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ABSTRACT 
Bituminous Mixture (BM) is a granular composite material stabilized by the presence of bitumen.  In continuum modeling for BM,
the macroscopic response has been lacking the ability to explicitly account for the effect of the microstructure. In this study, an elasto-
viscoplastic continuum model is developed to predict BM response and performance in service loading.  The model incorporates a
Drucker-Prager yield surface that is modified to capture the influence of the directional distribution of aggregates and damage density.
The model is converted into a numerical formulation and is implemented in finite element (FE).  A fully implicit algorithm in time-
step control is used to enhance the efficiency in the FE analysis.  The FE model is used in this study to simulate permanent
deformation for isotropic and anisotropic structures. 

RÉSUMÉ
Les Mixtures Bitumineuses (BM) sont une matière composite granuleuse stabilisée par la présence de bitume. Dans le continuum
posant pour le BM, la réponse macroscopic a manqué de la capacité d'explicitement représenter l'effet de la microstructure. Dans cette
étude, un modèle de continuum élastique-visco-plastique est développé pour prédire la réponse de BM et la performance dans le 
chargement de service.  Le modèle incorpore une surface de production de Drucker-Prager qui est modifiée pour capturer l'influence 
de la distribution directionnelle de densité de dommage et d'ensembles. Le modèle est converti en formulation numérique et est 
exécuté dans l'élément fini (FE). Un algorithme complètement implicite dans le contrôle de pas de temps est utilisé pour améliorer
l'efficacité dans l'analyse FE. Le modèle de FE est utilisé dans cette étude pour simuler la déformation permanente pour isotropic et
anisotropic des structures. 
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1 INTRODUCTION 

Bituminous mixtures (BM) are particulate composite materials 
that consist of asphalt binder, particles, and air voids.  There has 
been a long-term interest in relating the macroscopic response 
of those materials to their microstructure characteristics in terms 
of particles sizes and properties (Dessouky at al. 2006a), 
bitumen thin film structure (Dessouky et al. 2006b) and air 
voids distribution (Tashman et al. 2005), directional distribution 
of particles, and nucleation and propagation of cracks (Masad et 
al. 2003).  The effect of microstructure distribution has not 
explicitly considered in continuum modeling of BM to evaluate 
macroscopic response and performance.  This study presents the 
development of elastic and viscoplastic continuum model that 
account for important aspects of the microstructure distribution 
in modeling the macroscopic behavior of BM. Researchers have 
proved the presence of elastic, viscoelastic, viscoplastic, and 
plastic components of BM response. Each component is mainly 
affected by temperature and loading rate (Abdulshafi and 
Majidzadeh, 1985, Scarpas et al. 1997, Lu and Wright 1998).  
Bituminous mixtures behavior varies from elastic and linear 
viscoelastic at low temperatures and/or fast loading rates to 
viscoplastic and plastic at high temperatures and/or slow 
loading rate.  Since permanent deformation is associated with 
high temperature and slow loading rate, the model presented in 
this paper is formulated within the framework of theory of 
visco-plasticity. 

2 MODEL DEVELOPMENT 

The objective of the proposed model is to relate the microstructure 
distribution parameters to the mechanism of permanent 
deformation. Hence, the following yield function is proposed: 

0321 =−Δ= κξ ),,,,,( dJJIFf  (1) 

where I1, J2 & J3 are the first stress invariant, second deviatoric 
stress invariant, and third deviatoric stress invariant, respectively.  
These invariants account for the effect of confinement, the 
dominant shear stress causing the viscoplastic deformation, and the 
direction of stress. d, a parameter that reflects the influence of the 
stress path direction, is defined as the ratio of tensile yield stress to 
compressive yield stress.  ξ is a model  parameter that accounts for 
the effect of damage.  κ  is a hardening parameter that describes 
the growth of the viscoplastic yield surface.  Δ is a microstructure 
parameter that accounts for the material anisotropy by measuring 
the directional distribution of particles as function of the angle of 
inclination (θ) (Figure 1). Utilizing the Perzyna’s viscoplastic 
model and non -associative flow rule the viscoplastic strain rate is 
defined as follows (Perzyna 1966): 
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where Γ is the fluidity parameter, which establishes the relative 
rate of viscoplastic straining, g is the plastic potential function, 
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and g
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 is a deviatoric vector in stress space which defines the 

direction of the viscoplastic flow.  If f >0, φ(f) is taken as a 

power law function, Nf , of the viscous flow, where N is a 

parameter characterizing the material rate-sensitivity (Tashman 
et al. 2005).  A modified formulation of the Drucker-Prager 
yield function is adopted in the following form: 
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The parameter α reflects the material frictional properties.  It 
determines the slope of the yield surface.  The evolution of α is 
a result of changes in the aggregate structure associated with 
friction and dilation when the material is under confinement.  κ
is a hardening parameter that reflects the combined effect of the 
cohesion and frictional properties of the material.  Granular 
materials in general develop dilation when they are subjected to 
deviatoric stresses (Zeinkiewicz et al., 1975).  To evaluate the 

invariants, the modified stress tensor ( ijσ ) is expressed as a 

function of stress tensor σij and fabric tensor Fij as shown in Eq. 
(5) (Tobita 1988). 
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The anisotropic tensor Fij is a function of Δ (Masad et al. 
2004).  
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Figure 1. Schematic diagram of anisotropy in a conventional BM 
microstructure 

The effective stress theory (superscript e) is utilized to account 
for the microstructure damage in terms of microvoids and cracks.  
Stress components are magnified by dividing them over 1-ξ, where 
ξ is the damage parameter or area of internal air voids and cracks.  
ξ is varied from 0 to 1 for complete intact and damaged specimen, 
respectively, and it is measured using X-ray Computed 
Tomography of specimens loaded to different strain levels (Masad 
et al. 2003).  The study proposed that damage evolution is a 
function of confining pressure and plastic deviatoric strain.  An 
exponential form has been used to simulate the degradation 
response as the material passes the ultimate stresses, Desai (1998).  
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where 1ξ , 2ξ , and 3ξ  are coefficients to be determined 

experimentally and vpε  is the effective viscoplastic strain.  The 

first exponential term controls the asymptotic limit of the function, 

while the last term, which includes the confining pressure, controls 
the damage rate of growth.
 The plastic potential function, g, is assumed to have the same 
form as the yield function (equ. 3) but with a slope of β which 
influences the proportions of the volumetric and deviatoric 
strains.   β reflects the dilative potential of the material and 
therefore, influences the proportions of the volumetric and 
deviatoric strains.  The evolution laws for κ and β are postulated 
based on the experimental measurements presented by 
Dessouky et al. (2006a). The study has also shown that β is a 
function of Δ.

3 MODEL PARAMETERS SENSITIVITY 

The fluidity parameter Γ controls the growing rate of the yield 
surface. It can be seen from Figure 2 that a slight change in the 
viscosity parameter Γ could produce a significant change in the 
stress-strain relationship. As the parameter decreases, the yield 
surface size increases and the ultimate strength is reached at a 
higher strain level.  Γ is associated with the overstress function to 
account for stresses outside the elastic domain.  Another important 
factor that controls the stress-strain relationship is confining 
pressure which minimizes the growth of air voids and cracks, and 
hence reduces damage as illustrated in Figure 3.  On other hand, 
the model parameter ξ  is an indicator of the damage percent in the 
material. The parameter is incorporated in the model through the 
effective stress theory presented by Kachanov (1958), who 
introduced for the isotropic case a one-dimensional damage 
variable.  In this theory, damage is interpreted as the effective 
surface density of microdamage per unit volume. This concept is 
based on considering a fictitious undamaged configuration of a 
body and comparing it with the actual damaged configuration.  
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Figure 2. Effect of viscosity parameter on stress-strain relationship 

4 MODEL DISCRETE IMPLEMENTATION 

The elastic strain increment component can be defined 
according to Hooke’s law and the viscoplastic strain rate 
defined in Eq. (2) as follows:

Δ⋅
∂
∂⋅><⋅Γ−Δ=Δ

Δ=Δ

t
g

fD

D e

σ
φεσ

εσ

)(:

:
 (7) 

where D is the elastic stiffness matrix. The numerical 
implementation associated with the elasto-viscoplastic 
computation is based on the return mapping algorithm, which 
leads to an elastic predictor-viscoplastic corrector sequence.  In 
time-dependent material, the problem is solved by subdividing the 
time frame interval into a finite number of time steps.  The initial 
and final time step is referred to increment n and n+1, respectively. 



S. Dessouky et al. / Numerical Implementation of Elasto-Viscoplastic Model624

Figure 3. Influence of confining pressure on material softening 
response. (Confining pressure magnitude is shown in the subscript of ξ,
the higher the pressure the smaller the damage factor) 

At the initial time step, the trial elastic stress is computed using 
the elastic predictor that elaborates initial conditions known from 
the preceding time step.  If the trial stress is located inside the yield 
surface then an elastic response occurs, whereas a stress state 
outside the yield surface implies development of viscoplastic flow.  
At this stage the viscoplastic corrector problem is solved by 
mapping the trial stress to the yield surface to maintain the 
consistency condition.  The algorithmic value of a viscoplastic 
strain increment over a time interval (Δt) can be defined in implicit 
form to ensure stability and accuracy for large strain increments.  
The continuum model of evolution may be written in the following 
discrete form: 
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where the effective viscoplastic strain vpε  is necessary to update 

the internal state variable of the model evolutions.  According to 
the viscous flow in Eq. (2), a time-step-dependent viscoplastic 
consistency parameter is introduced in the form: 

( )),( vpn
vp ft εσφγ 1+Γ⋅Δ=  (9) 

The algorithm starts by finding a trial value for 
t

nf 1+

( )
111 +++ −=

n

t
vp

t
n

t
n Ff εκσ )(  (10) 

where 01 ≤+
t

nf  implies elastic response; and 01 >+
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nf  leads to 

a positive value for 
vpγ according to the condition giving by 

Alfano et al. (2001) 
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Eq. (11) replaces the condition of 1+nf = 0 in conventional 

plasticity and the Newton-Raphson iteration scheme is applied to 
solve its nonlinear form (Masad et al. 2007).  Once the viscoplastic 
multiplier is determined, the corrections for the trial components 

can be updated at time 1+nt as follows: 
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where λ is a scalar quantity defined as the magnitude of the 
viscoplastic strain vector perpendicular to the potential surface 

along the axial direction, and it is determined as 
11
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5 EXPERIMENT DESCRIPTION AND RESULTS 

The aforementioned parameters were determined for specimen 
prepared using three sources of aggregates; granite, limestone, 
and gravel.  Two replicates of BM were fabricated to 7.0% air 
voids using gyratory compaction and tested at 130o F.  Five 
strain rates of 0.0660, 0.318, 1.60, 8.03 and 46.4%/min and 
three confining pressures of 0, 15 and 30 psi were used for each 
replicate.  Axial and radial stresses and strains were recorded 
throughout testing.  Specimens were loaded up to an axial strain 
of 8.0% or until failure, whichever occurred first.  Triaxial 
compressive strength test indicated the effect of the strain rate 
and confining pressure. Higher strengths were associated with 
higher strain rates and/or confining pressures for all aggregate 
sources. Example of the stress-strain behavior for granite is 
shown in Figure 4. More details and complete list of model 
parameters are found at Dessouky (2005) 

Figure 4.  Experimental and model stress-strain relationships in triaxial 
compression at 30 psi confining pressure 

The model has showed good simulation to the experiments, 
the model parameters are able to distinguish between the granite 
mixes in terms of their response to different strain rates and 
confining pressures.  Experimental measurements indicated also 
that elastic modulus varies with respect to loading rate. Material 
that undergoes a small rate of loading exhibited a small elastic 
modulus. Figure 5 indicates that granite had the largest 
modulus, while gravel had the smallest modulus.  

6 FE ANALYSIS AND IMPLEMENTATION 

The model parameters were implemented in finite element (FE) 
(Figure 6) using a user-defined material subroutine (UMAT) to 
link the microstructure properties to BM overall response. The 
model represents a BM layer exposed to dual-tire loading.  
Although the anisotropic BM layer developed more shear stress, 
permanent deformation was found to be less in magnitude when 
anisotropy is considered as shown in Figure 7. The material also 
exhibited more dilation in-between and along the tires edges as 
a result of anisotropy. This is consistent with the findings in 
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Dessouky (2005) that the angle of dilation increases with 
anisotropy. 
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Figure 5. Stiffness modulus evolution as a function of loading time 

Figure 6.  FE Geometric model for a pavement structure 
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Figure 7.  Permanent deformation profile for isotropic vs. anisotropic BM 

7 SUMMARY AND CONCLUSION 

This study presented the development of an elasto-visco-plastic 
continuum model to predict BM response and performance 
under wheel loadings.  The model includes microstructure 
parameters that capture the directional distribution of aggregates 
and density of cracks.  In addition, the model is capable of 
accounting for the factors affecting the mechanisms of 
permanent deformation such as shear stress, aggregate structure 
friction and dilation, confining pressure, and strain rate.  The FE 
results indicated that the elasto-visco-plastic model’s parameters 
and permanent deformation response were sensitive to changes 
in aggregate orientation. 
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