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Removed Sets Fusion: Performing Off The Shelf

Hué Julien !

Abstract. Merging multiple sources of information is a rising sub-
ject in artificial intelligence. Most of the proposals are model-based
approaches with very high computational complexity, moreover few
experimentations are available. This paper proposes a framework
for performing Removed Sets Fusion (RSF) of belief bases consist-
ing of propositional formulae. It then describes the implementation
of RSF which stems from Answer Set Programming (ASP) and can
be performed with any ASP solver supporting the minimize state-
ment. It finally presents an experimental study and a comparison.

1 Introduction

During the last years, the availability of distributed sources of
information has significantly increased. Intelligently exploit-
ing them remains an hard task because they often lack of
structure, they can conflict and they can be redundant. The
aim of fusion is to obtain a global point of view, exploiting
the complementarity between sources, solving existing con-
flicts, reducing the possible redundancies. Among the various
approaches of multiple sources information merging, logical
approaches gave rise to increasing interest in the last decade
[3, 26, 20, 27, 7]. Most of these approaches have been defined
within the framework of classical logic, more often proposi-
tional, and have been semantically defined. Different postu-
lates characterizing the rational behavior of fusion operators
have been proposed [17] and various operators have been de-
fined according to whether explicit or implicit priorities are
available [17], [18], [15], [8], [28]. More recent semantic ap-
proaches have been proposed, stemming from the Hamming
distance [16], or based on concepts provided by mathemati-
cal morphology, like dilation and erosion [6]. The computa-
tional complexity of semantic approaches is generally very
high and few implementations have been proposed. More re-
cently, Gorogiannis and Hunter [13] proposed an implemen-
tation stemming from Binary Decision Diagrams (BDDs) and
conducted an experimental study on model-based merging op-
erators reformulated in terms of dilation.

Syntactic approaches have been proposed in propositional
logic [22, 31] as well as in possibilistic logic [9, 4] which is a
real advantage from the computational point of view. More
recently, a syntactic approach, called Removed Sets Fusion
(RSF), has been proposed for merging belief bases consisting
of clauses in [14], extending the framework proposed for revi-
sion in [5]. Because it experimentally gave better results than
other approaches (SAT, BDD, ...), this approach has been for-
malized in terms of Answer Set Programming (ASP)and the
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smodels system has been adapted for providing an implemen-
tation.

This paper proposes a generalization of RSF for performing
syntactic fusion of belief bases consisting of propositional for-
mulae. The paper shows that the classical fusion operations
Card, ¥, Max, GMaz, initially defined at the semantic level,
can be expressed within this syntactic framework. The paper
then shows that an efficient implementation of these opera-
tions, can be performed independently from the ASP solver.
The main contributions of this paper are the following:

e A generalization of the Removed Sets Fusion (RSF) to the
fusion of belief bases consisting of any kind of well-formed
finite propositional formulae. The notion of removed set,
roughly speaking, the subsets of clauses to remove to re-
store consistency, initially defined in the context of belief
bases revision [24, 30], is extended to the subsets of for-
mulae to remove to restore consistency. It then shows that
classical fusion operations are captured within this frame-
work since each fusion strategy is encoded by a preference
relation between subsets of formulae.

e An implementation of RSF with ASP. The fusion problem
is tranlated into a logic program with answer set semantics
and a one-to-one correspondence between removed sets and
preferred answer sets is shown. The computation of answer
sets is performed with any ASP solver supporting the min-
imize statement.

e An experimental study which illustrates the behavior of
RSF for the ¥ and Max strategies, and a comparison with
the results of the experimentation provided in [13].

The rest of this paper is organized as follows. Section 2 fixes
the notations and gives a refresher on fusion, ASP and ASP
solvers. Section 3 presents the generalization of RSF which
deals with any well-formed propositional formulae. The im-
plementation of RSF with ASP is described in Section 4. It
first presents the translation into a logic program, it then
shows the one-to-one correspondence between removed sets
and preferred answer sets. Section 5 shows how RSF is per-
formed off the shelf. The results of an experimental study and
a comparison with the experimental results provided by [13]
are presented in Section 6 before concluding in Section 7.

2 Background

We consider a propositional language £ over a finite alphabet
P of atoms. A literal is an atom or the negation of an atom.
The usual propositional connectives are denoted by —, A, V,
—, <> and Cn denotes the logical consequence. A belief base
 is a finite set of propositional formulae over L.
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2.1 Belief Merging

Let ¥ = {¢1,...,9on} be a multi-set of n consistent belief
bases to be merged, ¥ is called a belief profile. The n belief
bases ¢1, ..., @, are not necessarily different and the union
of belief bases, taking repetitions into account, is denoted by
L and their conjunction (resp. disjunction) are denoted by A
(resp. V). For the sake of simplicity, we denote by ¢ the belief
profile consisting of the singleton ¥ = {¢}.

A fusion operator A is defined as a function which asso-
ciates to each belief profile a classical consistent belief base
denoted by A(W¥). In the literature, there are two different
ways for defining A(V): either using some implicit priority or
not. In the following implicit priority is not assumed.

There are two straighforward ways for defining A(¥) de-
pending if the sources are conflicting or not, the classical
conjunctive merging: A(¥) = A_ _y i suitable when the
sources are not conflicting and the classical disjunctive merg-
ing: A(V) = V. cy i appropriate in case of conflicting
sources. These two opposite cases are not satisfactory, so
several methods have been proposed for fusion according to
whether the bases have the same importance or not.

In particular, the following classical fusion operators have
been proposed. The Sum operator, denoted by X, [21, 26]
which follows the point of view of the majority of the belief
bases of W. The Cardinality operator, denoted by Card, [3]
which is similar to ¥ but without taking repetitions into ac-
count. The Maz-based operator, denoted by Maz [27], which
tries to best satisfy all the belief bases of W. The Lerimaz-
based operator, denoted by GMazx, [17] which is the lexico-
graphic refinement of Mazx.

2.2 Answer Sets

A Normal logic program is a set of rules of the form ¢ «
Gl,...,0an,n0t bi,...,not by where c,a;(1 < i < n),b;(1 <
j < m) are propositional atoms and the symbol not stands for
negation as failure. Let r be a rule, we introduce head(r) =
¢ and body(r) = {a1, -, an, b1, -+, bm}. Furthermore, let
body™(r) = {a1,---,a,} denotes the set of positive body
atoms and body~ (r) = {b1,--,bm} the set of negative body
atoms, it follows body(r) = body™ (r) U body~ (r). Moreover,
r* denotes the rule head(r) «— body™ (r), obtained from 7 by
deleting all negative body atoms in the body of 7.

A set of atoms X is closed under a basic program IT iff for
any rule r € II, head(r) € X whenever body(r) C X. The
smallest set of atoms which is closed under a basic program
IT is denoted by C'N(II).

The reduct or Gelfond-Lifschitz transformation [11], T of
a program II relatively to a set X of atoms is defined by
0% = {+T | r € Il and body~ (r) N X = 0}.

A set of atoms X is an answer set of I iff CN(IT1¥) = X.

2.3 ASP solvers

In the last decade, answer set programming has been consid-
ered as a convenient tool to handle non-monotonic reason-
ing. Moreover, several efficient systems, called ASP solvers,
have been developed for computing answer sets, Smodels [23],
XSB [25], DLV [10], NoMore [1], ASSAT [19], CMODELS [12],
CLASP [2].

In order to extend the expressivity and the efficiency of
ASP solvers, logic programs have been extended with new
statements [29]:

e domain definitions allow for compactly encoding the possi-
ble values in a given domain, for example the declarations
#domain possible(X), possible(1..n). ensure that every oc-
currence of the variable X will take a value from 1 to n.

e domain restrictions: can be added in some rules. For exam-
ple, the rule short(X) < size(Y), X <Y, the rule is only
instantiated for X and Y such that X <Y.

e cardinality optimization: make possible to express that at
most, respectively at least, some atoms should appear in
the answer sets. For example the rule h — k {a1,...,an}
expresses that at least k atoms and at most /[ atoms among
{ai1,...,an} should appear in the answer sets.

e optimization statements: allow for selecting among the pos-
sible answer sets, the ones that satisfy optimization state-
ments like minimize{.} or mazimize{.}. For example, the
statement minimize{ai,---,an} allows for selecting the
answer sets with as few of the given atoms {ai,---,an}
as possible.

At the present time, only smodels and CLASP implement
all those statements.

3 RSF: dealing with any formula

We propose a new syntactic fusion framework, Removed Sets
Fusion (RSF) for merging inconsistent belief bases consisting
of well-formed formulae. The key idea of the approach is to
remove subsets of well-formed formulae from the union of the
belief bases, according to some strategy P, in order to restore
consistency.

Let U = {¢1,...,¢n} be a belief profile such that ¢ L. ..U
n is inconsistent. Removed Sets Fusion (RSF) provides, as a
result of merging, a consistent subset of formulae of 1 L. ..U

Pn-

Definition 1. Let ¥ = {p1,...,0n} be a belief profile such
that p1 U ... U @y s inconsistent, X C o1 U...Upy, is a
potential removed set of ¥ iff (o1 U...Uwn)\X is consistent.

The number of potential removed sets is exponential with
respect to the number of formulae. It is necessary to only
select the most relevant ones, according to a strategy P. For
every strategy P, a preorder <p over the potential removed
sets is defined ( X <p Y means that X is preferred to Y
according the strategy P). The associated strict preorder is
denoted by <p.

Definition 2. Let ¥ = {¢1,...,¢0n} be a belief profile such
that 1. . .Upy s inconsistent, X C @iLl...Upy, s a removed
set of U according to P iff (i) X is a potential removed set of
U; (ii) there isno Y C o1 U... U, such that Y <p X.

We denote by FpR(¥) the collection of removed sets of ¥
according to P. The definition of Removed Sets Fusion is:

Definition 3. Let U = {p1,...,pn} be a belief profile. The
fusion operation AT (V) is defined by:

AP (D) = Vxe}'pR(qz){C"((Sol U...Uen)\X)}
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The usual merging operators (Card,%, Max, GMazx) are
captured within our framework by encoding the preference
relation between potential removed sets as given in the fol-
lowing table. For the GM ax strategy, let X be a potential re-
moved set and ; be a belief base, we define p(X) = | X N¢;].
Let LY be the sequence composed with every (p*(X))i<i<n
in decreasing order. We denote by <., the lexicographic or-
dering.

P X <p Y iff

Card JIX|<|Y|

= Ticicn [ X Noi |[< BicicalY N @i

Mazx mazi<i<n | X N |[< mazi<i<a | Y N @il
GMaz LY <iee LY

Example. Let U = {p1,92,¢93} be a belief profile and p1 =

{aV b,b}, o2 = {a < b,—b} and p3 = {—~a A —b,—a V —b}.
FaR(Y) = {{aVb,b}} and AT (V) = Cn(a « b, =b, maA=b, ~aV

-b).

FrraazR(¥) = {{b,a « b,ma A =b}} and AM=(V) = Cn(a V

b, =b, ~a V —b).

4 Implementing RSF with ASP

The implementation constructs a logic program, denoted by
Ily, such that, for any strategy P, the preferred answer sets
of IIy according to P correspond to the removed sets of ¥
according to P. The fusion problem is first translated into a
logic program in order to obtain a correspondence between
answer sets and potential removed sets. The key idea of the
translation is the introduction, for each formula, of an atom
which presence in the answer set corresponds to the presence
of the formula in a potential removed set. This atom reflects
the syntax of the formula and thus requires the construction
of intermediary atoms.

Let ¥ = {p1,...,0n} be a belief profile. We denote by
s(¥), the belief profile made from ¥ where every rule appear-
ing more than once is reduced to a singleton. Let f, f*,..., f"
be formulae of ;. The set of all positive (resp. negative)
literals of Ily is denoted by V' (resp. V7). The set of all
atoms representing formulae, called rule atoms, is defined by
R* = {r}|f € ¢:} and the intermediary atoms representing
subformulae are denoted by pg; where f? are subformulae of
f € @i. Moreover, Fo(r}) denotes the formula of ¢; corre-
sponding to r} in Iy, namely Vr} € RY, Fo(r}) = f.

1. For every atom, a € VT, the first step introduces the rules:
a < not a’ and a’ + not a. These rules build a correspon-
dence between interpretations over V' and answer sets of
the program Ily.

2. The second step introduces rule atoms which are necessary
for constructing potential removed sets corresponding to
any interpretation. The presence of the rule atom r} in
an answer set means that the formula f should be in the
corresponding potential removed set. Vf € ¢;, the following
rules are introduced according to the syntax of f3:

e If f = a, the corresponding rule is r} «— not a;

o If f = —f', the corresponding rule is r} < not ps1;

3 a — b can be considered as maVb and a « b as (aAb)V(—aA—b). If

a subformula only consists of an atom, i.e. f7 = a, Pyi is replaced
by a

e If f = f' V...V f, the corresponding rule is rj «—

Pgise--yPfi5
o If f = f'A...Af7, the corresponding rules are r} «— p;1,
ooy and TF e py.

Example. The logic program Iy corresponding to the previ-
ous example, where p1 = parp and p2 = Pp-ar-b, 1S :

b« not b/
¢ «— not c
2
Thp < PL P2

a’ « not a
¢« not c
7‘; «— not b

a < not a’
b’ < not b
1
Toyp < Mot a,not b

p1 < not a p1 < not b p2 —a
e b, e
"an—-b b Tav—-b < & b

In order to compute the answer sets corresponding to the
removed sets the notion of preferred answer set according to
a strategy P is introduced.

Definition 4. Let Ily be a logic program and let S and S’
be two set of atoms of Ilw. S is a preferred answer set of Ily
according to a strategy P iff (1) S is an answer set of Ily; (ii)
VS’ CIly, S’ is not preferred to S according to P.

From now on, we denote by Is the interpretation over the
atoms of S N V™' which is defined as: Is = {a | a € S} U
{—a|d €8S}

Proposition 1. Let U = {p1,...,pn} be a belief profile
and S be a set of atoms. S is a answer set of Iy iff S
corresponds to an interpretation Is of VT which satisfies
(p1U...Upn)\Fo(SNRY).

The following result gives the one-to-one correspondence
between preferred answer sets of IIy and removed sets of ¥
according to the strategies Card, ¥ and Max.

Proposition 2. Let X C (p1U...Ugy). X be a removed set
of (g1 U...Uen) according to P iff there exists a preferred
answer set of Iy according to P such that Fo(S N R+) = X.
The proposition holds for the strategies Card, ¥ and Mazx.

Example. Let Ily be the logic program of the

previous  example. The answer sets of Ilg are
{alv b/v P1, rclL\/lN 7";}, {a,7 b7 P1, P2, rzb? rc2u—>b7 Tia/\ﬁb}’
{a7 b/v P1,P2,Th, 7"121<—>b7 ria/\ﬂb}) {a7 b, P2, T=bs Twan—bs 7n—\a\/ﬂb}'
The preferred answer set for the Max strateqy 1is
{a,V, p1, p2, 78,72 1, "2 unp} and the preferred answer
set for the & strategy is {a’, V', p1,7%yp, 7L} They correspond
to the removed sets of V according to Max and X respectively.

The next section shows how to perform RSF thanks to any
ASP solver.

5 Performing RSF off the shelf

A method for performing Removed Sets Fusion with any ASP
solver which supports the minimize statement [29] consists
of adding in the head of the logic program Iy, statements
and rules that aims at counting rule atoms in every answer
set according to the chosen strategy.

For the ¥ strategy, Iy = minimize{r; | rj € R"} Ully
and the following proposition holds:

Proposition (X). The set of answer sets of Iy is the set of
preferred answer sets of lly for the strategy .
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For the Card strategy, I1$%¢ = minimize{ry | r} €
RT}U P,(y) and the following proposition holds:
Proposition (Card). The set of answer sets of 15" is the
set of preferred answer sets of Ily for the strategy Card.

Considering the space complexity of the added rules, it is
constant for the ¥ and Card strategies because the only added
rule is the optimization one.

The Max strategy requires another use of the minimize{}
statement. Let S be an answer set. A first step computes
mazi<i<n(|{rf|ry € S}|) for S. The second step uses the
minimize{} statement to keep the smallest answer set in the

sense of Max.

To compute how many formulae are removed from the most
hit base, we need to know how many formulae are removed
in every base of W by S thanks to the following statements:

00 : #domain possible(U).
61 :  #domain base(V).
HS‘I}'ZG - d2 : possible(l..m).
63 : base(l..n).
a : size(U) — U{r}/\Fo(f) € v }U.

where m is the size of the biggest belief base. J; rules are
domain definitions for the « rule. If there exists a base ¢y

where the number of atoms r}/ true in S is equal to U, then
size(U) is true in S. The greatest U for which size(U) is true
is computed thanks to I15%"%:

04 : #domain possible(W).
H{’If’“"d =< A negmaz(W) «— size(U),U > W.
B2 maz(U) <« size(U), not negmax(U).

01 determines every integer W for which there exists U > W
such that size(U) is true. Then, max(U) is true for U which
is the greatest value for which size(U) is true.

For the Max strategy, II¥°® = II$* U II%"? U Iy U
minimize[maz(l) = 1,...,maz(m) = m] and the following
proposition holds:

Proposition (Maz). The set of answer sets of IIY " is the
set of preferred answer sets of lly according to Mazx.

The space complexity of the optimization part in the Max

operator is O(m X n).

The GM ax operator compares potential removed sets based
on the sequence of |X N ;| ordered decreasingly. It is first
necessary to know how many rules are removed in every base
which is done by the rule:

Hf;ze“’ ={ m :size(V,U) «— U {rem(V,1),...,rem(V,m)} U. }

where m stands for the size of the base ¢v .

The «; rule records that, for the base ¢y, there is U re-
moved formulae. Once these values are computed, they have
to be ordered decreasingly.

ap : max(Xi,...,Xn) <« size(Y1,X1),...,
size(Yn, Xn), X1 >= Xo,...,

Xn—1>= Xn,neq(Y1,...,Yn).
Hboundg _ aq maxl(Xl) %max(Xl,...,Xn)
v = X1 >= Xo, ..., Xno1 >= Xn.
;...
an : maz3(X3) — maz(Xi1,...,Xn),
X1 >=Xo,..., Xn_1>=Xn.

where X is the greatest size() value and X, the smallest.
Finally, the minimize|] statement has to be constructed with
the polynomial X,,+ X,,—1 xm+...+ X1 X m" ! to optimize.

For the GMax strategy, IIGM* = ;™ U Hi’;undg U
IIy U minimize[mazn(l) = 1,mazn(2) = 2,...,maz;(1) =
m" ™" mazi(2) = 2 x m" 7., maz1(n) = n x m""']. and
the following proposition holds:

n—i

Proposition (GMazx). The set of answer sets of IGM*® s

the set of preferred answer sets of Ilw for the strategy GMax.

The space complexity of the optimization part in the GMax
operator is O(m™ x n™) which is far too high for a practical
use.

6 Experimental study and comparison

We now present the results of an experimental study for the
3 and Max strategies comparing the RSF approach imple-
mented with ASP and the model-based approach reformu-
lated in terms of dilation implemented with BDD presented
in [13]. The tests were conducted on a Centrino Duo cadenced
at 1.73GHz and equipped with 2GB of RAM.

BOOs 188 —+—
10088 RSF 18a
BDDs 15a —#—
RSF 152 —8—
-
A
1868 1
e
-
168 o 4
#
g —8
il
I . A
10 8- — P
- - ok p—
-
s B _A— -
- e
1 oF
a,1 .
(K] 1 1,5 2 2.5 3 3.5 4 4,5
(a) The X strategy
* - BOOs 188 —+—
10000 . RSF 18a
i R BOOs 15a —#—
— . RSF 152 —&—
1868 1
8 4
168 -
-
—a
e, T
~— s
o ——
10 _ i " e
= b3 4 -
L +
1
a,1 .
(K] 1 1,5 2 2.5 3 3.5 4 4,5
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Figure 1. Tests for two strategies

A protocol close to the one described in [13] is used. Each
belief profile has seven belief bases. Belief bases are randomly
generated, according to a number of atoms (na) and a number
of formulae (nf). The main difference with the latter paper is
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that bases consist of formulae of any kind whose depth is no
greater than 3. Tests were ran for the X and Max strategies.

On the graphs shown in figure 1, X-axis represents the ra-
tio (nf)/(na), Y-axis represents mean running times in hun-
dredth of seconds. Curves are drawn for 10 and 15 atoms for
both strategies. On both strategies, BDDs results seem to be
very unstable explaining the shape of the graphs.

What comes out from the analysis of those graphs is that
RSF obtains better results when the number of atoms grows.
The BDDs, on the other hand, obtains better results when the
number of bases grows. Nevertheless, the fundamental differ-
ence between the two approaches forces to be very cautious
with this comparison: RSF performs merging by the mean of
formulae elimination, while the BDD approach described in
[13] performs merging through model elimination, thus pro-
viding necessarily different results. Despite these differences,
the presented comparison have the virtue to pinpoint the ex-
perimental difficulties of both approaches.

7 Conclusion

This paper generalizes the Removed Sets Fusion (RSF) ap-
proach for performing syntactic fusion of beliefs bases con-
sisting of propositional formulae and shows that the classical
fusion operations Card, ¥, Max, GMax, can be expressed
within this syntactic framework.

The paper proposes an implementation of RSF stemming
from ASP. RSF is translated into a logic program with answer
sets semantics and the correspondence between removed sets
and preferred answer sets is shown. Moreover, the paper shows
how RSF can be performed with any ASP solver equipped
with the minimize statement.

An experimentation is conducted and compared with a one
stemming from BDDs, it shows that RSF gives better results.

A more extensive experimentation has to be conducted on
real scale applications in order to provide a more accurate
evaluation of the performance of RSF. This will be conducted
in a future work in the framework of the VENUS project in
the context of archaeological information. A future work will
detail the semantic characterization and properties of RSF.
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