to provide a valuable reference architecture from which specific
architectures can be derived. It is accompanied with several other elements that foster
the instantiation.

3.2. The Pattern-Based Approach

One of the fundamental principles of software engineering that is largely used when 
designing a software system is known as the “separation of concerns”. In short, this 
principle states that a larger problem is more effectively solved when decomposed into 
a set of smaller problems or concerns. This gives software engineers the option of 
partitioning solution logic into capabilities, each designed to solve an individual 
concern. Related capabilities can be grouped into units of solution logic. The main 
benefit of solving problems this way is that a number of the solution logic units can be 
designed to solve immediate concerns while still remaining agnostic to the greater 
problem. This provides the constant opportunity to reuse the capabilities within those 
units to solve other problems as well.

V. Stricker et al. / Creating a Reference Architecture for Service-Based Systems 153



The NEXOF-RA approach is based on the principle of separation of concerns. The 
objective of the pattern-based reference architecture is to address the problem of 
specifying service-based software system architectures by partitioning the overall 
solution into several pieces of the design solution: patterns. In particular, the need for a 
development methodology to develop large-scale complex systems and, at the same 
time, learn from the experiences of other system designers in solving recurring design 
problems has been recognized. “A pattern can be thought of as a set of constraints on 
an architecture – on the element types and their patterns of interactions – and these
constraints define a set or family of architectures that satisfy them.” [10]

In 1994 the Gang of Four already recognized the need to make a design evolvable 
and proposed the usage of patterns to ensure this: “The key to maximize reuse lies in 
anticipating new requirements and changes to existing requirements in designing your 
systems so that they can evolve accordingly. To design the system so that it’s robust to 
such changes, you must consider how the system might need to change over its 
lifetime. […] Design patterns help you […] by ensuring that a system can change in 
specific ways. Each design pattern lets some aspect of system structure vary 
independently of other aspects, thereby making a system more robust to a particular 
kind of change.” [4]

Usually, the documentation of design patterns, as it stands, describes details about
the problem space that needs to be addressed as well as an according specific 
design/architectural solution for a sub-system, i.e. its structure, component behaviors, 
component interaction, and global properties. Furthermore, the solution provided by a 
pattern is given in terms of architectural choices and statements that claim how these 
architectural choices affect the quality attributes of a system that is compliant to such a 
pattern. Bass et al. [10] have stated that “One of the most useful aspects of patterns is 
that they exhibit known quality attributes. This is why the architect chooses a particular 
pattern and not one at random.” Effects on a set of predefined quality attributes are 
clearly stated within the pattern descriptions in order to foster the derivation of
adequate architecture instances.

The approach is also focused on how to compose these patterns together to develop 
complete systems. A complete system cannot nor will ever be built from a single 
pattern. It is the integration and composition of patterns that makes a whole system. 
Therefore, a structural approach to use patterns as first class design elements is adopted,
i.e. they can be used in the design of a system as any other design element: class, 
module and component. This kind of patterns is called constructional patterns.

A constructional pattern is an architectural/design pattern with additional 
constraints that allow their composition and integration. A constructional pattern is a 
first-class design element that encapsulates a solution to a frequently recurring design 
problem, it hides lower level design decisions, and it offers interfaces to other design 
artifacts. In this sense, a constructional design pattern becomes a design component 
with interfaces. Specifying a pattern as a design element leverages the interest in a 
pattern to a higher design level that hides later design details and preserves consistency 
with lower levels. The structural approach includes three types of patterns pre-defining 
a hierarchy among different patterns.
1. Top-level patterns describe the characteristics of service framework families. 

Currently three different types of families are under construction to be integrated 
into the pattern-based reference architecture in the NEXOF-RA context: the 
Enterprise SOA (ESOA) top-level pattern, the Internet of Services top-level pattern 
and the Cloud Computing top-level pattern. Other system families addressing for 

V. Stricker et al. / Creating a Reference Architecture for Service-Based Systems154



example the Internet of Things can easily be integrated into the reference 
architecture as a new system of patterns.

2. The top-level patterns are refined by abstract design patterns which refer to 
abstract components and patterns. They can be defined and refined on several 
levels of abstraction until at least one specific component becomes part of the 
solution. 

3. Patterns referring to specific implementation components are called 
implementation design patterns. The ESOA system of patterns currently includes 
42 patterns beside the ESOA pattern itself which are all on an abstract level. 
Implementation design patterns will be developed in the next step.
The approach aims at producing a pattern map to show relationships between all 

the produced patterns. In order to allow the patterns to be interrelated, the following 
five types of relationships between patterns are identified in the pattern-based 
approach:

extends: when a pattern completely refines another pattern;
isPartOf : when a pattern refines a part of another pattern;
complementsWith: when a pattern is strongly recommended to be used with
another pattern;
competesWith: when two patterns provide two mutually exclusive solutions;
isApplicableTo: when a pattern can be applicable to a part of the design solution 
provided by another pattern.

Federated Registry in 
E-SOA

Enterprise SOA

Designer and 
Runtime Tools for E-

SOA

Front End in E-SOA
Monitoring in E-SOA

Security in E-SOA

Virtualization of 
Computational 

Resources in E-SOA

Distributed ESB in E-
SOA

isPartOf(Designer Tool, Runtime, 
Management Tool)

isPartOf
(GUIDesigner,
GUIRuntime)

isPartOf(Security Tool)

isPartOf (Monitoring Tool)

isPartOf(ESB)

isPartOf(Registry)

isPartOf
(ComputationalResouce

ManagementTool)

Multi-tier 
Transactional 

Service- Runtime

isPartOf
(ServiceRuntime)

isApplicableTo

isApplicableTo

isApplicableTo
isApplicableTo

Horizontal 
Replication

Vertical Replication

Figure 1. Excerpt of the ESOA system of patterns

Figure 1 shows an excerpt of the ESOA system of patterns3

3 The complete system of patterns can be found on http://www.nexof-
ra.eu/?q=node/526

containing the ESOA 
pattern itself and two levels of abstract design patterns that refine the abstract 
components described by the solution proposed in the ESOA top-level pattern. The 
Distributed ESB in E-SOA pattern for example has the dependency isPartOf towards 
the Enterprise SOA top-level pattern. The relationship type is annotated with a list of 
strings in brackets which refer to the components of the higher-level pattern that are
affected by the refining pattern. In this case the need to include an Enterprise Service

V. Stricker et al. / Creating a Reference Architecture for Service-Based Systems 155



Bus (ESB) in an Enterprise SOA is addressed by a component ESB in the ESOA 
pattern for which a more concrete solution with certain architectural choices is 
specified in the refining pattern. Due to the competesWith relationship the system of 
patterns could also contain an alternative refinement of the ESB component that takes
different, conflicting architectural choices which might apply in a different problem 
space. The two patterns Horizontal Replication and Vertical Replication are connected 
to the Federated Registry in E-SOA and the Multi-tier Transactional Service-Runtime
patterns with an isApplicableTo relationship. The two replication patterns deal with the 
crosscutting issues of high availability and scalability by replicating certain 
components of the derived system. Thus, they can be applied in different solution 
contexts and not just for one problem space. An important part of these patterns is the 
assumption description, that specifies the join points in terms of components, 
relationships or certain characteristics of the architectural solution at which the 
replication can be applied. The result of the ongoing work will be a pattern map for 
ESOA that shows relationships between all the produced patterns and thus allows the 
derivation of a comprehensive, architectural solution.

4. The Pattern-Based Reference Architecture

In order to meet the implications discussed in Section 3.1 specifying solely a map of 
patterns is not sufficient for the creation of a reusable reference architecture for SBSs.
Instead, a structure that is composed of several elements has been defined for the 
pattern-based reference architecture that provides a sound method for systematic reuse 
of architectural knowledge in order to derive new architectures for SBSs in certain 
context settings. This structure is described in the following section in order to explain 
how it is used to construct the pattern-based reference architecture as well as to 
describe how it supports the derivation of specific architectures.

4.1. The Structure of the Reference Architecture

The pattern-based reference architecture is composed of several parts, capturing the 
information necessary to design service-oriented systems (see Figure 2). The main 
constituents of the pattern-based reference architecture are the following three 
elements:

The guidelines and principles: This captures on the one hand the principle 
underlying the construction of the framework as well as the set of reference properties 
associated with each of the components and patterns in the reference architecture. 
Capturing this knowledge explicitly allows the pattern-based reference architecture to 
be an evolvable, dynamic reference architecture that can be continuously created by an 
open community in order to cope with new upcoming trends in the Future Internet.

On the other hands this part captures the guidelines used to instantiate a specific 
system architecture according to its requirements. Since the reference architecture will 
provide a huge set of architectural solutions and information it is crucial to have sound 
methodology that supports system architects during the derivation of actual 
architectures for a specific context. This can for example be a decision tree for a certain 
part of a system of patterns that helps the architect to evaluate which patterns are the 
appropriate ones for a certain context considering the different tradeoffs of the quality 
attributes that are associated with them.

V. Stricker et al. / Creating a Reference Architecture for Service-Based Systems156



The reference architecture model: This is the conceptual model describing the 
essential entities that constitute SBSs as well as the relationships between these entities 
and the key elements in the context. While the systems of patterns only specify the 
internal characteristics of the architecture for a service-based system the model also 
considers the applications and services that can be deployed on top of a platform 
realizing a derived architecture. Thus, the model tries to capture the whole SBS.
Differentiating between the platform and the whole system is crucial in order to 
understand how the platform realizing a derived architecture is used by its surrounding.
Using this knowledge, appropriate architectural solutions can be provided by the 
reference architecture. The model provides several different views focusing on 
different aspects of SBSs. These views follow the well-know approach of separating 
structure, behavior and functionality (cf. [12]). Following the classification of reference 
architectures by Beneken [8] the functional decomposition thus can be seen as what is 
named a functional reference architecture. Furthermore, part of it can be seen as an 
architecture overview of a logical reference architecture.

In addition to the different model views, this section of the reference architecture
contains also a glossary, which defines the terms used across the whole pattern-based 
reference architecture. Thus, the reference model is part of the reference architecture 
and does not accompany it as an external document as proposed by Vogel et al. [9] or 
Bass et al. [10].

Reference Specification

Reference Architecture

Standards Catalog

Pattern Ensemble

Top-level Patterns
(system families)

XXX SOA

P P P P

YYY SOA

P P P P

Pattern 1
P P C

Pattern 2
C P P

Pattern 3
C C C

Pattern 4
C C P

Pattern 6
c c c

Pattern 7
c c c

Abstract
Design Patterns

Implementation
Design Patterns

Pattern 5
c P C

S

Component Catalog
(aka. Building Blocks)

S

S

S

Guidelines
and Principles

Reference Model

Abstract
(class of 
products)

Concrete
(refers to
products)

C
S

C
S

c
SS

c
S

c
S

S S

S S

S S

About:
• construction principles
• reference properties
• instantiation guidelines

S

About:
• actors
• functionality
• information

Conceptual
Model

Glossary

Figure 2. Structure of the pattern-based reference architecture

The reference architecture specification: This contains three collections: The 
standards catalogue describes the standards referred to in the reference architecture. 
Each standard is linked to the relevant elements of the guidelines and principles as well 
as to the concepts it addresses.

The level of granularity considered in the reference architecture is that of 
components, which roughly correspond to coherent sets of functionality delivered as 
software products or software components, which can be configured separately. The 
component catalogue groups both, abstract descriptions of components (e.g. an UDDI 

V. Stricker et al. / Creating a Reference Architecture for Service-Based Systems 157



registry) as well as product or software-based components (e.g. the jUDDI library). 
Each description refers to the standards it implements, the concepts it addresses as well 
as its behavioral characteristics.

The System of Pattern, as described above, represents the actionable part of the 
reference architecture. The specified patterns define various ways of realizing some 
functionality by associating components and other patterns in a defined manner. The 
architecture specification includes the three presented types of patterns: top-level 
patterns, abstract design patterns, and implementation design patterns Relationships 
between patterns are explicitly described. Each pattern description also refers to the 
standards it implements, the concepts it addresses, as well as its behavioral 
characteristics.

To better support the production of a set of inter related patterns, a top-down 
production process has been adopted for the pattern-based reference architecture.
Starting from the production of top-level patterns, i.e. the most general and abstract 
patterns, other patterns are produced with respect to other already committed patterns. 
This way, the problem they address and the context where they are applicable are 
clearly and well-defined. Taking the ESOA family (see figure 1) into account, the 
Distributed ESB in E-SOA pattern for example can only be specified after the 
Enterprise SOA top-level pattern has been created and the use of the ESB component 
as well as its relationships to other components are clearly defined and thus can be 
refined in a separate pattern. This approach simplifies the verification of the 
consistency of the overall set of patterns and makes it more controllable.

The top-level patterns play a particular role in the application of the design 
methodology as they define different classes (or families) of SBSs that will be 
implemented.  The principle of independence from the application domains means that 
the pattern-based reference architecture must be useable to instantiate compliant 
systems for many different application domains, such as enterprise systems, 
manufacturing systems, real-time systems, sensor networks, and automotive 
communications. In essence, the properties of SBSs used for each of these applications 
is different enough from the others that it constitutes a system type on its own rather 
than a variant in a common system family. However, once the system family (or top 
level pattern) has been identified, its association with abstract and implementation 
design patterns follows a strict structure of dependencies and refinements.

As mentioned above, the pattern-based reference architecture does not distinguish 
between the actual architecture description and the reference model but includes both 
of it. Thus, the section reference architecture specification in the presented structure 
constitutes the part that is traditionally referred to as reference architecture in literature.
The different types of patterns and different levels of abstraction that are covered by 
them provide all the information that should be given in a logical as well as a technical 
reference architecture. The component and the standards catalogue accompany the 
system of patterns to make the patterns directly reusable adhering to the construction 
kit concept.

4.2. Application of the Reference Architecture

As identified by Fettke et al. [11] there are two processes that need to be distinguished: 
the construction of the reference model and the construction of company-specific 
information models based on these reference models. This differentiation can also be 
made for the pattern-based reference architecture. On the one hand it is important to 

V. Stricker et al. / Creating a Reference Architecture for Service-Based Systems158



have a sound method as presented in the previous section describing how the reference 
architecture is build to allow the evolution of it in the future. The described approach 
tries to foster an adaptable and dynamic evolvable reference architecture that can cope 
with new trends beyond the NEXOF-RA project to provide a framework for integrating 
experiences and research results. 

On the other hand, the process of adopting the reference architecture to derive 
specific architectures needs to be addressed by providing sufficient guidance. As 
described as part of the guidelines, the pattern-based reference architecture will come 
with a methodology that support system architects during the derivation of concrete 
architecture instances. The combination of all elements defined as part of the pattern-
based reference architecture allows deriving specific instances of a software 
architecture for SBSs that adhere to specific requirements. The principles and 
guidelines provide guidance for the whole process and especially provide a starting 
point by describing how the requirements can be mapped towards the reference 
architecture. 

Once a system family has been identified for the system under development, a
functional decomposition should be performed based on the requirements that apply to 
the specific context and the different model views. These functionalities should be 
mapped to the functional decomposition that is provided by the reference architecture 
model. Such a functionality mapping is a solid baseline to actually derive the 
architecture instance since the various elements that are part of the pattern-based 
reference architecture are all interlinked. The pattern descriptions for example, map 
functionalities that are provided via interfaces by the specified architectural solution to 
the functionalities described in the model. Together with the instantiation guidelines 
the reference-architecture can be tailored to the specific context.  

Starting from the top-level pattern of the identified system family, for all selected 
functionalities, the according abstract patterns can be selected following the path 
through the pattern map down to the implementation patterns. The functional 
decomposition of the model comprises, for example, functionalities addressing the 
issue of discovering services. More specifically it distinguishes between the 
functionality to search a service and the functionality to browse for a service. The 
ESOA top-level pattern specifies a functionality “find” that is mapped to the discovery 
functionality and that is related to the component Registry within the ESOA pattern. 
Within the ESOA family a pattern Service Discovery is specified that refines the 
Registry component. Thus, the architectural solution provided by this pattern should be 
included for an architecture instance that includes the discovery functionality in its 
functional decomposition. For different types of discovery different abstract design 
patterns refining the Service Discovery pattern are specified, e.g. the Template-based 
Discovery and the Multi-Phase Discovery abstract design patterns.

Considering the dependencies between the patterns, the appropriate patterns can 
be selected and combined on in order to describe the system architecture for a specific 
context. The final result will be a technical architecture that is accompanied by 
implementation components provided in the components catalog. The ideal scenario is 
that there will be enough implementation components so that the derived architecture 
already comes with an interoperable implementation. During the derivation, the 
interoperability of specific combinations of the different components should be 
guaranteed by interoperability levels specified in the guidelines. 

V. Stricker et al. / Creating a Reference Architecture for Service-Based Systems 159



5. Conclusion and Future Work

This paper presented a pattern-based approach towards the definition of a reference 
architecture for SBSs. This approach constitutes a reasonable solution that allows the 
consideration of the various types of SBSs that have been identified as relevant in the 
Future Internet till now. The system of patterns that has been presented allows 
addressing the different characteristics and requirements of the different types of SBSs
that should be considered. Furthermore, the approach is dynamically extensible in order 
to integrate patterns that provide solutions for problems that have been identified for 
new trends and thus promises to become a long living framework for the derivation of 
SOAs of any kind. The future work towards this system of patterns will mainly deal 
with the definition of pattern families describing the current trends such as the Internet 
of Services and the Internet of Things. Furthermore, the definition of instantiation 
guidelines is crucial in order to make this reference architecture a useable and thus 
valuable framework for the derivation of specific well-defined architectures that will 
constitute parts of the Future Internet.

6. Acknowledgements

Research leading to these results has received funding from the EC’s Seventh 
Framework Programme FP7/2007-2013 under grant agreement 216446 (NEXOF-RA). 
We cordially thank all NEXOF-RA members, Nelufar Ulfat-Bunyadi and Marian Daun 
for fruitful discussions and insightful comments that improved this paper. 

References

[1] G. Tselentis, J. Domingue, A. Galis, A. Gavras, D. Hausheer, S. Krco, V. Lotz, T. Zahariadis, Towards 
the Future Internet – A European Research Perspective, Future Internet Assembly May 2009., Prague, 
IOS Press, 2009.

[2] NESSI, NESSI Strategic Research Agenda. NESSI Research Priorities for FP, Public Vol. 3.2 Revision 
2.0, 10. May 2009.

[3] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, S. Angel, A Pattern Language,
Oxford, University Press, New York, 1977.

[4] E. Gamma, R. Helm, R. Johnson, J. M. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley Professional, illustrated edition, 1994.

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented Software Architecture,
A System of Patterns, Volume 1. John Wiley & Sons Ltd, 1996.

[6] F. Buschmann, K. Henney, D. C. Schmidt, Pattern-Oriented Software Architecture, On Patterns and 
Pattern Languages, Volume 5, John Wiley & Sons Ltd, 2007.

[7] M. Jazayeri, A. Ran, F. van der Linden, Software Architecture for Product Families: Principles and 
Practice, Addison-Wesley Longman Publishing Co. Inc., 2000.

[8] G. Beneken, Referenzarchiteckturen, In: R. Reussner, W. Hasselbring (Ed.): Handbuch der 
Softwarearchitektur, dpunkt.verlag, Heidelberg, 2006 (in German).

[9] O. Vogel, I. Arnold, A. Chughtai, E. Ihler, U. Mehlig, T.Kehrer, U. Zdun,  Software-Architektur, 
Grundlagen – Konzepte – Praxis, 2. Auflage, Spektrum Akademischer Verlag, 2009 (in German).

[10]L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, SEI Series in Software Engineering,
Addison-Wesley Longman, 2nd edition, Amsterdam, 2003.

[11]P. Fettke, P. Loos, Methoden zur Wiederverwendung von Referenzmodellen – Übersicht und Taxonomi,
In: J. Becker; R. Knackstedt (Ed.): Referenzmodellierung 2002 - Methoden - Modelle – Erfahrungen,
Pages 9-33, 2002 (in German).

[12]K. Pohl; Requirements Engineering: Fundamentals, Principles, and Techniques, Springer, to appear in 
2010.

V. Stricker et al. / Creating a Reference Architecture for Service-Based Systems160


	1. Introduction 
	2. Structures of Traditional Reference Architectures
	2.1. Beneken
	2.2. Vogel et al.

	3. Towards the Pattern-Based Reference Architecture
	3.1. Implications for the Reference Architecture
	3.2. The Pattern-Based Approach

	4. The Pattern-Based Reference Architecture
	4.1. The Structure of the Reference Architecture
	4.2. Application of the Reference Architecture

	5. Conclusion and Future Work
	6. Acknowledgements

