ECAI 2008

M. Ghallab et al. (Eds.)

10S Press, 2008

© 2008 The authors and 10S Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-907

907

Redundancy in CSPs

Assef Chmeiss and Vincent Krawczyk and Lakhdar Sais !

Abstract. In this paper, we propose a new technique to compute
irredundant sub-sets of constraint networks. Since, checking redun-
dancy is Co-NP Complete problem, we use different polynomial
local consistency entailments for reducing the computational com-
plexity. The obtained constraint network is irredundant modulo a
given local consistency. Redundant constraints are eliminated from
the original instance producing an equivalent one with respect to
satisfiability. Eliminating redundancy might help the CSP solver to
direct the search to the most constrained (irredundant) part of the
network.

1 Constraint Satisfaction

Constraint-satisfaction problems (CSPs) involve the assignment of
values to variables which are subject to a set of constraints. The mod-
eling and solving phases are known to be heavily interconnected. In-
deed, the efficiency of the solver depends on the way the problem
instance is modeled. Until recently, these two phases are considered
separately. Many improvements have been proposed for the solving
side and many other approaches have been suggested to simplify the
crucial modeling step [1, 3]. As there exists several ways to model
the same problem, this means that the user is not safe from intro-
ducing redundancies in such modeling process. Also redundancies
might result from an incorrect encoding or merging different parts
from several sources. The obtained constraint network (CN), might
contain parts that can be removed without losing the information it
carries. However, several forms of redundancies can be character-
ized.

In this paper, we address constraint redundancies. A CSP is re-
dundant if and only if some its constraints can be removed while
preserving its set of models. As stated by Paolo Liberatore [4] in
the context of propositional clausal formulae, the deletion of redun-
dant constraints is clearly important for several reasons. First, remov-
ing redundant constraints can simplify the CN by reducing its size.
A large amount of redundancies might obscure the real set of con-
straints (the irredundant part of the CN). In other cases, redundancy
might indicate that some pieces of the CN are more important than
the others. Consequently, depending on the application domain, re-
dundancy might be either a positive or a negative concept.

Our main goal is to measure the relationships between constraints
redundancies and the efficiency of CSP solvers. As a side effect, our
approach can be seen as a possible technique that can be used to
check the degree of redundancy of a given CN. On the current avail-
able CSP instances, our approach might give a nice way to approx-
imate their irredundant part. However, checking constraint redun-
dancy, meaning that deciding if a given constraint can be deduced
from the remaining part of the CN is known to be Co-NP complete

1 Université Lille-Nord de France, CNRS UMR 8188, Artois, Rue Jean Sou-
vraz, SP-18, F-62307 Lens, email:{chmeiss, krawczyk, sais} @cril.fr

[4]. To deal with this main drawback, in this paper, different polyno-
mial local consistency entailments are used for reducing the compu-
tational complexity. The obtained CN is irredundant modulo a given
local consistency.

1.1 Definitions and notations

A CSP is defined as a tuple P =< &X,C >. X is a finite set of
n variables {x1,...,xn}. Each variable z; € X is defined on a
finite set of d; values, denoted dom(z;) = {vi,,...vi, }. Cisa
finite set of m constraints {ci, ..., ¢m }. Each constraint 161 € C of
arity k is defined as a couple (scope(c;), Re;) where scope(c;) =
{ziy,...,xi, } C X isthe set of variables involved in ¢; and R.;, C
dom(zi,) X ... x dom(x;,) the set of allowed tuples i.e. t € R,
iff the tuple ¢ satisfies the constraint ¢;. A CSP P is called binary iff
Ve; € C, |scope(c;)| < 2. A model (solution) is an assignment of a
value for each variable € X which satisfies all the constraints.

In this paper, we limit our presentation to binary CSPs. However,
our proposed approach can be easily extended to n-ary CSPs.

We define ¢(P) as the CSP P obtained after applying a local con-
sistency ¢. For ¢ = AC this means that all arc-inconsistent values
are removed from P. If there is a variable with an empty domain
in ¢(P), we denote ¢(P) =_L. The sub-network obtained after the
assignment of a variable x to a value v is denoted P|z—..

1.2 Tuple Arc Consistency

In this section, we propose a new filtering technique, called Tuple
Arc Consistency (TAC). This local consistency is introduced to be
exploited in our redundancy framework. The main idea is that instead
of fixing one value as for SAC, we fix one tuple of a constraint c
i.e. we assign the variables involved in ¢ and we apply AC on the
obtained sub-network.

Definition 1 Let P be a CSP. A constraint ¢;; € C is Tuple Arc
Consistent (TAC) iff V(a,b) € Re,;, AC(P|s;=a,z;=b) #L. P is
TAC iff Ve € C, cis TAC.

Cij

2 Constraints redundancies

The redundancy, in a CSP, occurs when some informations are
present several times, that is, a subset of constraints can be deduced
from others. To determine if a constraint c is redundant or not, we
need to solve the CSP with the negation of a constraint c. This prob-
lem is known to be Co-NP complete [4]. However, it’s possible to
detect in polynomial time some redundant constraints while using
entailment modulo a given local consistency. In this section, we de-
fine formally the notion of constraint redundancy in CSP and we

908 A. Chmeiss et al. / Redundancy in CSPs

rifapscen11-f10 (680, 4103) 0,476 4103 (0%) | 197,742

AC, Redac AC, Redrac TAC, Redac TAC, Redr ac
instance name (#var, #ctr) time %0 time % time %0 time %
bqwh-15-106 (106, 644) 0,03 572 (11%) 0,16 570 (11%) 0,13 559 (13%) 0,25 555 (14%)
domino-1000-800 (1000, 1000) | 123,01 0 (100%) 123,85 0 (100%) 123,06 0 (100%) 123,75 0 (100%)
driverlogw-02c-sat 5,5 1910 (53%) 10,36 1756 (57%) 6,78 1428 (65%) 9,58 1367 (66%)
ehi-85-297-0 (297, 4094) 0,26 4094 (0%) 12,29 776 (81%) 10,72 - 11,25 -
frb30-15-1 (30, 208) 0,01 208 (0%) 5,87 208 (0%) 0,11 208 (0%) 5,88 208 (0%)
rlfap-graph1 (200, 1134) 0,15 1134 (0%) 101,83 885 (22%) 964 1134 (0%) | 1042,26 | 522 (54%)

2954 (28%) | 69,827 - 72,548 -

Table 1. Results on benchmarks from the second international CSPs competition

show how we can use local filterings to detect some redundant con-
straints. In satisfiability problem redundancy modulo unit propaga-
tion has been shown very useful in practice namely on real-world
instances [2]. A CSP P is redundant if it contains a subset of re-
dundant constraints otherwise it is called irredundant. For a CSP
P =< X,C > and a constraint ¢ € C , we define P \ {c} as the
CSP P’ =< X,C\c >. We define the negation of a constraint c,
noted —c, as the constraint ¢’ such that scope(c’) = scope(c) and

R ={t|t € H\megcope(c) dom(z),t ¢ R.}.

Definition 2 Let P be a CSP and ¢ € C. c is redundant iff P\
{c} U —c is unsatisfiable. P is redundant iff 3¢ € C such that c is
redundant. Otherwise P is said to be irredundant.

To avoid solving the problem P \ {c} U —c to see if ¢ is redundant
or not, we consider an incomplete but polynomial time algorithm to
detect redundant constraints. We apply a local filtering ¢ such AC
and TAC. Any other local consistency can be used.

Checking if a constraint is redundant can be done using a refu-
tation procedure. Namely, a constraint ¢ € C is redundant iff the
constraint network in which c is substituted by its negation is un-
satisfiable. This is clearly intractable. That’s why, we define weaker
form of refutation inducing a weaker form of redundancy.

Definition 3 Let P be a CSP and ¢ a local consistency. A constraint
¢ € Cis ¢-redundant iff p(P\{c} U {—c}) =L.

A CSP P is called ¢-redundant (respectively ¢-irredundant) iff it
(respectively does not) contains ¢-redundant constraints.

Algorithm 1: Computing a ¢ irredundant constraint network
Input: P =< X,C >
Output: A ¢-irredundant CSP P

1 for each c € C do

P —P\A{c}U¢

if (P’) =L then

L C —C\c

B W N

In algorithm 2, ¢ can be replaced by any local consistency filtering
like AC and TAC. The complexity of Algorithm 1 is polynomial. If
we use an AC filtering whose the time complexity is O(md?), then
the time complexity of the algorithm 1 is bounded by O(m?>d?).

Let us note that using different constraint orderings in the al-
gorithm 1, might lead to different ¢-irredundant constraints sub-
networks.

3 Preliminary experiments

In this section, we show the practical interest of our approach. We
present the reduction power in terms of the percentage of deleted
¢-redundant constraints with ¢ instantiated to AC and TAC.

As a CSP solver, we used the MAC algorithm with dom/WDeg.
In table 1, which presents results on some instances, we provide the
percentage of ¢-redundant constraints. In the four double-columns,
the results obtained by applying a ¢ consistency as a preprocessing
and ¢-redundancy checking are given. For example, in the second
double column (AC, Redr ac) means that we apply AC on the orig-
inal problem then we check constraints redundancy using T"AC'. For
each case, we give the run time (in seconds), the number of remaining
constraints and the percentage of ¢-redundant constraints. Instances
solved in the preprocessing step, are indicated with a dash ”-”.

On the domino-1000-1000 instance, we can see that all constraints
are deleted. In fact, all the constraints become redundant since, after
the preprocessing, there is one value for each domain and the in-
stance is proven satisfiable. On the contrary, for some instances like
frb30-15-1, the technique does not detect any redundant constraint.
For the bgwh-15-106 and driverlogw-02c-sat instances, we remark
that a stronger filtering like TAC detects more redundant constraints
than AC. This remark is confirmed for other classes like ehi-85 and
rlfap-graphl where the detection of redundant constraints by TAC is
more significant than with AC. For classes ehi-85 and rifap-scenll,
the filtering technique TAC prove inconsistency during the prepro-
cessing step.

4 Conclusions

In this paper, a new approach to compute irredundant sub-sets of CN
is proposed. Using polynomial time local consistency techniques for
redundancy checking, significant reductions in the size of the have
been obtained on many classes of CSP instances. The obtained sub-
network is irredundant modulo a local consistency entailment. The
new filtering TAC we propose is clearly powerful for detecting redun-
dant constraints. Used as a preprocessing some classes of instances
are solved without search.

REFERENCES

[1] C. Bessiere, R. Coletta, B. O’Sullivan, and M. Paulin, ‘Query-driven
constraint acquisition’, in IJCAI’2007, pp. 50-55, (2007).

[2] O. Fourdrinoy, E. Grégoire, B. Mazure, and L. Sais, ‘Reducing hard sat
instances to polynomial ones’, in IEEE-IRI’07, pp. 18-23, (2007).

[3] A. M. Frisch, C. Jefferson, B. Martinez Hernandez, and I. Miguel, ‘The
rules of constraint modelling’, in [jcai’2005, pp. 109-116, (2005).

[4] P.Liberatore, ‘Redundancy in logic i: Cnf propositional formulae’, Artif.
Intell., 163(2), 203-232, (2005).

