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ABSTRACT 
In this paper, the SPH method is applied to evaluate stability of a slope and to simulate the gross discontinuities after failure. Herein, 
the Drucker-Prager model with non-associated plastic flow rule is employed to describe the elasto-plastic soil behaviour. The shear
strength reduction method is applied to estimate the safety factor of a slope, while critical slip surface is automatically determined 
from contour plot of accumulated plastic strain. To take into account the pore-water pressure, a new SPH momentum equation is 
proposed. It is shown that by using this new expression of momentum equation, the free-surface boundary condition between water 
and submerged soil is automatically imposed without explicitly implementing a computational procedure to calculate an external
force (pressure force). This paper suggests that the new SPH momentum equation developed herein is also applicable for further
developments of SPH for saturated/unsaturated soils. As an application of the proposed method, slope stability analyses and slope 
failure simulations of a two-side earth embankment are performed and then comparing with traditional solutions. Very good
agreements with limit equilibrium method and finite element method (FEM) have been obtained. This suggests that SPH is a
promising method for the current application, especially for handling large deformation and failure of a slope subjected to heavy
rainfall or earthquake loading. 

RÉSUMÉ
Dans ce papier, la méthode SPH est appliquée pour évaluer la stabilité d'une pente et simuler des discontinuities à grande échelle 
après l'échec. Ici, le modèle de Drucker-Prager avec la règle non-associée d'écoulement plastique est employé pour décrire le 
comportement de sol elasto-de-plastique. La méthode de réduction de limite de cisaillement est appliquée pour estimer le facteur de
sécurité d'une pente, alors que la surface critique de glissement est déterminée des courbes isovaleurs de deformation plastique
accumulé. Pour tenir compte de la pression eau, une nouvelle équation dynamique SPH est proposée. Il est montré que grace à cette
nouvelle expression, la condition de surface libre entre le sol et l'eau est automatiquement imposée sans calculer explicit de une force 
externe de pression (pression force). Nous suggère que cette nouvelle équation dynamique SPH sera utile pour pour divers 
applications futures de SPH aux sols saturés/non saturés. A titre d'exemple, la méthode est appliqué à l'analyse de stabilité des pente et 
aux simulations d'échec des pente de remblais de terre a deux côtés, et les resultats sont ensuite comparés avec les solutions 
traditionnelles. De très bons accords avec la méthode d'équilibre de limite et la simulation FEM ont été obtenus. Cela suggère que la 
SPH est une méthode prometteuse pour simuler des talus, surtout pour la grande déformation et la rupture des talus sous pluviometrie 
intense ou subissant des séismes. 
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1 INTRODUCTION 

FEM has been considered as the standard numerical method for 
computational geomechanics. However, when dealing with 
large deformation and failure, FEM exhibits several 
disadvantages due to the grid distortion problem. Thus, the SPH 
method has been recently developed to resolve this limitation. 
SPH was originally invented for astrophysical applications 
(Lucy, 1977; Monaghan & Gingold 1977). Since its invention, 
it has been successfully applied to a vast range of problems such 
as dynamic response of material strength (Libersky
1993), fluid flow (Monaghan 1994), etc. The recent SPH 
application to soil mechanics was performed by Maeda et al. 
(2004) in which a simple nonlinear elastic model was employed 
to simulate granular soil. Since then, many researchers have 
attempted to use SPH for large deformation and failure 
simulations of geomaterials. However, no implementations of 
SPH that solve plastic soil behaviour were available until our 
group implemented elasto-plastic soil constitutive models (Bui 
et al. 2007-2008), which has demonstrated successful 
performance of SPH for simulating such problems as slope 
failure, bearing capacity that are commonly found in 

geotechnical engineering. In this study, to enhance our proposed 
method for computational geomechanics, SPH is extended to 
evaluate stability of a slope and to simulate the gross 
discontinuities of soil after failure. Herein, the soil is modeled 
by the Drucker-Prager model with non-associated plastic flow 
rule. The shear strength reduction technique (Griffths et al., 
1999) is applied to estimate the safety factor (FOS), while the 
critical slip surface is determined through contour plot of 
accumulated plastic strain. To take into account the pore-water 
pressure, new SPH governing equation is proposed to include 
accurate pore-pressure value. Herein, the gradient of pore-water 
pressure appeared in the momentum equation is approximated 
in the SPH formulation to ensure that the gradient of a constant 
pore-water pressure field is vanished. Finally, SPH is applied to 
model two-side earth embankment, which was analyzed by 
Griffths et al. (1999). Two study cases are considered 
throughout: homogeneous embankment with free surface, and 
embankment without free surface. Results are then compared 
with the limit equilibrium method and FEM (Griffths et al. 
1999). Very good agreements in term of safety factors and 
critical slip surfaces have been obtained. However, the key issue 
of using the proposed method is that SPH can simulate whole 



H.H. Bui et al. / Slope Stability Analysis and Slope Failure Simulation by SPH 1579

failure process of the slope while such problem becomes 
troublesome with the traditional methods. This suggests that 
SPH is a promising method to simulate slopes especially for 
large deformation and failure of a slope subjected to heavy 
rainfall or earthquake loading. 

2 SIMULATION APPROACHES 

2.1  Motion equation 

The motions of a continuum media can be described through the 
following equation, 
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In the SPH framework, the above equation can be approximated 
through the use of a kernel interpolation, leading to 
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where i is the particle under consideration; N is the number of 
neighbouring particles, i.e. those in the support domain of 
particle i; m is the mass of particle; α and β denote Cartesian 
components x, y, z with the Einstein convention applied to 
repeated indices; ρ is the density; v is the velocity; σ′  is the 
effective stress tensor; Wij is the smoothing function. Herein the 
cubic spline function (Monaghan 1985) is adopted; and f α is the 
external force.  

As discussed by Bui et al. (2007), SPH encounters the so-
called “tensile instability” problem when applied to cohesive 
soil. To remove this problem, they have proposed to use an 
artificial stress method, originally invented by Gray et al. 
(2001). Accordingly, equation (2) is modified to, 
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where n is a parameter; d0 is the initial distance between 
particles; h is the smoothing length, which specified the non-
zero region of the smoothing function; and Rij is obtained as 
follows. For each particle the effective stress tensor αβσ ′ is
diagonalised. Then an artificial stress term is evaluated for any 
of the diagonal components αβσ ′ which are positive, 
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where ε0 is a small parameter ranging from 0 to 1. The artificial 
stress in the original coordinates system Rij is then calculated by 
reverse coordinates transformation. Gray et al. (2001) derived 
optimal values from the dispersion equations, and suggested to 
use ε0 = 0.3 and n = 4 when applied SPH to solid. However, Bui 
et al. (2008) showed that these selections can not remove the 
tensile instability problem found when simulating cohesive soil. 
Instead, they suggested to use ε0 = 0.5 and n = 2.55, and proved 
that these values have no effect on the modeled soil behaviour. 
In this paper, the same values are applied.  

Although the tensile instability problem can be removed by 
using the artificial stress term, results obtained from SPH may 
still suffer from stress fluctuation, which results from the non-
uniform particle distribution in space when particles get too 
close to each other. This problem is actually found in most SPH 
applications to engineering practice. In order to damp out such 
unphysical stress fluctuation, an additional artificial viscosity 
term proposed by Monaghan (1983) is often added to the 
momentum equation. Accordingly, equation (3) is further 
modified to, 
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In the above artificial viscous term ∏ij, α∏ is a constant 
parameter which is set to be 0.1, and c is the sound speed, which 
should be chosen similar to Bui et al. (2008). 

When considering the presence of water in soil media, it is 
necessary to take into account the pore-water pressure (pw) into 
the momentum equation. Directly replacing the total stress 
tensor, which consists of effective stress and pore-water 
pressure, into equation (6) will result in numerical instability for 
soil particles near the submerged soil surface. To remove this 
problem, Bui et al. (2009) has derived a new SPH formulation 
of the momentum equation where the pore-water pressure is 
implemented in the following way, 

=

=

+
∂
∂

−+

∂
∂

Π++
′

+
′

=

N

j

ij
wiwj

ji

j

N

j

ij
ijij

n
ij

j

j

i

i
j

i

f
x

W
pp

m

x

W
RFm

dt

dv

1

1
22

)( α
β

β
αβαβ

αβαβα

ρρ

δ
ρ

σ
ρ

σ
 (9) 

It is easy to see that this equation ensures that the gradient of a 
constant pore-water pressure field vanishes. Furthermore, the 
above expression of pore-water pressure automatically imposes 
the dynamic boundary condition at the free surface. For details 
of driving this equation, we refer the readers to our coming 
publication (Bui et al. 2009). Finally, the above motion equation 
can be solved directly using the standard Leapfrog algorithm if 
the effective stress tensor is known. Thus, it is necessary to 
derive constitutive equations for the effective stress tensor that 
are applicable in the SPH framework. 

2.2 Soil constitutive modeling 

According to the classical plasticity theory, the total strain rate 
tensor of an elasto-plastic material is decomposed into two 
parts: an elastic strain rate tensor and a plastic strain rate tensor, 

αβαβαβ εεε pe +=  (10) 

The elastic strain rate tensor is given by a generalized Hooke 
type of  law, i.e., 
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where αβs′  is the deviatoric effective shear stress tensor; υ is 
Poisson’s ratio; E is the elastic Young’s modulus; G is the shear 
modulus and mσ ′ is the effective mean stress. 

The plastic strain rate tensor is calculated by the plastic flow 
rule, which is given by 
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where λ  is the rate of change of plastic multiplier, and g is the 
plastic potential function.  

In the current study, the Drucker-Prager model with non-
associated flow rule is applied to model the soil. In addition, 
this study assumes that the yield surface is fixed in stress space. 
Accordingly, the plastic deformation will occur only if the 
following yield criterion is satisfied, 

0),( 1221 =−+= ckIJJIf φα  (13) 

where I1 and J2 are, respectively, the first and second invariants 
of stress tensor; αφ and kc are the Drucker-Prager constants, 
which are calculated by, 
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where c is the cohesion and φ is the internal friction angle. For 
the non-associated plastic flow rule, the plastic potential 
function is given by, 

21 sin3 JIg += ψ  (15) 

Substituting equations (11), (12) into (10), and adopting the 
Jaumman stress rate for large deformation treatment, the stress-
strain relation for the current soil model at particle i becomes, 
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where αβe  is the deviatoric shear strain rate tensor; ψ  is the 
dilatancy angle; λ  is the rate of change of plastic multiplier, 
which in SPH is specified by, 
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and αβε i
, αβωi

 are respectively the strain rate and spin rate 
tensors defined by, 
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The above soil constitutive model requires six soil parameters, 
which are the cohesion coefficient (c), friction angle (φ), 
dilation angle (ψ), and Young’s modulus (E), Poisson’s ratio 
(υ), and soil density (ρ).

2.3 Shear strength reduction method 

To calculate the safety factor of a slope defined by the shear 
strength reduction technique (Griffths et al., 1999), a series of 
stability analyses are performed with reduced shear strength 
parameters ct and φt defined as follows, 
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where c and φ are real shear strength parameters, and FOSt  is 
the trial safety factor. Normally, initial FOSt is set to be 
sufficiently small so that the system is stable. Then, the value of 
FOSt is increased gradually until the slope fails. The final value 
of FOSt that makes the slope fail is defined as the safety factor 
of the slope, which is identical to the one in limit equilibrium 
method. 

3 NUMERICAL APPLICATIONS 

To validate the proposed method for slope stability analysis and 
slope failure simulation, the two-side earth embankment model 
analyzed by Griffths et al. (1999) is employed herein, Figure 1. 
The embankment is assumed to be made of homogeneous soil 
with E = 105kN/m2, υ = 0.3, φ = 37o, c = 13.8kN/m2, and γ = 
18.2kN/m3 (below and above the free surface). The boundary 
conditions consist of vertical rollers on the faces at the left and 
right ends and full fixity at the base of the foundation layer. 
According to Griffths et al. (1999), FEM analyses gave FOS = 
2.4 for the slope without considering free surface and FOS = 1.9 
for the slope with free surface. These results are in close 
agreement with limit equilibrium analyses, which gave FOS = 
2.42 for the slope without free surface and FOS = 1.9 for the 
slope with free surface. 

The SPH results of slope stability analysis by shear strength 
reduction technique are shown in Figure 2. It can be seen that 
computation is unconvergent when FOSt = 2.4 for the slope 
without free surface and FOSt = 1.9 for the slope with free 
surface. These values of FOSt are considered as the safety 
factors of the current slopes, which are in very close agreement 
with FEM and limit equilibrium analyses obtained by Griffths et 
al. (1999). It is noted that for the case with free surface, the 
pore-water pressure was calculated as the product between unit 
weight (γw) of water and the vertical distance of particle beneath 
the free surface. The more accurate pore-water pressure 
distribution can be obtained by solving the seepage flow 
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Reservoir level 
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17.1 
21.3 
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23o
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Figure 1: Two-side earth embankment model (Griffths et al. 1999) 

124.4 

7.3



H.H. Bui et al. / Slope Stability Analysis and Slope Failure Simulation by SPH 1581

equation using either FEM or SPH. Such works are postponed 
to a future publication. 

Regarding the critical slip surface, Figure 3 shows the 
contour plot of accumulated plastic strain corresponding to 
unconvegent SPH solutions as compared to the circle slip 
surface obtained from the limit equilibrium method (Griffths et 
al., 1999). As expected, the failure occurs on the steeper, 
downstream side of the embankment in both cases. Again, close 
agreements are obtained between SPH and the limit equilibrium 
method. The slight difference between two methods can be 
explained due to the assumption of circle slip surface in the 
limit equilibrium method though almost similar result was 
obtained for the case without free surface. In addition, the toe 
failure mechanism is also observed in SPH with a deeper 
mechanism extending into the foundation layer for the case with 
a free surface. 

Figure 4 shows the final configuration of the slopes after 
collapse, via contour plot of total displacements. The gross 
discontinuous failure along the slip surface, which is unable to 
model by FEM, can be now described very well by SPH. 
Numerical simulation can be performed as long as desired 
without encountering any problems. Furthermore, comparison 
between two cases shows that the failure zone is enlarged for 
the case with a free surface. This result is also similar to what 
obtained by Griffths et al. (1999). 

4 CONCLUSIONS 

This work presented a new approach for slope stability analysis 
and slope failure simulation using the SPH method. Herein, the 
Drucker-Prager model with non-associated plastic flow rule is 
applied to describe the elasto-plastic soil behavior. The shear 
strength reduction method is employed to estimate the safety 
factor of the slope, while the critical slip surface is decided 
through the contour plot of accumulated plastic strain. 
Furthermore, a new SPH momentum equation was also 
proposed to include accurate pore-water pressure into the 
momentum equation. Results obtained from this study show that 
SPH could give good agreements with FEM and the limit 
equilibrium method in term of the safety factor and critical 
mechanism of failure. However, the advantage of using SPH, 

which is over FEM and the limit equilibrium method, is that it 
can simulate the whole failure process of the slope. This 
suggests that SPH is a promising method for the current 
applications, especially for large deformation and failure of a 
slope subjected to heavy rainfall or earthquake loading. The 
new SPH equation proposed in this paper can be considered as 
the basic equation for future implements of such purposes. 
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Figure 2: Convergent/unconvergent analyses of slope stability via the shear strength reduction technique by SPH. 
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Figure 3: Critical slip surfaces obtained from SPH (color band) and limit equilibrium method (red dash-line). 
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