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Influence of random soil parameters on seismic vibration of extended structures 
Influence des paramètres aléatoires du sol sur les oscillations sismiques des bâtiment oblong 

M.L. Kholmyansky 
NIIOSP Research Institute, State Research Centre “Civil Engineering”, Moscow, Russian Federation 

ABSTRACT 
The influence of random soil dynamical parameters on seismic vibrations of extended structures is studied. The excitation is modeled
by vector random process. Soil dynamic parameters are supposed random variables stochastically independent on random excitations. 
The problem is solved as linear. General equations are given. A simple specific case is being considered: system with two elastically
connected masses, each of them is situated on soil. The numerical results obtained show that accounting for random soil parameters
may alter the system response significantly. 

RÉSUMÉ
L’influence des paramètres dynamiques aleatoires sur vibrations des ouvrages etendues est analysee. L’excitation est simulees par un
vecteur aleatoire de processus. Les paramètres dynamiques du sol sont prises stochastiquement indépendants des excitations
aleatoires. Le problème est resolue comme lineaire. Les équations generales sont presentees. En cas simple est analysee: un système
avec deux masses liees elastiquement, chacune reste sur sol. Les resultats numeriques obtenuees montrent que le compte tenue des
parametres dynamiques de sol peut changer la réponse considerablement. 
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1 INTRODUCTION 

The influence of soil-structure interaction on vibration under 
seismic excitation was studied in many works. Since the seismic 
excitation is indeterminate to a high degree it was often 
described as random processes (Newmark & Rosenblueth 
1971). The paper considers seismic excitation as random 
process with many components.  

Randomness of parameters of vibrating system itself must be 
considered also. Some results are found in the literature. 

Discrete system with Rayleigh damping representing 
machine foundation was supposed having random parameters 
with given distribution and small coefficients of variation; 
response correlation function was obtained using modal 
decomposition (Mironowicz & niady 1987).  

Numerical results were obtained for spectral characteristics 
of response for single-degree-of-freedom vibratory systems with 
stiffness and damping being random variables with uniform 
distribution under stationary random excitation (Kotulsky & 
Sobczyk 1987).  

Udwadia (1987) considered single-degree-of-freedom 
oscillator under force and kinematic random excitation with its 
parameters being random variables. For the stationary random 
excitation closed form expression for the response power 
spectral density function was found. Numerical examples 
showed that the system parameters randomness leads to 
significant response randomness.  

Numerical results were obtained by Chaudhuri & Gupta 
(2002) for structural response when shear wave velocity and 
Poisson's ratio of the soil were assumed to be statistically 
independent variables with Gaussian distributions. Rieck and 
Houston (2003) provided numerical results for nuclear reactor 
containment building on soil with random properties under 
earthquake excitation (stationary random process).  

General results were obtained (Kholmyansky 1997; 
Kholmyansky 2000) within the framework of Bolotin (1984); 

soil randomness was taken into account and problems 
concerning vibration of soil masses (Kholmyansky 2003) and 
structures (Kholmyansky 2007) were solved. It was supposed 
(Kholmyansky 2003; Kholmyansky 2007) that seismic 
excitations are equal and in-phase along all the structure or soil 
mass and may be described with a single random process.  

Yet existing methods for soil-structure interaction 
calculation may account for spatial variability of seismic 
vibrations leading to different random excitations for bridge 
piers (Tseng & Penzien 2003), random properties of soil itself 
are not accounted for.  

Some approaches to improve that situation were obtained 
recently (Kholmyansky 2008); the present paper is devoted to 
their illustration and development: the problem of vibration of 
an arbitrary structure interacting with soil with random 
dynamical parameters under several scalar random excitations 
(or single vector excitation) is stated and solved. 

2 DESCRIPTION OF GENERAL RESULTS FOR SYSTEM 
WITH RANDOM PARAMETERS UNDER 
NON-STATIONARY AND STATIONARY RANDOM 
VECTOR EXCITATION 

2.1 Problem statement 

The periods of alteration of properties of soils and structural 
materials are some orders of magnitude greater than the periods 
of natural vibration of structures, so system parameters are 
assumed to be time invariant (random variables).  

Spatial variation of soil dynamic properties may be 
considering indirectly (by increasing the overall parameters of 
scatter for soil). Soil variability is of substantial level, so 
perturbation method will not be used. The consideration is 
limited to dynamic loads of moderate level leading to linear 
behaviour.  
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Input excitations xj(t) are regarded as random processes with 
zero mean (either a force or a foundation displacement). The 
random processes xj(t) and the system random parameters are 
assumed to be stochastically independent. Soil-structure system 
may be considered having multiple responses also 
(displacements, accelerations, forces etc.).  

The system is supposed linear, so general approaches 
(Bendat & Piersol 1980) for systems with multiple inputs 
(excitations) and multiple outputs (responses) may be used. The 
responses y(t) and z(t) may be written  
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where gj(t), hk(t) are the weighting functions (for physically 
realizable system gj(t) = hk(t) = 0 for t < 0), n is the number of 
inputs and t — the time. It is easy to see that y(t) and z(t) are 
zero-mean random processes.  

2.2 Non-stationary excitation: time domain 

Cross-correlation function for y(t) and z(t) is obtained easily 
from independence of system parameters and excitations:  
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where lower indexes of K denote random processes (whose 
cross-correlation function is being calculated). Further, cross-
correlation function for y(t) and xl(t) is
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where overbar means expected value. For the special case of 
systems with one input and with z = y Equation 2 was obtained 
earlier (Pugachov 1962).  

2.3 Stationary excitation: frequency domain 

If all xj(t) are stationary random processes then y(t) and z(t) are 
stationary too. Power spectral density functions (PSD) 
describing vibration energy distribution among the vibration 
angular frequencies  are convenient in that case. They are 
obtained from correlation functions by Fourier transformation 
(Bendat & Piersol 1980) giving 
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where S is PSD with lower indexes denoting corresponding 
random processes and 
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Equation 5 may be transformed to use random transfer 
functions Gj( ) and Hk( ) directly: 
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That makes possible to avoid analysis in time domain and 
use spectral properties only. 

PSD for structures on soil with uncertain (random) 
properties of both soil and structures were calculated by 

Mochio et al. (1992) using stochastic finite element method 
and first-order second-moment method; for rather low level of 
coefficient of variation 0.1 the obtained results are confirmed 
by Monte Carlo method. The equation obtained by Udwadia 
(1987) for single-degree-of-freedom system is equivalent to 
Equation 4.  

3 A SOIL-STRUCTURE INTERACTION MODEL FOR 
MULTIPLE SUPPORT EXCITATION OF TWO-MASS 
STRUCTURE  

As it is well-known waves travelling in soil approach separate 
foundations of a long-span structure with some phase lag (and 
sometimes with amplitude difference). This process is shown on 
Fig.1 with soft soil layer and underlying bedrock. The two 
supports of the structure are distant, so there is no cross-
interaction of their foundations through soil.  

Figure 1. Seismic excitation travelling trough rocks and soft soils to an 
extended structure  

To analyse such a problem a model of soil-structure system 
with two degrees of freedom on two separately moving supports 
is applied (see Figure 2). Spring and damping constants for the 
soil bases are kj and bj

Figure 2.  Two-mass structure with two supports on soil 

The inputs x1 and x2 are free-field displacements g1 and g2;
the output (response) is the force  
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The resulting transfer functions are 

jj
j

j

p ( )1
H ( ) ( 1)

D( ) s ( )

ω
ω = −

ω ω
, (8) 

where 

j j jp ( ) k i bω = + ω , 1 2D( ) 1/ k ' 1/ s 1/ sω = + + , 2
j j js ( ) p mω = − ω

 (9) 

From now on we shall omit g denoting excitation (input) 
and second y in indexes. For example, Equation 4 becomes  
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4 PROBABILISTIC PROBLEM STATEMENT 

4.1 Random excitations 

Input stationary excitations are chosen to have well-known 
Kanai-Tajimi spectrum (Kramer 1996) with predominant 
ground frequency g and damping ratio g:
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The cross-spectral density S12( ) may vary.  
Consider first the symmetric system (m1 = m2, k1 = k2, b1 = 

b2). It is easy to obtain that T11( ) = T22( ) = – T12( ). Specify 
three cross-spectral densities. 

(a) Excitations are identical: g1(t) = g2(t), S12( ) = S1( ). In 
that case the mass displacements are identical and response 
(force) spectral density is zero,  

Sy( ) = 0 (12) 

(b) Excitations are non-correlated: S12( ) = 0, whence 

 Sy( ) = 2T11( )S1( ) (13) 

(c) Excitations have deterministic time lag: g2(t) = g1(t– ). 
The excitation cross-spectral density S12( ) = S1( )exp(–i )
and  

Sy( ) = 2T11( )S1( )[1–cos( )] (14) 

Cases (a) and (b) may be considered as limiting special cases 
of case (c).  

From now on only the excitations with deterministic time lag 
will be considered. This assumption is one of the simplest and 
corresponds to deterministic bedrock properties and thin soft 
soil layer.  

4.2 Soil random properties 

Soft soil layer properties determine stiffness and damping of the 
soil bases. The simplest supposition is made that its random soil 
dynamical properties are not varying in space. Soil elastic 
modulus is therefore a random variable; the density is taken a 
deterministic constant since its random variability is 
significantly less. Each soil base is described by stiffness and 
damping — random variables determined by random soil 
elasticity modulus.  

Soil base stiffness is proportional to soil elasticity modulus, 
while the damping is proportional to the square root of the 
modulus (Richart et al. 1970; SNiP 1988): 

jk E const= × , jb E const= ×  (15) 

Since that damping ratios are deterministic. 
Elasticity modulus distribution is supposed uniform for 

simplicity. The coefficient of variation is 0.29 (Kholmyansky 
2000) as it follows from the experimental data obtained by 
Barkan et al. (1974).  

5 STUDYING THE INFLUENCE OF RANDOM SOIL 
PARAMETERS ON STRUCTURAL FORCE 

PSD functions corresponding to the system with random 
parameters (solid line) and deterministic system (dotted line) are 
shown in Figure 3.  

Here kj have mean values 1 and 1.5; k' = 0.1, m1 =1 and m2 = 
2 are deterministic. Damping ratio for each partial system is 0.1 
(determined under supposition of no interaction between 
masses); ground damping ratio is 0.1. Predominant ground 
frequency is twice the system partial frequency for the first 
mass. Excitations time lags are 0, 2, 7 and 20.  

Fig. 3 shows significant effect of soil randomness. It is 
seen that the soil stiffness randomness lowers the resonant 
peak, but increases to some extent the response in its 
neighbourhood.  
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Figure 3. PSD functions for soil-structure system responses with 
deterministic parameters (dotted line) and with random parameters 
(solid line) for different time lags 
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4 CONCLUSIONS 

A calculation method of seismic vibration for extended 
structures interacting with soil with account for soil parameter 
randomness was developed.  

The main results are obtained for the stationary random 
excitation with multiple components (vector excitation). 
Different deterministic and stochastic interdependences between 
the components were considered. 

Soil randomness was accounted for in a simple way making 
it possible to obtain numerical results easily. Possible 
significant influence of soil random properties on earthquake 
response was shown.  

The results obtained seem promising and showing the need 
for further research. The main tasks for future investigations are 
problem statement examining and refining along with proper 
input data obtaining. 
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