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substances 

Caractérisation mathématique de la compression sous 10.000 MPa de trente-neuf substances 

E. Juárez-Badillo & S. Hernández-Mira 
Graduate School of Engineering, National University of Mexico 

ABSTRACT 
A very simple theoretical equation given by the Principle of Natural Proportionality for the compressibility of
geomaterials: ( )[ ] γσ −+= iiVV 0  is applied to the experimental data obtained by P.W. Bridgman in thirty-nine substances from 0 to 
100,000 kg/cm².  Independently of polymorphic transitions, the compression response of the natural solid substances presented in this
paper is described by this simple theoretical equation with constant natural internal pressures i and constant natural coefficients of
compressibility 1<γ .

RÉSUMÉ
Une équation théorique très simple donnée par le principe de la Proportionnalité Naturelle pour la compressibilité des
géomatériaux: ( )[ ] γσ −+= iiVV 0  est appliquée aux données expérimentales obtenues par P.W. Bridgman pour trente-neuf substances 
soumises à des pressions allant de 0 à 10.000 MPa. Indépendamment des transitions polymorphes, la réponse à la compression des
substances solides naturelles présentée dans ce document est décrite par cette équation théorique simple avec des pressions internes
naturelles constantes i  et des coefficients naturels de compressibilité constants 1<γ .
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1  INTRODUCTION 

“The compression of 39 substances to 100,000 kg/cm²” is the 
title of a paper by P.W. Bridgman of the Lyman Laboratory of 
Physics of Harvard University, Cambridge, Mass., published in 
Proc. Am. Acad. Arts. Sci., Vol. 76, No. 3, pp. 55-69-March, 
1948.  In the present paper all the experimental data are 
reproduce by a very simple theoretical equation provided by the 
Principle of Natural Proportionality (Juárez-Badillo 1985). 

2 GENERAL THEORETICAL EQUATION

The very simple general theoretical equation reads (Juárez-
Badillo 1965) 
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where =V volume, =p total pressure, =γ natural coefficient of 
compressibility and ( )=00 , pV initial point.  In this case σ+= ip
where =i internal pressure and =σ external pressure.  Initially 
the internal pressure i  was not considered and the Equation 1 
for clays was extended to all types of soils 
(Juárez-Badillo 1981) and to concrete (Juárez-Badillo 1985). 

Grimer & Hewitt (1968) found for the relation between 
pressure and volume for water at 60oC, using Bridgman 
experimental data, the next expression 

=6pV constant (2) 

where ip +=σ , =σ  external pressure, 
atmosheresi 3750= .  Equation 2 may be written in the form of 

Equation 1 with 61=γ .

Some of the substances present discontinuities of volume 
trΔ  at polymorphic transitions; therefore Equation 1 is modified 

to

triV
V Δ−+=

−γσ1
0

 (3) 

where trΔ will be taken into account after their occurrence.  The 
authors suggest to the readers of this paper to read the paper by 
Bridgman for a complete information on the experiments he 
realized. 

Equation 3  has already been applied to the compression to 
40,000 kg/cm2 of certain liquids and to the compression to 
45,000 kg/cm2 of fourteen substances using Bridgman 
experimental data founding that parameters γ  and i  remain 
constant, both of them, even in the liquids that present freezing 
under certain pressure and also when some liquids present a 
second polymorphic transition, and they also remain constant, 
both of them, in the solid substances, even in the substances that 
present polymorphic transitions (Juárez-Badillo & 
Hernández-Mira 2006 a, b). 

To obtain the parameters γ and i  it should be taken into 
account that 0VV decreases more rapid when γ  increases and 
i  decreases.  Figure 1 illustrates how the compressibility curves 
change when γ and i  change such that they have a constant 
final point.  In this graph the curves rise, with higher values of 

0VV , as the values of γ and i  increases.  The highest curve 
with 1=γ  lowers for smaller values γ and i .

To obtain γ and i  a final experimental point is chosen and 
with an assumed value of γ , the corresponding value of i  is 
obtained from the equation 
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and later on the values of γ  and i  are changed until a very 
good theoretical curve is obtained for the experimental points. 

Figure 1.  Comparison of different theoretical curves  

It is important to note that the traditional linear bulk modulus 
K  is given by 
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and at the origin, 0=σ

γ
iK =0  (6) 

Also, notice that when  ∞→σ , 0→V and due to trΔ  the 
value V  tends to zero at a finite value of the pressure σ .

In the present paper Equation 3 is applied to the 
experimental data obtained by Bridgman on 39 substances.  The 
39 substances are: five alkali metals, 17 other elements (with 
two types of the element phosphorus: black and violet), 9 
compounds: the sulfides, selenides and tellurides of zinc, 
mercury and lead, and quartz crystal and six glasses. 

3 PRACTICAL APPLICATION 

The values of γ and i  for the different experimental curves 
were obtained from Equation 3, programmed in a computer 
together with the experimental data, such that the sum of the 
squares of the differences among the experimental and 
theoretical values were a minimum.  Equation 4 was used in 
some cases to try to improve the results. 

Some comments on the different figures follow. 
Figure 2 presents the theoretical curves and experimental 

data for the alkali metals: lithium, sodium, potassium, rubidium 
and caesium contained in Table I of Bridgman’s paper. “These 
are of especial theoretical interest because the structure of these 
elements is sufficiently simple to permit theoretical calculation 
of the volume changes under pressure”. 

Figures 3 and 4 present the compression for the 
elements: Be, C (Graphite), Mg, Al, Si, Phosphorus (Black and 
Violet), Ti, Mn, Ge, As, Zr, La, Ce, Pr, Nd, Th and U. 

Figure 5 presents the compression of the 9 compounds: the 
sulfides, selenides and telllurides of zinc, mercury and lead. 

Figure 6 presents the compression of Quartz Crystal and six 
glasses: Quartz Glass, Glass “A”, Pyrex Glass, Glass “C”, Glass 
“D” and Borax Glass. 

Figure 2.  Compression of the alcali metals (Table I) 

Figure 3.  Compression of various elements (Table IIa) 

Figure 4.  Compression of various elements (Table IIb) 

From the above figures it may be observed that the values of 
γ  were between 0.037 and 0.317 while the values of i  were
between 2,428 to 127,044 kg/cm2.  The Caesium (Figure 2) 
presented the 317.0=máxγ with 2/079,6 cmkgi= .  The minimum 
value of 037.0min =γ  is for the sulfide of mercury HgS 
(Figure 5) with 2/770,3 cmkgi= . The maximum value of 
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2/044,127 cmkgimáx =  is for the telluride of lead PbTe (Figure 5) 
with 271.0=γ  while the minimum value of 2min /428,2 cmkgi =
is for Ce (Figure 4) with 092.0=γ .  In general it may be 
observed that low values of γ  are associated to low values of i
and high values of γ  are associated to high values of  i .

Figure 5.  Compression of various compounds (Table III) 

Figure 6.  Compression of quartz crystal and six glasses (Table IV) 

4 CONCLUSIONS 

Independently of polymorphic transitions, the compression 
response of all natural solid substances is described by the 
Equation 1, with constant natural internal pressures i  and 
constant natural coefficients of compressibility 1<γ .

The natural coefficients of compressibility γ  varied 
between 0.037 and 0.317 and the values of the internal pressure 
i  varied between 2,428 and 127,044 kg/cm2.

Equation 1 is such that when the pressure σ  tends to ∞  the 
volume tends to zero, but due to the polymorphic transitions, all 
liquids and solids tend to volume zero at finite values of the 
pressure σ .
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