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ABSTRACT 
In numerical modeling of uncemented soils, Rowe’s stress-dilatancy relation for frictional materials was widely used and supported 
by a large body of experimental results. Even though the derivation of the theory was questioned because the principle of minimum
energy no longer applies when friction is involved, De Josselin de Jong (1976) did prove, with an alternative approach based on the 
laws of friction, that Rowe’s final conclusions and his stress-dilatancy relation were valid. Besides frictional materials, Rowe (1962)
also proposed a stress-dilatancy relation for cohesive-frictional materials. Recently, researchers applied this relation for cemented 
sands. Although the Rowe’s relation for frictional materials was proved to be correct, the validity of his stress-dilatancy relation for
cohesive-frictional materials was never checked. This must be done before the application of that relation to model cohesive-frictional 
materials. This paper will show that the Rowe’s stress-dilatancy relation for cohesive-frictional materials is not correct. A correct 
stress-dilatancy relation for cemented sands will be proposed, which was derived using the friction laws used by De Josselin de Jong
(1976). 

RÉSUMÉ
Dans le fait de modeler numérique de sols non cimentés, la relation de tension-dilatancy de Rowe pour le matériel à friction a été 
largement utilisée et soutenue par un grand corps de résultats expérimentaux. Bien que la dérivation de la théorie ait été questionnée
parce que le principe d'énergie minimale ne fait plus une demande quand la friction est impliquée, De Josselin de Jong (1976) s'est
vraiment avéré, avec une approche alternative basée sur les lois de friction, que les conclusions finales de Rowe et sa relation de
tension-dilatancy étaient valides. En plus du matériel à friction, Rowe (1962) a aussi proposé une relation de tension-dilatancy pour le 
matériel à-friction-cohésif. Récemment, les chercheurs ont appliqué cette relation pour les sables cimentés. Bien que la relation du
Rowe pour le matériel à friction ait été prouvée pour être correcte, la validité de sa relation de tension-dilatancy pour le matériel à-
friction-cohésif n'a jamais été vérifiée. Cela doit être fait avant l'application de cette relation pour modeler le matériel à-friction-
cohésif. Ce papier montrera que la relation de tension-dilatancy du Rowe pour le matériel à-friction-cohésif n'est pas correcte. Une 
relation de tension-dilatancy correcte pour les sables cimentés sera proposée, qui a été tiré en utilisant les lois de friction utilisées par
De Josselin de Jong (1976). 
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1 INTRODUCTION 

In recent years, the study of cemented sands has received an 
increasing amount of attention in the field of geotechnical 
engineering. Comparing with uncemented sands, cemented 
sands have cementation bonds between the soil particles 
imparting on the soil a true cohesive strength component. Thus, 
the strength of cemented sands is a combination of cohesion 
(between soils particles), dilatancy (which develops under 
shearing) and friction (at the particle contacts). The behavior of 
cemented sands is more complicated than uncemented sands 
because of the existence of cementation between particles. 
Analyzing and modeling the mechanical behavior of cemented 
sands becomes an interesting and challenging topic. 

Rowe (1962, 1972) proposed a stress-dilatancy relation 
which has been widely used in simulating the stress-strain 
behavior of uncemented sands and other granular materials 
(Hughes et al. 1977; Bolton 1986; Jefferies 1993). By applying 
the principle of energy minimization, Rowe (1962, 1972) 
showed that: 

                   
 (1) 

where σ1 and σ3 are the major and minor principal effective 
stresses, respectively (note that in this paper we deal exclusively 
with effective stresses and the customary primes for effective 
stresses will be omitted); 1dε  and vdε  are the major principal 
strain increment and volumetric strain increment, respectively; 
and φc is the critical-state friction angle, a material constant. 
Rowe’s stress-dilatancy relation for purely frictional materials , 
such as uncemented sand, was supported by many experimental 
results. However, the derivation of the Rowe’s relation was 
questioned because the minimum energy principle will be 
violated if friction is involved in the system. Despite 
questioning Rowe’s derivation, De Josselin de Jong (1976) used 
an alternative approach based on the laws of friction and proved 
that Rowe’s stress-dilatancy relationship was valid. 

In addition, Rowe also provided a stress-dilatancy relation 
for cohesive-frictional materials (e.g., cemented sands) based on 
the principle of energy minimization (Rowe 1962; Rowe et al. 
1963): 

                   
 (2) 

where c is the interparticle cohesion. Eq. (1) is just a special 
case of Eq. (2), resulting from making the cohesion term c equal 

21

3
3

1

2
tan tan

4 2 4 2
1

c c

v

c

d

d

σ π φ π φ
σεσ

ε

= + + +
−21

3
1

tan
4 2

1

c

vd

d

σ π φ
εσ
ε

= +
−



J. Zhang and R. Salgado / A Stress-Dilatancy Relation for Cemented Sands 511

to zero. Eq. (2) can thus be considered as the generalized 
Rowe’s stress-dilatancy relation, which was intended for 
application to both frictional and cohesive-frictional materials. 

In geotechnical engineering, typical cohesive-frictional 
materials include natural soils, stabilized soils, and rocks. One 
of the important properties of these materials is that there exist 
cementation bonds between particles, and the contribution of 
these bonds to shear strength may be represented by 
interparticle cohesion. When external forces are applied on such 
a material, the input energy will be used to change the volume 
of the material, to overcome interparticle friction, and to 
degrade the cement bonds between particles. Harberfield (1997) 
suggested the use of the Rowe (1962) stress-dilatancy relation 
when studying the effects of cracking in soft rocks during the 
pressuremeter test. Later, Cecconi et al. (2001) analyzed the 
experimental data on a pyroclastic weak rock by using Eq. (2), 
Mántaras & Schnaid (2002) also used Eq. (2) in cavity 
expansion analysis in dilatant cohesive-frictional materials. 

As mentioned earlier, Rowe’s stress-dilatancy relation was 
derived based on the incorrect assumption that energy 
minimization would apply. Although Eq. (1) was proved to be 
correct by De Josselin de Jong (1976) using the laws of friction, 
the validity of Eq. (2) was never checked.  This must be done 
before the application Eq. (2) to cohesive-frictional materials.  
In this paper, we will show that Eq. (2) is not correct and then 
propose a correct stress-dilatancy relation, derived using the 
laws of friction used by De Josselin de Jong in his 1976 
Géotechnique paper. 

2 LAWS OF FRICTION  

For a cohesive-frictional material, the shaer strength consists of 
frictional and cohesional componenta. The frictional component 
develops at the contact areas between the particles.  
Conceptually, it can be analyzed using the analogy of rigid 
blocks in contact, for which the interface friction angle is φc.  If 
the resultant force on the interface of the two blocks makes an 
angle λ with the normal to the contact surface, then we can 
formulate (as De Joseelin de Jong (1976) did) the following 
laws of friction: 

 (3)              

When using the laws of friction for cohesive-frictional 
materials, it is necessary to transform the normal stresses 
following Caquot (1934): 

* cotcσ σ φ= +                     (4) 

Note that the shear stresses are not affected by this 
transformation (i.e., τ* = τ).  As shown in Figure 1, Eq. (4) maps 
the normal stresses σ into new, transformed normal stresses σ*

by shifting the shear stress axis (and thus the abscissa of the 
origin of the normal stress axis) so that the Mohr-Coulomb 
yield envelope passes through the origin of the new system, 
thereby eliminating the cohesive intercept from the equation for 
the envelope in σ* – τ* space. 

3 ROWE’S SAW-TOOTH MODEL 

Let us consider a cylindrical sample of cemented sand with 
height h and cross-sectional area A shown in Figure 2. In a 
triaxial compression test, the stresses acting on the sample 
boundaries are the principal stresses σ1 > σ2 = σ3 shown in 
Figure 2(a). In Figure 2(b), an equivalent representation of the 

sample and its loading is shown. In it, the transformed stresses 
σ*

1 = σ1 + ccotφ and σ*
3 = σ3 + ccotφ are shown applied to a 

sample identical to the one in Figure 2(a) except for one detail: 
the sample in Figure 2(b) is uncemented. The cohesive intercept 
c is incorporated via the demonstrated stress transformation and 
there is no additional intercept. The meaning of Figure 2 is that 
the effects of the cohesive intercept c may be modeled 
considering an equivalent soil with the same friction angle φ   
but with c = 0 to which an isotropic stress ccotφ is applied, in 
addition to any other loadings.  

Figure 1. Visualization of stress transformation 

Figure 2. Stress transformation in axisymmetric condition 

Using Rowe’s saw-tooth model, the sliding occurs along 
separation planes between adjacent conglomerates of particles. 
As shown in Figure 3, the separation plane has a stepped, saw-
tooth surface, and the direction of sliding is in the direction of 
teeth. After sliding, a gap opens between the teeth, leading to an 
increase in the volume of the sample. The separation plane 
makes an angle α with the minor principal stress σ3, and the 
teeth make an angle β with the major principal stress σ1. The 
angles α and β for all separation planes are assumed to be the 
same. The deviation angle between the teeth and the separation 
plane is 

2

πθ α β= + −                                                                           (5) 

Positive values of θ, as shown in Figure 3, indicate volume 
increase. 

The force transmitted through the teeth is denoted by F and 
can be decomposed into vertical and horizontal components Fv

and Fh, which are given by 

( )1 cotvF c Aσ φ= +              (6) 
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and 

( )3 cot tanhF c Aσ φ α= +                                                         (7) 

According to Figure 3, the normal ’n’ line makes an angle β
with the horizontal, and the force F deviates from the ’n’ line by 
an angle λ. So F makes an angle β + λ  with the horizontal.  The 
tangent of this angle follows directly from Eqs. (6) and (7): 
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                                      (8) 

Figure 3. Forces on teeth in a separation plane 

The Mohr-Coulomb criterion can be expressed as 

                           (9)                                

or, in a more useful form, as 

                                          (10)                                                      

where N is referred to as the flow number. Using the flow 
number N, Eq. (8) can then be rewritten as 

(11)                                      

The strain increment ratio D can also be expressed in terms 
of α and β.  De Josselin de Jong (1976) showed that: 

                                 (12)                                            

where hdV  and vdV  are the volume change increments due to 
the horizontal and vertical displacement, respectively. The 
negative sign in front of vdV  is in keeping with the 
geomechanics convention of having contraction and shortening 
be positive. D is often called the dilatancy rate, and is connected 
to the dilation angle ψ   through the following expression, 

                                                               (13)                                                                          

The assumption was made in the derivation of (12) that the 
total volume change increment dV  consists of the algebraic 
sum of hdV  and vdV . Because dV  and vdV  are relatively easily 
obtained from measurements in triaxial tests, hdV  can be 
obtained by subtracting vdV  from the total volume change 
increment dV  for either small or large strains. Thus, Eq. (12) 
applies to both small and large strains. As De Josselin de Jong 
(1976) and Rowe (1962) pointed, Eq. (12) is applicable to 
loadings in which the principal stresses and principal strain 
increments are coaxial. 

4 FLOW RULE 

For the saw-tooth model discussed in the previous section, the 
magnitudes of both N and D can be measured in triaxial 
compression tests. If D and N are known, Eqs. (11) and (12) 
contain three unknowns: α, β and λ. To solve for the unknowns, 
we need a third equation. The friction laws introduced as Eq. (3) 
provide us with this third equation: λmax = φc. This equation 
states that, for sliding to occur, the inclination λ of the resultant 
with respect to the normal to the plane of the teeth must match 
the critical-state friction angle φc. Before we use this equation, 
the angle α can be eliminated from (11) and (12) by introducing 

*E , which is the quotient of N and D,

                                       (14)
           

*E  differs from Rowe’s energy rate E , which was defined as 
the ratio of work in to work out of the system. It may be 
obtained from test observations. Solving for λ:

                            (15) 

We must now find the maximum value of λ so we can make 
it equal to φc to satisfy the friction law. To find the value of   
β  that maximizes λmax, which we will denote as βm, we first 
differentiate both sides of Eq. (15) with respect to β, obtaining: 
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We then substitute Eq. (14) into (16) and make / 0λ β∂ ∂ =  : 

max
m 4 2 4 2

cπ λ π φβ = − = −                                                          (17) 

Using the values of λmax and βm in Eq. (14) yields: 

                                 (18)
                           

Eq. (18) can be further simplified to 

cN DN=                                                                                 (19) 

by using the flow number Nc at critical state, defined as 

(20)
                          

Eq. (19) is the correct form of the stress-dilatancy relation 
for cohesive-frictional materials. An example of a study 
presented in the literature that correctly accounted for the 
effects of cohesion c is that of Lade and Overton (1989), who 
studied the stress-strain behaviour of cemented sands using    
Eq. (1) (and not Eq. (2)). They relied on Caquot's stress 
transformation principle to account for the effects of cohesion, 
so their work is consistent with the principles presented in this 
paper. 

1 cotcσ φ+

1 cotcσ φ+

3 cotcσ φ+3 cotcσ φ+

F

F

n

α

β

β

λ

θ

2
1 3 tan 2 tan

4 2 4 2
c

π φ π φσ σ= + + +

1

3

cot 1 sin

cot 1 sin

c
N

c

σ φ φ
σ φ φ

+ += =
+ −

( )1

3

cot
tan tan

cot

c
N

c

σ φ α β λ
σ φ

+= = +
+

1

1 tan tanh v

v

dV d
D

dV d

ε α β
ε

= = − =
−

1 sin

1 sin
D

ψ
ψ

+=
−

( )* tan

tan

N
E

D

β λ
β
+

= =

( )1 *tan tanEλ β β−= −

* 2 1 sin
tan

4 2 1 sin
c c

c

N
E

D

π φ φ
φ

+= = + =
−

1 sin

1 sin
c

c
c

N
φ
φ

+=
−



J. Zhang and R. Salgado / A Stress-Dilatancy Relation for Cemented Sands 513

Using Rowe's notation for the principal stress ratio, R =
σ1/σ3, and rearranging Eq. (10): 

3

2c
R N N

σ
= +                                                                      (21) 

Substituting Eq. (19) into (21): 

3

2
c c

c
R DN DN

σ
= +                                                              (22) 

Let us now compare Eq. (2) and (22).  For that, Eq. (2) can 
be rewritten in terms of R, D and Nc:

                   (23)                 

By comparing Eq. (22) and (23), we see that the second term 
on the right side of Eq. (23) is too large by a factor D .

The correct form of the stress-dilatancy relation to use in the 
Rowe framework is thus Eq. (22), which can also be expressed 
in terms of other stress and strain rate variables.  For example: 
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On examination of Eq. (24), we can see that without the 
incremental volume change, that is, with vdε = 0, Eq. (24) is 
simply the Mohr-Coulomb criterion with φ = φc. So the stress-
dilatancy relation may be seen as a generalization of the Mohr-
Coulomb criterion to include the effect of dilatancy rates on the 
friction angle φ.

In axisymmetric conditions, stresses are often expressed in 
terms of the mean p and deviatoric q stress variables, defined as: 

               (25)  

and 

(26)
             

The stress ratio  is then written as: 

q

p
η =                                                                                      (27) 

and the dilatancy rate as: 
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where p
vdε and p

sdε are the plastic volumetric strain rate and 
plastic deviatoric strain rate, respectively. In terms of these 
variables, Eq. (22) is rewritten as: 

                    (29)
                 

where M is the material constant related to the critical-state 
friction angle φc and mc is a term related to the cohesive 
intercept c, which is given by: 

(30) 

5 CONCLUSIONS 

In this paper, we derived a correct stress-dilatancy relationship 
for cemented sands. We did so in the transformed stress space, 
in which the material has the same φ but no cohesion or tensile 
strength. Application of a uniform hydrostatic stress field ccotφ
to the material compensates for making c = 0. The derivation 
further relies on use of Rowe’s saw-tooth model together with 
the application of the laws of friction.  Due to the incorrect 
hypothesis originally made, Eq. (2) (or its equivalent form,    
Eq. (23)) is incorrect. The correct equation to use in modeling 
cemented sands is Eq. (22) or its equivalent forms expressed in 
terms of other stress and strain variables, Eqs. (24) and (29). 
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