
A Scalable, Transactional Data Store
for Future Internet Services�

Alexander Reinefeld, Florian Schintke, Thorsten Schütt, Seif Haridi

{reinefeld,schintke,schuett}@zib.de
Zuse Institute Berlin and onScale solutions

and
haridi@kth.se

Royal Institute of Technology, Sweden

� This work was partly funded by the EU projects SELFMAN under grant IST-34084
and the EU project XtreemOS under grant IST-33576.

Abstract. Future Internet services require access to large volumes of
dynamically changing data records that are spread across different loca-
tions. With thousands or millions of distributed nodes storing the data,
node crashes or temporary network failures are normal rather than excep-
tions and it is therefore important to hide failures from the application.

We suggest to use peer-to-peer (P2P) protocols to provide self-manage-
ment among peers. However, today’s P2P protocols are mostly limited to
write-once/read-many data sharing. To extend them beyond the typical
file sharing, the support of consistent replication and fast transactions is
an important yet missing feature.

We present Scalaris, a scalable, distributed key-value store. Scalaris is
built on a structured overlay network and uses a distributed transaction
protocol. As a proof of concept, we implemented a simple Wikipedia
clone with Scalaris which outperforms the public Wikipedia with just a
few servers.

1 Introduction

Web 2.0, that is, the Internet as an information society platform supporting
business, recreation and knowledge exchange, initiated a business revolution.
Service providers offer Internet services for shopping (Amazon, eBay), online
banking, information (Google, Flickr, Wikipedia), social networking (MySpace,
Facebook), and recreation (Second Life, online games). In our information soci-
ety, Web 2.0 services are no longer just nice to have, but customers depend on
their continuous availability, regardless of time and space. A typical trend is illus-
trated by Wikipedia where users are also providers of information. This implies
that its underlying data store is updated continously from multiple sources.

Towards the Future Internet
G. Tselentis et al. (Eds.)

IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-60750-007-0-148

148



How to cope with such strong
demands, especially in case
of interactive community ser-
vices that cannot be sim-
ply replicated? All users ac-
cess the same Wikipedia, meet
in the same Second Life en-
vironment and want to dis-
cuss with others via Twitter.
Even the shortest interrup-
tion, caused by system down-
time or network partitioning
may cause huge losses in rep-
utation and revenue. Web 2.0
services are not just an added
value, but they must be de-
pendable. Apart from 24/7
availability, providers face an-
other challenge: they must, for
a good user experience, be able
to respond within milliseconds
to incoming requests, regard-
less whether thousands or mil-
lions of concurrent requests
are currently being served. In-
deed, scalability is a key chal-
lenge. In addition to scalabil-

Availability is the proportion of time a sys-
tem is in a functioning condition. More
formally, availability is the ratio of the ex-
pected value of the uptime of a system to
the aggregate of the expected values of up
and down time. Availability is often spec-
ified in a logarithmic unit called “nines”
which corresponds roughly to a number
of nines following the decimal point. “Six
nines”, for example, denote an availability
of 0.999999, allowing a maximum down-
time of 31 seconds per year.

Scalability refers to the capability of a sys-
tem to increase the total throughput un-
der an increased load when resources are
added. A scalable database management
system is one that can be upgraded to
process more transactions by adding new
processors, devices and storage, and which
can be upgraded easily and transparently
without service interrupt.

Self Management refers to the ability of a
system to adjust to changing operating
conditions and requirements without hu-
man intervention at runtime. Self Manage-
ment includes self configuration, self heal-
ing and self tuning.

ity and availability any global service to be affordable, somehow requires the
system to be self managing (see sidebar).

Our Scalaris system, described below, provides a comprehensive solution for
self managing and scalable data management. Scalaris is a transactional key-
value store that runs over multiple data centers as well as on peer-to-peer nodes.
We expect Scalaris and similar systems to become an important core service of
future Cloud Computing environments.

As a common key aspect, all Web 2.0 services have to deal with concurrent
data updates. Typical examples are checking the availability of products and
their prices, purchasing items and putting them into virtual shopping carts,
and updating the state in multi-player online games. Clearly, many of these
data operations have to be atomic, consistent, isolated and durable (so-called
ACID properties). Traditional centralized database systems are ill-suited for this
task, sooner or later they become a bottleneck for business workflow. Rather, a
scalable, transactional data store like Scalaris is what is needed.

In this paper, we present the overall system architecture of Scalaris. We have
implemented the core data service of Wikipedia using Scalaris. Its scalability and
self-* capabilities were demonstrated in the IEEE Scalable Computing Challenge

A. Reinefeld et al. / A Scalable, Transactional Data Store for Future Internet Services 149



��������	


	�������������	�

������������

��������������

����	���������������
�������������������

���������������	

��������������	
���
	����
	����	�
�����

����	�������������

 	��!
	��	���"�
����
�#�����$���%	
	�!
��	��
	��������
�����

Fig. 1: Scalaris system architecture.

2008, where Scalaris won the 1st price (www.ieeetcsc.org/scale2008). Talks on
Scalaris were given at the the Google Scalability Conference 2008 [19] and the
Erlang eXchange 2008.

The paper is organized as follows. The following Section provides an overview
on Scalaris’ system architecture, Section 3 describes its self-management fea-
tures and Section 4 gives further details on the implementation. In Section 5 we
demonstrate how Scalaris can be used for implementing Web 2.0 services. As a
proof-of-concept, we have chosen a simple Wikipedia clone; performance results
are given in Section 6.

2 Scalaris

As part of the EU funded SELFMAN project we set out to build a distributed
key/value store capable of serving thousands or even millions of concurrent data
accesses per second. Providing strong data consistency in the face of node crashes
and hefty concurrent data updates was one of our major goals.

With Scalaris, we do not attempt to replace current database management
systems with their general, full-fledged SQL interfaces. Instead our target is to
support transactional Web 2.0 services like those needed for Internet shopping,
banking, or multi-player online games. Our system consists of three layers:

– At the bottom, an enhanced structured overlay network, with logarithmic
routing performance, provides the basis for storing and retrieving keys and
their corresponding values. In contrast to many other overlays, our imple-
mentation stores the keys in lexicographical order. Lexicographic ordering
instead of random hashing enables control of data placement which is nec-
essary for low latency access in multi-datacenter environments.

A. Reinefeld et al. / A Scalable, Transactional Data Store for Future Internet Services150



– The middle layer implements data replication. It enhances the availability of
data even under harsh conditions such as node crashes and physical network
failures.

– The top layer provides transactional support for strong data consistency in
the face of concurrent data operations. It uses an optimistic concurrency
control strategy and a fast non-blocking commit protocol with low commu-
nication overhead. This protocol has been optimally embedded in the overlay
network.

As illustrated in Fig. 1, these three layers together provide a scalable and
highly available distributed key/value store which serves as a core building block
for many Web 2.0 applications as well as other global services. The following
sections describe the layers in more detail.

2.1 P2P Overlay

At the bottom layer, we use the structured overlay protocol Chord# [17,18]
for storing and retrieving key-value pairs in nodes (peers) that are arranged
in a virtual ring. This ring defines a key space where all data items can be
stored according to the associated key. In our case we assume that any key is an
arbitrarily long string of characters, therefore the key space is infinite. Nodes are
placed at arbitrary places on the ring and are responsible for all data between
their predecessor and themselves. The placement policy ensures even distribution
of load over the nodes. In each of the N nodes, Chord# maintains a routing
table with O(log N) entries (fingers). In contrast to traditional Distributed Hash
Tables (DHTs) like Chord [21], Kademlia [12] and Pastry [15], Chord# stores
the keys in lexicographical order, thereby allowing range queries, and control
over the placement of data on the ring structure. To ensure logarithmic routing
performance, the fingers in the routing table are computed in such a way that
successive fingers in the routing table jump over an exponentially increasing
number of nodes in the ring. This finger placement will yield uniform in-/out-
degree of the overlay network and thus avoids hotspots.

Chord# uses the following algorithm for computing the fingers in the routing
table (the infix operator x . y retrieves y from the routing table of a node x):

finger i =
{

successor : i = 0
finger i−1 . finger i−1: i �= 0

Thus, to calculate the ith finger, a node asks the remote node, listed in its
(i − 1)th finger, for the node at which its (i − 1)th finger refers to. In general,
at any node, the fingers at level i are set to the neighbor’s finger at the pre-
ceding level i − 1. At the lowest level, the fingers point to the direct successor.
The resulting structure is similar to a skiplist, but the fingers are computed
deterministically without any probabilistic component and each node has its in-
dividual exponentially spaced fingers. The fingers are maintained by a periodic
stabilization algorithm according to the above formula.

A. Reinefeld et al. / A Scalable, Transactional Data Store for Future Internet Services 151



replicated
T i T i

Leader

Transaction
Managers
(rTM)

Transaction
Participants

(TPs)

1. Step

2 Step2. Step

3. Step

4. Step

5 S

after majority

5. Step

6. Step

after majority

Fig. 2: Adapted Paxos used in Scalaris.

Compared to Chord [21], Chord# does the routing in the node space rather
than in the key space. This finger placement has three advantages over that
of Chord: First, it naturally works with any type of keys as long as a total
order over the keys is defined, and second, finger maintenance is cheaper [17],
requiring just one hop instead of a full logarithmic search (as in Chord). To
support logarithmic routing performance in skewed key distributions while nodes
are arbitrarily placed in the key space—which we have to in our scenario—
the third and probably most important difference becomes our trump card: the
incoming routing links (fingers) will still be evenly distributed across all nodes.
This prevents nodes from becoming hot spots and ensures continuous progress
when routing.

2.2 Replication and Transaction Layer

The scheme described so far provides scalable access to distributed key/value
pairs. To additionally tolerate node failures, we replicate all key/value pairs
over r nodes using symmetric replication [5]. Basically each key is mapped by a
globally known function to a set of keys {k1, . . . , kr} and the item is replicated
according to those keys. Read and write operations are performed on a majority

A. Reinefeld et al. / A Scalable, Transactional Data Store for Future Internet Services152



of the replicas, thereby tolerating the unavailability of up to �(r − 1)/2� nodes.
This scheme is shown to provide key consistency for data lookups under realistic
networking conditions [20]. For repairing the replication degree of items, nodes
have to read the missing data from a majority of replicas. This is necessary to
guarantee strong data consistency.

The system supports transactional semantics. A client connected to the sys-
tem can issue a sequence of operations including reads and writes within a trans-
actional context, i.e. begin trans . . . end trans. This sequence of operations are
executed by a local transaction manager TM associated with the overlay node
to which the client is connected. The transaction will appear to be executed
atomically if successful, or not executed at all if the transaction aborts.

Transactions in Scalaris are executed optimistically. This implies that each
transaction is executed completely locally at the client in a read-phase. If the
read phase is successful the TM tries to commit the transaction permanently in
a commit phase, and permanently stores the modified data at the responsible
overlay nodes. Concurrency control is performed as part of this latter phase. A
transaction t will abort only if: (1) other transactions try to commit changes on
some overlapping data items simultaneously; or (2) other successful transactions
have already modified data that is accessed in transaction t.

Each item is assigned a version number. Read/write operation works on a ma-
jority of replicas to obtain the highest version number. A Read operation selects
the data value with highest version number, and a write operation increments
the highest version number of the item.

The commit phase employs an adapted version of Paxos atomic commit pro-
tocol [9], which is non-blocking. In contrast to the 3-Phase-Commit protocol
used in distributed database systems, the Paxos commit protocol still works in
the majority part of a network that became partitioned due to some network
failure. It employs a group of replicated transaction managers (rTM) rather than
a single transaction manager. Together they form a set of acceptors with the TM
acting as the leader.

The commit is basically divided into two phases, the validation phase and
the consensus phase. During the validation phase the replicated transaction man-
agers rTM are initialized, and the updated data items together with references
to the rTM are sent to the nodes responsible for the data items in a Prepare
message. These latter nodes are called transaction participants TPs.

Each TP proposes ‘prepared’ or ‘abort’ in a fast Paxos consensus round with
the acceptor set. As each acceptor collects votes from a majority of replicas for
each item, it will be able to decide on a commit/abort for the whole transaction.
For details see [13,20]. This scheme favors atomicity over availability. It always
requires a majority of nodes to be available for the read and commit phase.
This policy distinguishes Scalaris from other distributed key-value stores, like
e.g. Dynamo [3].

A. Reinefeld et al. / A Scalable, Transactional Data Store for Future Internet Services 153



3 Self-Management

For many Web 2.0 services, the total cost-of-ownership is dominated by the
costs needed for personnel to maintain and optimize the service. Scalaris greatly
reduces the operation cost with its built-in self* properties:

– Self healing: Scalaris continuously monitors the hosts it is running on. When
it detects a node crash, it immediately repairs the overlay network and the
database. Management tasks such as adding or removing hosts require min-
imal human intervention.

– Self tuning: Scalaris monitors the nodes’ workload and autonomously moves
items to distribute the load evenly over the system in order to improve the
response time of the system. When deploying Scalaris over multiple data-
centers, these algorithms are used to place frequently accessed items nearby
the users.

These protection schemes do not only help in stress situations, but they
also monitor and pro-actively repair the system before any service interruption
might occur. With traditional database systems these operations require human
interference which is error prone and costly. When using Scalaris, fewer sys-
tem administrators can operate much larger installations compared to legacy
databases.

4 Implementation

Implementing distributed algorithms correctly is a difficult and tedious task,
especially when using imperative programming languages and multi-threading
with a shared state concurrency model. The resulting code is often lengthy and
error-prone, because large parts of the code deal with shared objects [22] and
with exception handing such as node or network failures.

For this reason, message passing as in the actor model [7] is becoming the
accepted paradigm for describing and reasoning about distributed algorithms [6].
Scalaris was also developed according to this model. The basic primitives in this
model are actors and messages. Every actor has a state, can send messages, act
upon messages and spawn new actors.

These primitives are easily mapped to Erlang processes and messages [1].
The close relationship between the specification and the programming language
allows a smooth transition from the theoretical model to prototypes and even-
tually to a complete system.

Our Erlang implementation of Scalaris comprises eight major components
with a total of 11,000 lines of code: 7,000 for the P2P layer with replication
and basic system infrastructure, 2,700 lines for the transaction layer, and 1,300
lines for the Wikipedia infrastructure. Each Scalaris node is organized into the
following components:

– The Failure Detector supervises other peers and notifies subscribers of remote
node failures.

A. Reinefeld et al. / A Scalable, Transactional Data Store for Future Internet Services154



– The Configuration Store provides access to the current configuration and
allows modifications of various system parameters.

– The Key Holder stores the identifier of the node in the overlay.
– The Statistics Collector collects statistics and forwards them to central statis-

tic servers.
– The Chord# Node component is composed of subcomponents for overlay

maintenance and overlay routing. It maintains, among other things, the suc-
cessor list and the routing table. It provides the functionality of the struc-
tured overlay layer.

– The Database stores the key-value pairs of this node. The current imple-
mentation uses an in-memory dictionary, but disk store based on DETS or
Mnesia could also be used.

– The Transaction Manager runs the transaction protocols.
– The Replica Repair maintains the replication degree of items.

The processes are organized in an Erlang OTP supervisor tree. When any
of the slaves crashes, it is restarted by the Erlang supervisor. When either of
the Chord# Node or the Database component fails, the other is explicitly killed
and both are restarted to ensure consistency. This is equivalent to a new node
joining the system.

5 Deployment: Wikipedia on Scalaris

As a challenging benchmark for Scalaris, we implemented the core of Wikipedia,
the ”free encyclopedia, that anyone can edit”. Wikipedia runs on three sites.
The main one in Tampa is organized in three layers, the proxy server layer, the
web server layer, and the MySQL database layer. The proxy layer serves as a
cache for recent requests, and the web server layer runs the application logic and
issues requests to the database layer. Wikipedia handles about 50,000 requests
per second, from which 48,000 are cache hits in the proxy server layer and 2,000
are processed by the database layer. The proxy and the web server layers are
embarrassingly parallel and therefore trivial to scale. From a scalability point of
view, only the database layer is challenging.

Our implementation uses Scalaris to replace the database layer. This enables
us to run Wikipedia on geographically distributed sites and to scale to almost
any number of hosts, as shown in the evaluation section. Our Wikipedia imple-
mentation inherits all the favorable properties of Scalaris, such as scalability and
self management.

Instead of using a relational database, we map the Wikipedia content to our
Scalaris key/value store [14]. We use the following mappings, using prefixes in
the keys to avoid name clashes.

key value
page content title list of Wikitext for all versions
backlinks title list of titles
categories category name list of titles

A. Reinefeld et al. / A Scalable, Transactional Data Store for Future Internet Services 155



 0

 5000

 10000

 15000

 20000

 25000

 0  2  4  6  8  10  12  14  16

T
ra

ns
ac

tio
ns

/s

Nodes

Read

1 client

2 clients

5 clients

10 clients

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  2  4  6  8  10  12  14  16

T
ra

ns
ac

tio
ns

/s

Nodes

Modify

1 client

2 clients

5 clients

10 clients

50 clients

100 clients

Fig. 3: Performance of Scalaris: (a) Read operation, (b) Modify operation for
different numbers of local threads and cluster sizes.

On a page update a transaction across all affected keys (content, backlinks,
and categories) and their replicas is triggered.

6 Evaluation

We tested the performance of Scalaris on an Intel cluster up to 16 nodes. Each
node has two Quad-Core E5420s (8 cores in total) running at 2.5 GHz and 16
GB of main memory. The nodes are connected via GigE and Infiniband; we used
the GigE network for our evaluation.

On each physical node we were running one multi-core Erlang virtual ma-
chine. Each virtual machine hosted 16 Scalaris nodes. We used a replication
degree of four, that is, there exist four copies of each key-value pair.

A. Reinefeld et al. / A Scalable, Transactional Data Store for Future Internet Services156



We tested two operations: a read and a modify operation. The read operation
reads a key-value pair. The modify operation reads a key-value pair, increments
the value and writes the result back to the distributed Scalaris store. To guaran-
tee consistency, the read-increment-write is executed within a transaction. The
read operation, in contrast, simply reads from a majority of the keys.

The benchmarks involved the following steps:
– Start watch.
– Start n Erlang client processes in each VM.
– Execute the read or modify operation i times in each client.
– Wait for all clients to finish.
– Stop watch.

Figure 3 shows the results for various numbers of clients per VM (see the
colored graphs). In the read benchmarks depicted in Fig. 3.a, each thread reads
a key 2000 times while the modify benchmarks in Fig. 3.b modify each key 100
time in each thread.

As can be seen, the system scales about linearly over a wide range of system
sizes. In the read benchmarks (Fig. 3.a), two clients per VM produce an optimal
load for the system, resulting in more than 20,000 read operations per second
on a 16 node (=128 core) cluster. Using only one client (red graph) does not
produce enough operations to saturate the system, while five clients (blue graph)
cause too much contention. Note that each read operation involves accessing a
majority (3 out of 4) replicas.

The performance of the modify operation (Fig. 3.b) is of course lower, but
still scales nicely with increasing system sizes. Here, the best performance of
5,500 transactions per second is reached with fifty load generators per VM, each
of them generating approximately seven transactions per second. This results in
344 transactions per second on each server.

Note that each modify transaction requires Scalaris to execute the adapted
Paxos algorithm, which involves finding a majority (i.e. 3 out of 4) of transaction
participants and transaction managers, plus the communication between them.
The performance graphs illustrate that a single client per VM does not produce
enough transaction load, while fifty clients are optimal to hide the communica-
tion latency between the transaction rounds. Increasing the concurrency further
to 100 clients does not improve the performance, because this causes too much
contention. Note that for the 100-clients-case, there are actually 16*100 clients
issuing increment transactions.

Overall, both graphs illustrate the linear scalability of Scalaris.

7 Summary

Scalaris provides a scalable and self managing transactional key-value store. We
have implemented Wikipedia using Scalaris. Its scalability and self* capabili-
ties were demonstrated in the IEEE Scalable Computing Challenge 2008, where
Scalaris won the 1st prize.

A. Reinefeld et al. / A Scalable, Transactional Data Store for Future Internet Services 157



Compared to other data services, Scalaris has significantly lower operating
costs and is self-managing. Scalaris and similar systems will be an important
building block for Web 2.0 services and future Cloud Computing environments.

While Wikipedia served here as a first demonstrator to show the potential of
Scalaris, we envisage a large variety of commercial Web 2.0 applications ranging
from e-commerce and social networks to infrastructure services for maintaining
server farms. The Scalaris code is open source (scalaris.googlecode.com).

Acknowledgements

Many thanks to Nico Kruber, Monika Moser, and Stefan Plantikow who imple-
mented parts of Scalaris. Also thanks to Ali Ghodsi, Thallat Shafaat, and Joe
Armstrong for their support and many discussions.

References

1. J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Programmers, ISBN: 978-1-9343560-0-5, July 2007

2. R. Baldoni, L. Querzoni, A. Virgillito, R. Jiménez-Peris, and M. Patiño-Mart́ınez.
Dynamic Quorums for DHT-based P2P Networks. NCA, pp. 91–100, 2005.

3. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly Available
Key-Value Store Proceedings of the 21st ACM Symposium on Operating Systems
Principles, Oct. 2007.

4. JJ Furman, J. S. Karlsson, J. Leon, A. Lloyd, S. Newman, and P. Zeyliger. Mega-
store: A Scalable Data System for User Facing Applications. SIGMOD 2008, Jun.
2008.

5. A. Ghodsi, L. O. Alima, and S. Haridi. Symmetric Replication for Structured Peer-
to-Peer Systems. 3rd Intl. Workshop on Databases, Information Systems and P2P
Computing, 2005.

6. R. Guerraoui and L. Rodrigues. Introduction to Reliable Distributed Programming.
Springer-Verlag 2006.

7. C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular ACTOR Formalism for
Artificial Intelligence. IJCAI, 1973.

8. A. Lakshman, P. Malik, and K. Ranganathan. Cassandra: A Structured Storage
System on a P2P Network. SIGMOD 2008, Jun. 2008.

9. L. Lamport. The Part-Time Parliament ACM Transactions on Computer Systems
16(2): 133–169, 1998.

10. L. Lamport. Fast Paxos. Distributed Computing 19(2):79–103, 2006.

11. M. M. Masud and I. Kiringa. Maintaining consistency in a failure-prone P2P
database network during transaction processing. Proceedings of the 2008 Interna-
tional Workshop on Data management in peer-to-peer systems, pp. 27–34, 2008.

12. P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system
based on the XOR metric. IPTPS 2002, Mar. 2002.

13. M. Moser and S. Haridi. Atomic Commitment in Transactional DHTs. 1st Core-
GRID Symposium, Aug. 2007.

A. Reinefeld et al. / A Scalable, Transactional Data Store for Future Internet Services158



14. S. Plantikow, A. Reinefeld, and F. Schintke. Transactions for Distributed Wikis on
Structured Overlays. 18th IFIP/IEEE Distributed Systems: Operations and Man-
agement (DSOM 2007), Oct. 2007.

15. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. Middleware 2001, Nov. 2001.

16. Scalaris code: http://code.google.com/p/scalaris/.
17. T. Schütt, F. Schintke, and A. Reinefeld. Structured Overlay without Consistent

Hashing: Empirical Results. GP2PC’06, May 2006.
18. T. Schütt, F. Schintke, and A. Reinefeld. A Structured Overlay for Multi-

Dimensional Range Queries. Europar, Aug. 2007.
19. T. Schütt, F. Schintke, and A. Reinefeld. Scalable Wikipedia with Erlang. Google

Scalability Conference, Jun. 2008.
20. T.M. Shafaat, M. Moser, A. Ghodsi, S. Haridi, T. Schütt, and A. Reinefeld. Key-

Based Consistency and Availability in Structured Overlay Networks. Third Intl.
ICST Conference on Scalable Information Systems, June 2008.

21. I. Stoica, R. Morris, M.F. Kaashoek D. Karger, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for Internet application. ACM SIGCOMM
2001, Aug. 2001. Concepts, Techniques, and Models of Computer Programming

22. P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Pro-
gramming. MIT Press, March 2004.

A. Reinefeld et al. / A Scalable, Transactional Data Store for Future Internet Services 159


