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DEM simulation of effect of confining pressure on ballast behaviour 
Simulation MED de l'effet de la pression de confinement sur l'environnement du ballast 
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ABSTRACT 
In this paper, an attempt has been made to investigate the influence of confining pressure on deformation and degradation behaviour
of railway ballast using the Discrete Element Method (DEM). A novel approach has been employed to model the two dimensional
projection of field size ballast particles as cluster of bonded particles.  Bonded particles are held together by a bond, and debonding is
considered as particle breakage. A series of cyclic loading simulations using DEM were carried out on an assembly of angular ballast
particles at different confining pressures (10 kPa to 240 kPa). The results highlight that the development of axial strain during cyclic
loading as a function of initial confining pressure and number of cycles. Very high axial strain and breakage of particles have been 
observed at low confining pressure (< 30 kPa) owing to dilative volumetric strain behaviour. In terms of particle breakage, there exists
an optimum range of confining pressures where breakage is minimal. In addition, the evolution of particle displacement vectors 
explains the breakage mechanism and associated deformations during cyclic loading. 

RÉSUMÉ
Dans ce papier,  en utilisant la Méthode d'Élément Discrète (MED), nous essayons d'examiner l'influence de la pression de
confinement sur la déformation et le comportement d'avilissement du ballast de la voie ferrée. Une nouvelle approche a été employée
afin de modéliser les deux projections dimensionnelles de la taille du champ de particules du ballast,  représenté par un groupe de
particules liées. Les particules sont liées entre elles par un lien et le déliement est considéré comme une rupture de particule. Une série
de simulations de chargement cycliques utilisant la MED a été effectuée sur un assemblage de particules de ballast angulaires à
différentes pressions de confinement (de 10 kPa à 240 kPa). Les résultats ont mis en évidence, pendant le chargement cyclique,
l'amplification de la tension axiale par rapport à la pression de confinement initiale et le nombres de cycles. Une tension axiale très 
élevée et la rupture de particule ont été observés à basse pression de  confinement (< 30 kPa) dû à un comportement d'expansion de la
tension volumétrique. En ce qui concerne la rupture de particules, il existe une gamme optimale de pressions de confinement où la
rupture est minimale. De plus, l'évolution des vecteurs de déplacement de particule explique le mécanisme de rupture et les
déformation associées pendant le chargement cyclique. 
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1 INTRODUCTION 

Ballast breakage during static and cyclic load application is a 
well-known phenomenon and often observed in railway tracks 
(Selig & Waters 1994; Indraratna et al. 1998; Indraratna & Salim 
2005; Lackenby et al. 2007). Indraratna et al. (1998) reported that 
maintenance and rehabilitation costs of railway tracks due to 
problems associated with ballast performance are substantial, and 
several millions of dollars are being spent annually to cope with 
this problem worldwide. In railway tracks, the confining (lateral) 
pressure is usually very low (5 - 40 kPa) relative to the vertical 
stress applied to the ballast layer (Indraratna et al. 2005). Due to 
low lateral confinement, various problems such as: spreading of 
ballast, breakage of ballast, track buckling etc. has been 
experienced. Therefore, it is imperative to explore ballast 
behaviour under various confining pressures for optimizing the 
performance of ballast and reducing the maintenance costs. 
Indraratna et al. (2005) studied the ballast behaviour under 
various confining pressures experimentally and reported the 
existence of optimum confining pressure. In this paper, an attempt 
has been made to study the influence of confining pressure (in the 
range of 10-240 kPa) on deformation and degradation of ballast 
using the Discrete Element Method (DEM) employing PFC2D

(Particle Flow Code in 2-Dimension, (Itasca 2003)) and compare 
the results with the experimental observations made by Indraratna 
et al. (2005). The basic advantage of DEM simulation is that it 
explains the underlying mechanisms of particle densification and 

degradation during static and cyclic loading which is very 
difficult to study through experiment. 

Limited studies have been carried out using the Discrete 
Element Method (DEM) to investigate the cyclic behaviour of 
ballast  capturing breakage (Lim & McDowell 2005; Lobo-
Guerrero & Vallejo 2006; Lu & McDowell 2006; Hossain et al. 
2007). Most original DEM applications do not allow particle 
breakage (Cundall & Strack 1979). Therefore, various modeling 
techniques have been adopted by researchers to simulate 
particle breakage as summarized below. 

First method is to treat each particle as a cluster of bonded 
smaller particles. The bonds which held the particles in a cluster 
together can disintegrate during cyclic loading, represents 
breakage. This approach  has been adopted by Harireche and 
McDowell (2003), Cheng et al. (2004), Lim and McDowell 
(2005), Lu and McDowell (2006), Bolton et al. (2008) and 
others. 

The second method of simulating particle breakage is to 
replace the particles fulfilling a predefined failure criterion with 
an equivalent set of smaller particles, as adopted by Lobo-
Guerrero and Vallejo (2006), Hossain et al. (2007), and Ben-
Nun & Einav (2008). 

The first method of particle breakage criterion has been 
adopted here and cyclic biaxial tests have been simulated on an 
assembly of angular ballast particles uniquely formulated for 
this investigation. 
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2 NUMERICAL SIMULATION 

2.1 Particle generation 

For modeling realistic two dimensional (2-D) projections of the 
ballast particles, fifteen representative ballast particles (in the 
range of 19 – 53 mm size) of different shapes (almost 
rectangular, circular and triangular) were selected. The sieve 
sizes considered were in accordance with Standard Australia 
(1996). 

The photographs of each of the selected ballast particles 
were taken and the images were imported into AutoCAD in a 
single layer. The images were then filled with tangential circles 
in another layer and every circle was given an identification 
number (ID). Identification number (ID), radius and central 
coordinates of each circular particle were extracted from 
AutoCAD in order to generate ‘Balls’ in PFC2D. Table 1 shows 
the photos of some typical ballast particles created for the DEM 
simulations. These irregular particles were assigned names such 
as R1, R2, R3 as shown in Table 1. 

Table 1.  Representative ballast particles 

Sieve size Ballast Particles PFC Particles 

R1 

R2 Passing 53 
mm and 
retaining 45 
mm sieve 

R3

2.2 Sample preparation 

Subroutines were developed (using the FISH Language) in 
PFC2D after gathering the ID, radius, and coordinates of the 
centre of each circular particle representing angular ballast. 
These subroutines were used in the main program to generate 
irregular particles. A 300mm wide × 600 mm high biaxial cell 
(i.e. same size of laboratory) was generated for the DEM 
simulations and a typical sample is shown in Figure 1. 

Table 2 lists the micromechanical parameters adopted for the 
DEM simulations. A linear contact model was used in these 
simulations. 

In order to prevent particle breakage during the compaction 
stage, the ballast particles were treated as clumps (a group of 
particles which behave like a rigid body and have deformable 
boundaries) during isotropic stress installation (Itasca 2003). 
After the isotropic stress state, the clumps were released and 
parallel bonds (PB) were installed to make particles breakable. 
A parallel bond (PB) mimics the physical behaviour of a 
cement-like substance joining two particles. 

2.3 Cyclic load application 

A subroutine was developed to apply a stress-controlled cyclic 
biaxial test at the desired frequency (f) and amplitude of cyclic 
loading. The minimum cyclic stress (qmin) was kept at 45 kPa 
which represents the unloaded state of the track, such as the 
weight of sleepers and rails (Lackenby et al. 2007). The cyclic 
deviatoric stress (qc) of 428 kPa was applied to the ballast which 
was estimated in accordance with Esveld (2001) assuming 30 
ton axle load and 20 Hz frequency. Cyclic biaxial tests at a 
confining pressure ( '3) of 10 kPa, 30 kPa, 60kPa, 120 kPa and 

240 kPa were simulated for 1,000 cycles. A frequency of 20 Hz, 
which corresponds to around 150 km/hr train speed on standard 
gauge track in Australia was applied to all the cyclic biaxial 
tests. Data such as axial strain ( a), volumetric strain ( v), bond 
breakage (Br) were recorded after pre-determined number of 
cycles (N).

300 mm 

60
0 

m
m

 

Figure 1. Initial assembly at '3 = 10 kPa 

Table 2 . Micromechanics parameters used in the DEM simulations 
Micromechanics parameters Values 
Particle density (kg/m3) 2500 
Radius of particles (m) 16 × 10-3 – 1.8 

× 10-3

Interparticle & wall friction 0.4 
Particle normal & shear contact stiffness (N/m) 3 × 108

Side wall Stiffness (N/m) 3 × 107

Top & bottom wall stiffness (N/m) 3 × 108

Parallel bond radius multiplier 0.5 
Parallel bond normal & shear stiffness (N/m) 6 × 1010

Parallel bond normal & shear strength (N/m2) 5 × 106

Acceleration due to gravity, g (m/s2) 9.81 

3 RESULTS AND DISCUSSION  

3.1 Permanent deformation 

Figure 2 illustrates the vertical permanent deformation in terms 
of a with N at various '3. It has been observed that a increases 
with N at all '3. However, a decreases as '3 increases. For 
instance, maximum a of 18 % has been observed at '3 = 10 
kPa. Increasing '3 to 30 kPa deduces a to 11 %. A further 
increase of '3 to 60 kPa resulted to a of 8 %. Increasing '3
from 60 kPa to 120 kPa did not show much influence on a.
Elevating '3 to 240 kPa has further reduces a to 6 % which is 
just 25 % less than that observed at '3 = 60 kPa. 

Figure 3 shows the response of v with N at various '3. At 
very low '3 (e.g. 10 kPa), the ballast compresses during initial 
cycles (e.g. first 200 cycles) and then dilated causing high 
permanent vertical deformation as shown in Figure 1. However, 
as '3 increases from 30 kPa to 240 kPa, the ballast compresses 
as N increases. Maximum compression observed at '3 = 30 & 
60 kPa are around 3 % and 4 % respectively. Increasing '3 to 
240 kPa results into a maximum volumetric compression of 
4.5%. 
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Figure 2. Variation of a with N at different '3
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Figure 3. Variation of v with N at different '3

3.2 Influence of bond breakage (Br) on a

Figure 4 illustrates the influence of bond breakage (Br) on a with 
N. Breakage is expressed in terms of cumulative bond breakage 
(Br), defined as the percentage of bonds broken in relation to the 
total number of bonds present in the assembly. Rapid increase in 

a at initial cycles is mainly attributed to particle breakage (Figure 
4). It can also be observed that during the first 200 cycles, Br

continuously increases with N. When the particle breaks, it 
acquires a greater chance to roll and slide which causes dramatic 
axial and volumetric deformation (Figures 2 & 3). When Br

stabilizes around N = 300, a becomes almost constant. It can be 
seen clearly that from N = 300 to 500, a is almost stable. At 
around 540 cycles, particles break more which increases a. When 
the breakage of particles ceases around N = 700, a again starts to 
stabilize. From these observations, it can be concluded that 
particle breakage is one of the major parameters controlling the 
permanent deformation of ballast. 

3.3 Micromechanical explanation of particle breakage 

Figure 5 illustrates the contact force (CForce chains) and 
particle displacement vectors, along with the locations of 
breakage. It can be seen from Figure 5 (a) that particle breakage 
is mainly concentrated along the principal CForce chains. 

In Figure 5 (b), the particles are moving towards the 
direction of both the major and the minor principal stress 
directions during cyclic loading. Moreover, it is observed that 
bond breakage is concentrated mainly in the direction where the 
particles are moving. This phenomenon may be attributed to the 
decrease in coordination number of the particles associated with 
their movements which cause high tensile stresses in the 
particles. When the induced tensile stress exceeds the tensile 
strength of the parallel bonds, particle breakage occurs. 
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Figure 5. (a) CForce chains and location of particle breakage, (b) 
Displacement vectors and location of particle breakage at 60 kPa after 
1000 cycles. 

3.4 Breakage behaviour 

Figure 6 explains the particle breakage behaviour at various 
values of '3. For '3 < 30 kPa, a very high Br is observed. This 
is mainly caused by dilation of the assembly (Figure 3). 
Indraratna et al. (2005) have categorized this zone as ‘Dilatant, 
Unstable Degradation Zone’ (DUDZ), and reported that 
degradation is attributed mainly to the shearing and attrition of 
angular projections due to excessive axial and radial strains in 
this zone. With further increase in '3, Br is found to decrease, 
and it attains an optimum value in the range 30 kPa < '3 < 75 
kPa. This zone is named as the Optimum Degradation Zone 
(ODZ). Within this zone of confining pressure, an optimum 
particle configuration (packing arrangement) is attained thereby 
significantly reducing the dilative behaviour of the assembly 
and a decreases significantly. This shows that rail tracks can 
benefit through reduced maintenance costs by slightly 
increasing the lateral confining pressure (i.e., less settlement 
and degradation of ballast). For '3 > 75 kPa, Br starts increasing 
(Figure 6), with a corresponding increase in v and assigned a 
name CSDZ (Compressive, Stable, Degradation Zone) by 
Indraratna et al. (2005). 

The a in this zone is not much reduced when compared to 
ODZ as optimum packing arrangement of the particles is 
already attained.  Figure 4 also compares the bond breakage 
(Br) with ballast breakage index (BBI) developed by 
Indraratna et al. (2005). Although these two indices are 
distinctly different, they both measure the intensity of particle 
breakage. It is interesting to see that DEM results have 
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captured the same trends of breakage as those observed in the 
laboratory. 
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Figure 6. Particle breakage at various ’3 and comparison of breakage 
trends observed in the DEM with the experiment 

4 CONCLUSIONS 

A DEM simulation has been carried out to observe the effect 
of confining pressure on ballast behaviour under railway 
environments. Each ballast aggregate is modelled by 
clustering several smaller circular particles using parallel 
bonds. Breakages of these bonds are considered as particle 
breakage. The DEM results show that the axial strain and 
breakage are very high at very low confining pressure (< 30 
kPa) owing to the dilative behaviour of the aggregates. With 
slight increase in confining pressure (  30 kPa), substantial 
reduction in both the permanent deformation and degradation 
is observed. Beyond a confining pressure of 75 kPa, particle 
degradation increases without a significant decrease in 
permanent deformation. Moreover, the DEM results agree 
with previous laboratory findings of Indraratna et al. (2005) 
and verifies the role of confining pressure on the ballast 
behaviour. Particle breakage is found to be more pronounced 
in the direction of particle movement (i.e., in compliance with 
principal CForce chains). The recent results are currently 
being incorporated in the modified design of rail tracks in 
New South Wales, Australia through revised ballast and track 
standards. 
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