
Integrating Abduction and Constraint Optimization in
Constraint Handling Rules

Marco Gavanelli and Marco Alberti and Evelina Lamma 1

1 Abduction and CHR

Abductive Logic Programming (ALP) [10] is a set of languages sup-
porting hypothetical reasoning; the corresponding proof-procedures
feature a simple, sound implementation of negation by failure [6]. An
ALP is a logic program KB with a distinguished set A of predicates,
called abducibles, that do not have a definition, but their truth value
can be assumed. A set of implications called Integrity Constraints
(IC) restrict the possible set of hypotheses, in order to avoid unreal-
istic assumptions. Given a goal G, the aim is to find a set Δ ⊆ A
such that KB ∪ Δ |= G and KB ∪ Δ |= IC.

ALP and Constraint Logic Programming (CLP) have been merged
in works by various authors [11, 12, 5]. However, while almost all
CLP languages provide algorithms for finding an optimal solution
with respect to some objective function (and not just any solution),
the issue has received little attention in ALP. We believe that adding
optimisation meta-predicates to abductive proof-procedures would
improve research and practical applications of abductive reasoning.

However, abductive proof-procedures are often implemented as
Prolog meta-interpreters, which makes clumsy the strong intertwin-
ing with CLP required to fully exploit optimisation meta-predicates.

In the line with previous research [1, 9, 4, 2], we implemented the
SCIFF abductive proof-procedure [3] in Constraint Handling Rules
(CHR) [7], which provides a strong integration between abduction
and constraint solving/optimisation. In SCIFF, the abductive logic
program can invoke optimisation meta-predicates, which can invoke
abductive predicates, in a recursive way.

Previous implementations of abduction in CHR mapped ab-
ducibles into CHR constraints, and integrity constraints into CHR
rules [1, 9, 4, 2]. In this way, the implementation is very efficient, but
there are limitations on the language: only abducibles can occur in
the condition of ICs. This limits the applicability of sound negation
by failure to abducibles, while negative literals of other predicates
inherit “the dubious semantics of Prolog” [4].

E.g., the following IC (where abducibles are in bold)

a(X, Y),b(Y) → c(X) ∧ p(Y) ∨ q(X) (1)

can be rewritten as a propagation CHR

a(X, Y), b(Y) ==> c(X), p(Y) ; q(X)

because in the antecedent only abducibles occur, thus in the head of
the propagation CHR there are only CHR constraints. Instead, the IC

a(X, Y), p(Y) → r(X) ∧ q(Y) ∨ q(X), (2)

1 University of Ferrara, Italy, email: name.surname@unife.it

cannot be represented in this way, because p/1 is not abducible. This
means that it is not possible to deal with negation by failure in a
sound way, since not(p(X)) should be rewritten as p(X) → false .

In SCIFF, an abducible a(X, Y) is represented as the CHR con-
straint abd(a(X, Y)). We do not map integrity constraints to CHR
rules, but to other CHR constraints. IC (2) is mapped to the constraint

ic([abd(a(X, Y)), p(Y)], [[r(X), q(Y)], [q(X)]]).

The operational semantics (derived from the IFF [8]) is defined by
a set of transitions [3]. The transitions are then easily implemented
as CHR rules; for example, transition propagation (joined with case
analysis) [8] propagates an abducible with an implication:

abd(P), ic([P1|Rest], Head) =⇒
rename(ic([P1|Rest], Head), ic([RenP1|RenRest], RenHead)),
reif unify(RenP1, P, B), (B = 1, ic(Rest, Head); B = 0)

We first rename the variables (considering their quantification), and
then apply reified unification [12]: a CHR constraint that imposes
that either the two first arguments unify and B = 1, or that the two
arguments do not unify and B = 0.

One of the features of the CHR implementation is that the ab-
ductive program written by the user is directly executed by the Pro-
log engine, and the resolvent of the proof-procedure coincides with
the Prolog resolvent. This also means that every Prolog predicate
can be invoked, and, in particular, we can invoke optimisation meta-
predicates: in some cases, it is not enough to find one abductive solu-
tion, but the best solution with respect to some criteria is requested.
CLP offers an answer to this practical need by optimisation meta-
predicates (minimize and maximize), that select the best solu-
tion amongst those provided by a goal.

2 An example from Game Theory

N grim pirates plundered a treasure of M golden coins. They have
to divide their treasure, and they want to have fun. Since they are
bloodthirsty, they adopt rules in which blood might be shed:

1. The lowest pirate in grade proposes a full division: he decides how
many coins are given to each pirate (including himself).

2. All the pirates vote: if the majority votes for the proposal, the
money is shared as in the division. Otherwise, the proposer is
killed, and the process restarts from step 1.

Knowing that all pirates are greedy and bloodthirsty (i.e., they mostly
care about money, and in case of parity they like to see someone die),
we have to propose a division.

ECAI 2008
M. Ghallab et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-903

903

This is clearly an optimisation problem, as pirates want to get as
much money as possible; moreover, the proposer has to hypothesise
how the other pirates will vote, in order to stay alive.

The lowest in grade will abduce an atom bearing the information
for each pirate: at the first proposal, there is a literal for each pirate

E(pirate(Grade, V ote, Coins, Alive), 1) (3)

meaning that the proposer gives to the pirate with given Grade (1
being the highest) a number Coins of coins, we suppose his vote is
expressed with a boolean V ote (an integer 0=false or 1=true), and
that at the end he will be alive if and only if the boolean Alive = 1.

Moreover, we had better try to foresee what could possibly happen
in the next protocol iterations, in the unlucky case our proposal does
not get the majority. We suppose each proposal happens at a time
step indicated by an integer (last argument of Eq. 3).

Now we can see the rules of the protocol. Predicate npirates/1
defines the number of pirates. The N -th pirate makes the first pro-
posal, the N − 1 has the second choice and so on:

turn(Grade, Turn):-npirates(N), T = N + 1 − Grade.

Each pirate is alive, if his turn of proposing has not come yet.

E(pirate(Grade, V ote, Coins, Alive), T)
∧turn(Grade, Turn) ∧ T < Turn → Alive = 1

After his proposal, a pirate is dead: he gets 0 coins and does not vote:

E(pirate(Grade, V ote, Coins, Alive), T)
∧ turn(Grade, Turn) ∧ T > Turn
→ Alive = 0 ∧ V ote = 0 ∧ Coins = 0

Each pirate votes for his own proposal:

E(pirate(Grade, V ote, Coins, Alive), T)
∧turn(Grade, Turn) ∧ T = Turn → V ote = 1

If in the current proposal I suppose to get more money than in the
next, I will vote for the current one. Otherwise, I will vote against:
either I hope to get more money, or I hope to see the proposer die.

E(pirate(Grade, V ote1, Coin1, Alive1), T1) ∧ T2 = T1 + 1∧
E(pirate(Grade, V ote2, Coin2, Alive2), T2) →
Coin1 > Coin2 ∧ V ote1 = 1 ∨ Coin1 ≤ Coin2 ∧ V ote1 = 0.

If I suppose next iteration I will be dead, I will accept any proposal:

E(pirate(Grade, V ote1, Coins1, 1), T1) ∧ T2 = T1 + 1∧
E(pirate(Grade, V ote2, Coins2, 0), T2) → V ote1 = 1.

The predicate pirates(Lcoins, Lvotes, T) is the program entry point.
Its arguments are the coins assignment (list Lcoins), the result of the
voting (list Lvotes), and the iteration number T (initially 1). In the
following code, CLP predicates are underlined. The abduce predi-
cate abduces the atom (3) for each pirate.

pirates([],[],T):- npirates(N), T>N.
pirates(Lcoins,Lvotes,T):- npirates(N), ncoins(M), T ≤ N ,

% Define variables’ domains
length(Lcoins,N), domain(Lcoins,0,M), sumlist(Lcoins,M),
length(Lvotes,N), domain(Lvotes,0,1), sumlist(Lvotes,Nvotes),
2Nvotes> N-T+1 ⇔ Win, %One wins if he gets majority
% The pirate gets the coins only if he wins
nth(T,Lcoins,CoinsPirate), GotCoins = Win*CoinsPirate,

% The proposer will be alive only if he wins
length(Lalive,N), nth(T,Lalive,Win),
maximize(
(T1 is T+1, pirates(, ,T1),

abduce(Lcoins,Lvotes,Lalive,N,T),% Abduce a division
labeling(Lcoins), labeling(Lvotes),

),GotCoins). %Maximise number of obtained coins

The result for N = 4 pirates and M = 9 coins is the following:

E(pirate(4,1,7,1),1) E(pirate(3,0,0,1),1) E(pirate(2,1,1,1),1) E(pirate(1,1,1,1),1)
E(pirate(4,0,0,0),2) E(pirate(3,1,9,1),2) E(pirate(2,1,0,1),2) E(pirate(1,0,0,1),2)
E(pirate(4,0,0,0),3) E(pirate(3,0,0,0),3) E(pirate(2,1,0,0),3) E(pirate(1,0,9,1),3)
E(pirate(4,0,0,0),4) E(pirate(3,0,0,0),4) E(pirate(2,0,0,0),4) E(pirate(1,1,9,1),4)

Pirate 4 (first row of the table) takes 7 coins for himself, gives 1
coin each to pirates 1 and 2, and nothing to pirate 3. He is sure to
get 3 votes: his own, plus those of pirates 1 and 2. How can he be
so sure of surviving? Because if he dies (second row), pirate 3 gets
all the money, while 1 and 2 get nothing, and nevertheless pirate 2
votes for the proposal! In fact, in iteration 3, pirate 2 is sure to die:
whatever proposal he makes, pirate 1 will vote against, getting in the
last iteration all the money, and making pirate 2 die.

Besides the correct game theory result, this example shows re-
markable features of SCIFF. First, a SCIFF program is a real
CLP(FD) program. The user is not restricted to a subset of the avail-
able constraints, and, in particular, she can use global constraints
(e.g., sumlist) in the knowledge base. Second, we have recursion
through the optimisation meta-predicate maximize. SCIFF tightly
integrates CLP(FD) and abduction, thanks to its CHR implementa-
tion. Finally, SCIFF is efficient: it took 49s to solve the above prob-
lem with N = 4 pirates on a Pentium M715, 1.5GHz, 512MB RAM
computer, which is reasonable considering that the problem is at the
fourth level of the polynomial hierarchy.

REFERENCES
[1] S. Abdennadher and H. Christiansen, ‘An experimental CLP platform

for integrity constraints and abduction’, in FQAS 2000, pp. 141–152.
[2] M. Alberti, F. Chesani, D. Daolio, M. Gavanelli, E. Lamma, P. Mello,

and P. Torroni, ‘Specification and verification of agent interaction pro-
tocols in a logic-based system’, Scalable Computing: Practice and Ex-
perience, 8(1), 1–13, (2007).

[3] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Tor-
roni, ‘Verifiable agent interaction in abductive logic programming: the
SCIFF framework’, ACM Trans. on Computational Logic, 9(4), (2008).

[4] H. Christiansen and V. Dahl, ‘HYPROLOG: A new logic programming
language with assumptions and abduction.’, in ICLP, (2005).

[5] U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni, ‘The CIFF
proof procedure for abductive logic programming with constraints’, in
JELIA 2004, eds., J. Alferes and J. Leite, volume 3229 of LNAI, (2004).

[6] K. Eshghi and R. Kowalski, ‘Abduction compared with negation by fail-
ure’, in ICLP’89, eds., G. Levi and M. Martelli, pp. 234–255, (1989).

[7] T. Frühwirth, ‘Theory and practice of constraint handling rules’, Jour-
nal of Logic Programming, 37(1-3), 95–138, (October 1998).

[8] T. Fung and R. Kowalski, ‘The IFF proof procedure for abductive logic
programming’, Journal of Logic Programming, 33(2), (1997).

[9] M. Gavanelli, E. Lamma, P. Mello, M. Milano, and P. Torroni, ‘Inter-
preting abduction in CLP’, in APPIA-GULP-PRODE Joint Conf. on
Declarative Programming, Reggio Calabria, Italy, (2003).

[10] A. Kakas, R. Kowalski, and F. Toni, ‘The role of abduction in logic pro-
gramming’, in Handbook of Logic in Artificial Intelligence and Logic
Programming, eds., D. Gabbay, C. Hogger, and J. Robinson, (1998).

[11] A. C. Kakas, A. Michael, and C. Mourlas, ‘ACLP: Abductive Con-
straint Logic Programming’, J. of Logic Programming, 44(1-3), (2000).

[12] A. C. Kakas, B. van Nuffelen, and M. Denecker, ‘A-System: Problem
solving through abduction’, in IJCAI-01, ed., B. Nebel, (2001).

M. Gavanelli et al. / Integrating Abduction and Constraint Optimization in Constraint Handling Rules904

