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1 Introduction

This paper investigates Reinforcement Learning (RL) applied to on-
line parameter tuning in Stochastic Local Search (SLS) methods. In
particular, a novel application of RL is proposed in the Reactive Tabu
Search (RTS) scheme, where the appropriate amount of diversifica-
tion in prohibition-based local search is adapted in a fast online man-
ner to the characteristics of a task and of the local configuration. The
experimental tests demonstrate promising results on Maximum Satis-
fiability (MAX-SAT) instances when compared with state-of-the-art
SLS SAT solvers, such us AdaptNovelty+, rSAPS and gNovelty+.

2 Reinforcement Learning for Reactive Tabu
Search

This paper investigates a novel application of Reinforcement Learn-
ing in the framework of Reactive Tabu Search (RTS) proposed in [1].
Tabu Search (TS) is a prohibition-based search technique based on
local search. At a given iteration some local search moves (e.g., vari-
able flips in the case of the SAT) are prohibited, only a non-empty
subset of them is allowed: the local search move executed at itera-
tion t will not be allowed for the next T iterations, where T is the
prohibition parameter. In this work, T is assumed to take values over
the interval [Tmin, Tmax].

RTS is a proposal to determine a dynamic value of the prohibition
parameter which is appropriate to a specific instance and to the local
characteristics of the fitness surface around the current configuration.

Among all the RL methods developed, we consider the Least-
Squares Policy Iteration (LSPI) algorithm [4], a form of model-free
approximate policy iteration using a set of training samples collected
in any arbitrary manner. In [6], we present an off-line application
of LSPI to tune the prohibition parameter, in particular by consider-
ing an application to the MAX-SAT problem. The parameter-tuning
policy is modeled as a Markov Decision Process (MDP) where the
states summarize relevant information about the recent history of the
search, and a near-optimal policy is determined by using the LSPI
method.

In this work, we consider an online version of the method to de-
termine a critical algorithm parameter while the algorithm is running
on a selected instance. The impact of different choices for design-
ing the Markov states and the definition of the basis function for the
approximation architecture are discussed.

The effect of changing the prohibition parameter on the algo-
rithm’s behavior can only be evaluated after a reasonable number
of local moves. We therefore divide the algorithm’s trace into epochs
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(E1, E2, . . . ) composed of a suitable number of local moves, and
allow changes of T only between epochs.

The state at the end of epoch Ei is a collection of features extracted
from the algorithm’s execution up to that moment.

Assume n and m the number of variables and clauses of the input
SAT instance, respectively. Let f(x) the score function counting the
number of unsatisfied clauses in the truth assignment x.

Each state of the MDP is created by observing the behavior of the
Tabu search algorithm over an epoch of 2∗Tmax consecutive variable
flips.

In particular, let us define the following:

• xbsf is the “best-so-far” (BSF) configuration before the current
epoch;

• Tf is the current fractional prohibition value (the actual prohibition
period is T = �nTf�);

• f epoch is the average value of f during the epoch;

• Hepoch is the average Hamming distance during the current epoch
from the configuration at the beginning of the current epoch itself.

These variables have been chosen because of the Reactive Search
paradigm’s concern on the trade-off between diversification (the abil-
ity to explore new configurations in the search space by moving away
from local minima) and bias (the preference for configurations with
low objective function values). The compact state representation cho-
sen to describe an epoch is the following triplet:

s ≡

„
Δf,

Hepoch

n
, Tf

«
, where Δf =

f epoch − f(xbsf)

m
.

The first component is the mean change of f in the current epoch
with respect to the best value; all components of the state have been
normalized.

The actions set is composed by two choices: A =
{increase, decrease}, with the following effects:

Tf =

j
max {Tf · 1.1, Tf + 1/n} if a = increase
min {Tf/1.1, Tf − 1/n} if a = decrease

(1)

Changes in Tf are designed in order to ensure variation of at least 1 in
the actual prohibition period T . In addition, Tf is bounded between a
minimum and a maximum value (0 and .2 in our experiments).

An alternative definition for the actions set consists of setting Tf

from scratch by one of the 20 uniformly distributed values in the
range [0.01, 0.2]:

Tf = 0.01 ∗ i, where i ∈ [1, 20] (2)

The reward signal is given by the normalized change of the best
value achieved in the observed epoch with respect to the “best-so-
far” value before the epoch: (f(xbsf) − f(xlocalBest))/m.
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Figure 1. The comparison among our RL-based method and other SAT
solvers.

For the case of the actions set defined via Eq. 1, we use the basis
function set presented in [6].

If the actions set is defined by Eq. 2, assume action a being “set
Tf to 0.01 ∗ i”, i ∈ [1, 20], and Φj(s, a) being the j-th entry for the
considered basis function vector Φ(s, a). We have:

Φj(s, a) =

8>>>>>>>><
>>>>>>>>:

Δf if j = 1

Hepoch if j = 2

Hepoch · Δf if j = 3
(Δf)2 if j = 4

H
2

epoch if j = 5
i/100 if j = 5 + i
0 otherwise

(3)

The training phase is executed online, while solving a single SAT
instance. This design choice implies that the best policy learnt by the
SAT solver is not defined a priori by an off-line training phase over
selected SAT instances, but it is determined by learning while the
target optimization task is performed.

During an initial set up phase, 100 training examples for the input
SAT instance are extracted to calculate the initial policy. Then, the
solving phase is started. As soon as the search history provides a
new example, it is added to the training set and the policy is updated.

3 Experimental results

For our tests, we use the benchmark described in [5], formed by
MAX-3-SAT random instances with 500 variable and 5000 clauses.
The Tf parameter has been bounded in [0, .2].

To evaluate our novel MAX-SAT solver based on Reinforcement
learning we report here a comparison with some of the best and fa-
mous SLS algorithms for MAX-SAT. In particular, the SLS tech-
niques considered are the the AdaptNovelty+ [7], the the RSAPS, a
reactive version of SAPS [3], the H RTS [1], and the gNovelty+ [2].

For each algorithm, 10 runs with different random seeds are per-
formed for each of the 50 instances taken from the benchmark set,
for a total of 500 tests. Fig. 1 shows the average results as a function
of the number of iterations (flips).

Fig. 1 indicates that our RL-based approach is competitive with
the other existing SLS MAX-SAT solvers. In the experiment in Fig.
1, for our RL-based approach we consider the case where the update
of the Tf value is performed by Eq. 1.

However, in Sec. 2 we presented two possible definitions for the
action that updates the value of Tf:

1. Tf is increased/decreased by the value 1/n (see Eq. 1);
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Figure 2. Performance of the two implemented actions for the update of
the Tf value: increasing/decreasing vs setting Tf from scratch.

2. Tf is set from scratch via Eq. 2.

Fig. 2 compare the two hypotheses, showing an improvement in the
second case. E.g., at iteration 100000 an improvement of 2.4% in
the mean best-so-far value is registered. Setting the Tf value from
scratch, our algorithm reaches the optimal performance of H RTS.
Furthermore, for the first hypothesis, a bigger increase/decrease of
the Tf parameter has also been tested. In particular, we replaced the
factor 1.1 in Eq. 1 by the value 1.3. However, in this case we obtain
a little bit worse results.

4 Conclusions

This paper describes an application of Reinforcement Learning for
the online tuning of the prohibition parameter in the Reactive Tabu
Search algorithm. We discussed a couple of relevant architectural
choices and presented preliminary experimental results. The results
are promising: over the MAX-SAT benchmark considered our algo-
rithm performs better than the gNovelty+, which is a Gold Medal
winner in the random category in the SAT 2007 competition and
achieves results which are comparable with those obtained by the
original RTS algorithm. These findings are confirmed by the addi-
tional experimental work not presented in this paper because of space
limits.
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