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Neural modelling of CBR values for compacted fly ash 
Modelage neuronique du valeur CBR pour les cendres volantes compactes 
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ABSTRACT 
The aim of the paper was to study a prediction model of California Bearing Ratio values on the basis of other geotechnical parameters
of fly ash. Reliable statistical correlations were not obtained. Next tests were conducted with the use of the MPL type (Multi-Layer 
Perception) artificial neural networks. The topology of the best ANNs model is denoted by 8-5-1. It was determined that the most
significant variables were dry density and w/wopt, which confirmed that fly ash optimum water content and moisture content at
compaction were the dominant parameters in CBR estimation. Dry density was the dominant parameter at comparison of different fly
ash shipments, compacted by various methods. 

RÉSUMÉ
Le but de cet article est la détermination d’un modèle prédicteur pour la valeur CBR, en vertu d’autres parametrès géotechniques pour
les cendres volantes. On n’a pas trouvé des dependances statistiquement fidèles. On a les obtenu en cas d’usage des réseaux de 
neurones artificiels de type MPL (Multi-Layer Perceptron). On s'est révélé que le meilleur est le réseau 8-5-1. Les plus signifiantes 
variables était masse volumique de sol sec et w/wopt, quoi confirme qu’une humidité optimale des cendres volantes et une humidité en
train de compactage était des paramètres dominantes en évaluation de la valeur CBR. Masse volumique de sol sec était le paramètre 
dominant en comparisation des divers cendres volantes, compactes en usage des méthodes différentes. 
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1 INTRODUCTION 

California Bearing Ratio, CBR, is the percentage ratio of unit 
load, p, which has to be applied so that a standardized piston 
may be pressed in a soil sample to a definite depth with a speed 
of 1.25 mm/min and standard load, corresponding to unit load, 
ps, necessary to press the piston at the same speed into the same 
depth of a standard compacted crushed rock. 
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p
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The author’s study of CBR of fly ash compacted with a 
definite amount of energy shows that the dominant feature when 
evaluating CBR is moisture content while compacting both for a 
saturated sample and the ones studied directly after compaction 
(Zabielska-Adamska 2004 & 2006), which was also stated for 
cohesive soils by Turnbull and Foster (1956). What is 
interesting to note is the effect of compaction energy on CBR
value of the samples of the same moisture content but 
compacted with the use of different energies. The change in 
compaction energy of ash compacted at a given moisture 
content which, depending on the energy applied can be on dry 

or wet side of the optimum, causes a considerable 
diversification of CBR values.  

The fly ash samples compacted at moisture contents equalled 
w=wopt+5% by Standard (SP) and Modified Proctor (MP) 
methods are characterized by the lowest CBR values. A 
considerable drop in CBR value related to moisture at 
compaction (compaction moisture) is particularly noted for the 
samples compacted by a higher energy. High moisture results in 
the loss of contact among fly ash grains. The highest CBR
values are noted at moisture contents bigger than or equal to 
optimum content when the capillary forces within a sample 
hinder grain movement and strengthen the sample.  

Fly ash compaction by various energies, which causes dry 
density, d, to be highly diversified, results in CBR value 
becoming dependant on value d.

2 TEST RESULTS SUBMITTED TO ANALYSIS  

Fly ash CBR tests were conducted on the basis of three different 
shipments of fly ash from hard coal burning in Bialystok 
Thermal-Electric Power Station stored at a dry storage yard. All 
the fly ash  shipments corresponded in graining to sandy silt but  

Tab. 1. Geotechnical parameters of tested fly ash shipments: I, II i III. 
Compactibility parameters 
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shipment 

[mm] [Mg/m3] [-] [-] [%] [Mg/m3] [%] [Mg/m3]
I 0.08 2.28 6.00 0.80 39.0 1.120 33.0 1.202 
II 0.04 2.08 2.19 1.13 48.0 0.933 39.0 1.040 
III 0.07 2.15 3.40 1.69 50.0 0.950 42.0 1.036 

Dn – effective size is the grain size corresponding to n% of the passing by weight (mm) 
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they featured different effective particle size, D50, and 
coefficients of uniformity and curvature, CU and CC, values of 
solid particle density, s, as well as compactibility parameters – 
optimum water content and maximum dry density, wopt and  

maxdρ , which is shown in Tab. 1.  
Considerable differences between shipment I (the most 

advantageous graining) physical parameter values and those of 
shipments II and III.  

Laboratory CBR tests were conducted on unsaturated 
samples and ones saturated (SAT) in water for 4 days. The 
tested samples were compacted by two methods: the Standard 
Proctor and the Modified Proctor at moistures within the range 
of wopt±5% for each compaction method. All the samples 
subjected to penetration were loaded with ASTM 1883-73 
recommended load of 2.44 kPa. 

Figures 1 and 2 show a noticeable effect of the tested fly ash 
moisture content and dry density on CBR value when different  
shipments of fly ash compacted by both methods are compared. 
Generally CBR decreases as compaction moisture content 
increases and solid particle density drops. CBR values are twice 
as big in the event of shipment I compared to II and III 
shipments. CBR value decrease is influenced by the tested fly 
ash graining and the optimum water content value defined for 
each fly ash shipment. Shipment II featuring the finest graining 
of the worst graining indexes and reaching the lowest solid 
particle density produces the lowest CBR values. 

The result indicated that fly ash shipment type (i.e. grain-size 
distribution) had a statistically significant effect on average of 
CBR as depicted in Fig. 3. 

Fig. 1. CBR test results obtained for three different fly ash shipments in dependence to moisture content at compaction.  

Fig. 2. CBR test results obtained for three different fly ash shipments in dependence to sample dry density. 
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Fig. 3. Average values of CBR for different fly ash shipments I --- III: 
I − D50=0.08 mm, II − D50=0.04 mm, III − D50=0.07 mm. 

What can be concluded is that the higher the fly ash from 
dry storage yards CBRs are, the coarser their graining is. 

( )wfCBR =  dependencies determined for each of the tested 
shipments are characterized by similar shapes, they all can be 
described by means of trinomial square curves reaching their 
maximum values at abscissa values similarly located relative to 
optimum moisture content values for each of the samples. The 
samples tested without saturating reach the highest CBR values 
at w=wopt−5% moisture contents, and the saturated ones − at 
w wopt. This finding justifies accepting values (w−wopt) and 
w/wopt as parameters influencing CBR value. Parameters / d max

and ( − d max) were introduced in the same way.  

3 STATISTICAL ANALYSIS 

The conclusion that CBR values depend to some extent on fly 
ash graining, compaction method, saturation and compactibility 
parameters is drawn on the basis of Pearson’s linear correlation 
matrix. 

However, statistically good simple correlations between 
CBR and the analyzed particular geotechnical parameters were 
not obtained, the best of the obtained linear correlations 

)(wfCBR =  being determined at determination coefficient 
R2=0.476; multiple linear regression models − R2=0.468–0.747 
(Sulewska & Zabielska-Adamska 2006). 

4 APPLICATION OF NEURAL NETWORKS 

Due to the difficulties in developing a reliable CBR variable 
regression model, an attempt was made to apply Artificial 
Neural Networks. Artificial Neural Network (ANN) of MPL 
(Multi- Layer Perceptron) type with one hidden layer was used 
for the analysis. STATISTICA Neural Networks software was 
used for ANNs simulation. 

A set of power P=140 cases was randomly divided into the 
subsets: the learning subset (of subset power L=70), the 
validating subset (V=35) and the testing subset (T=35). A 
maximum of 9 variables xi were assumed to be the components 
of the input vector and CBR value was the output vector.  In the 
ANN model the following variables and parameters are used in 
the input vector: 

},...,,,{ 9321 xxxx=x (2)

where x1 is fly ash graining describing by D50, x2 is numerical 
code meaning the sample preparation (saturated or without 
saturation), x3 is numerical code meaning the compaction 
method (Standard Proctor or Modified Proctor), x4 is moisture 

content at compaction, w, x5 is dry density of fly ash, d, x6 is 
ratio of w and wopt, x7 is difference of  w and wopt, x8 is ratio of d

and maxdρ , and x9 is difference of d and maxdρ . It was decided 
that variable (w−wopt), which was omitted in the analysis of 
network sensitivity to the absence of particular variables, should 
not be taken into consideration.  

After numerous simulations the presented in Fig. 4 neural 
network of 8-5-1 architecture (8 input variables, 5 neurons in 
the hidden layer and 1 output) was accepted. Variables dρ  and 
w/wopt proved to be the most significant ones. Variable metric 
method (Bishop 1995), called Quasi Newton QN method in
STATISTICA (Lula & Tadeusiewicz 2001) proved to be the best 
learning method. The accuracy of the network predictions was 
quantified by the lowest value of root of the mean squared error 
difference, RMSE, between the measured yi and predicted 
values iŷ , the highest value of determination coefficient, R2, as 
well as the lowest mean absolute error, MAE, independently for 
L, V, and T sets. The values of neural network error measures 
are shown in Table 2. 

Fig. 4. Diagram of the best ANN of architecture 8-5-1.

The neural network obtained has a high prediction quality. 
Correlation coefficient, R, between the actual values of CBR
and the predicted ones amounts to 0.973 in the validating set, 
and 0.949 in the testing set. Figure 5 shows the comparison of 
the actual CBR values obtained with ANN 8-5-1 predicted  ones 
in a set of all data, along with 25% relative error, RE, areas. 

Tab. 2. Accuracy of network prediction for ANN 8-5-1 with 183 epoch 
number  

Root of the mean squared error difference RMSE
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0.059 0.073 0.084 
Mean absolute error MAE

N

yy
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N

i
ii

=
−

= 1
ˆ

L V T 
3.46 4.40 4.92 

Determination coefficient R2

L V T 
0.945 0.947 0.901 

yi – actual value of output data, iŷ – predicted value of output date; 
N – number of set L or V. 
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Fig. 5. CBR values obtained from tests and calculated by ANN 8-5-1 in all data set, along with 25% relative error, RE, areas. 
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Fig. 6. Variation of RMSE with iteration for learning and validation 
stages for ANN 8-5-1.

The progress of the training process was monitored by 
observing the RMSE during iteration of the learning process. 
Figure 6 represents the variation of error measure during training. 
Besides, performance of the network during training was also 
evaluated using the validation patterns as shown in Fig. 6. 

5 CONCLUSIONS 

The aim of the study was to develop a prediction model of CBR
values on the basis of other geotechnical parameters. No reliable 
simple correlations between the analyzed parameters were 
obtained, which resulted in an attempt to apply Artificial Neural  

Networks (ANNs). The neural network of 8-5-1 topology 
proved to be the best. 

Variables dρ  and opt/ ww  were found to be the most 
significant ones, which confirmed that optimum water content 
and moisture content at compaction are the dominant 
parameters when evaluating  California Bearing Ratio. Dry 
density, as another significant parameter, should be considered 
as dominant when comparing CBR values for different fly ash 
shipments compacted with the use of different energies.  
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