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1 Preliminaries and illustrative example

We consider a network of semantic peers P = (Pi)i=1..n. Each peer
Pi uses its own ontology, expressed on its own vocabulary Vi, for
describing and structuring its knowledge as well as for annotating
its resources. A class C ∈ Vi of a peer Pi is referred by Pi:C or
simply by C when no confusion is possible. Peers are connected each
other by means of mappings, corresponding to logical constraints
linking classes of different peers. Users ask queries to one of the
peers, using the vocabulary of this peer. When processing a query,
the reasoning propagates from one peer to other peers thanks to those
mappings. The mappings are exploited during information retrieval
or query answering for query reformulation between peers.

For example, let us consider a semantic P2P system sharing
movies based on semantic annotations, where P1 organizes his video
resources according to their genres (Suspense, Action, Animation),
and P2 organizes his films based on the actors playing in the movies
(Bruce Willis, Jolie). While having different views for classifying
movies, P1 and P2 can establish some mappings between their two
classifications. For example, they can agree that the class BruceWillis
of P2 (denoted by P2:BruceWillis) is more specific than the class
Action of P1 (denoted by P1:Action). It will result into the map-
ping P2:BruceWillis � P1:Action. Similarly, P1 and another peer
P3 can have established the mapping P1:Action � P1:Suspense �
P3:Thriller between their two classifications, in order to state that
the category named Thriller by P3 is more general than what P1

classifies as both Action and Suspense. As a result, the movies
that are classified by P1 as Suspense and by P2 as BruceWillis
are returned as answers to the query Thriller asked by the user at
the peer P3.

We assume that each resource r returned as an answer to some
query is associated with a label L(r) = Ci1 . . . CiL corresponding
to its logical justification. L(r) is a set of classes of the vocabular-
ies of (possibly different) peers known to annotate the resource r
and supposed to characterize a sufficient condition for r to be an an-
swer. Any other resource annotated in the same way is thus equally
supposed to be an alternative answer to the query. We also assume
that the classes used in labels are independent in the sense that for
any two classes of a justification, none of them is a subclass of the
other. This important assumption means that for a returned answer,
the only classes that appear in its justifications are those correspond-
ing to most specific classes of the network.

Finally we assume that the user, when querying a peer Pi, is ran-
domly asked to evaluate some of the returned answers as satisfying
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or not satisfying and to store the result of this evaluation in a local ob-
servation database Oi. Each evaluation is recorded into Oi as a pair
S.L or S.L, where S (resp. S) denotes the user satisfaction (resp.
unsatisfaction) and L is the label of the evaluated resource.

Definition 1 (Observation relevant to a label L) Let Oi be the set
of observations of a peer Pi and L be a label. An observation of Oi

is said to be relevant to L if and only if its label contains all classes
of L. The number of satisfying and unsatisfying observations of Pi

that are relevant to L are respectively denoted by:
O+

i (L) = |{S.L′ ∈ Oi/L ⊆ L′}|
O−

i (L) = |{S.L′ ∈ Oi/L ⊆ L′}|

These two numbers summarize the past experience of the peer Pi

relevant to the label L, i.e. of the evaluated resources justified by at
least the classes of L.

For instance, suppose that Peter is the user querying the peer P1.
After a number of answers have been evaluated, Peter’s past experi-
ence may be summarized as in table 1.

Label (L) O+
1 (L) O−

1 (L)

P2:MyActionF ilms 30 6
P2:MyCartoons 3 15
P4:ScienceF iction 14 14
P5:Italian P5:Western 0 6
P6:AnimalsDocum 8 2
P7:JeanRenoir 22 11
P8:Bollywood 6 35

Table 1. Summary of Peter’s observations at P1

Among all the resources evaluated by Peter and annotated with the
class MyActionF ilms of the peer P2, 30 have been considered as
satisfactory and 6 as not satisfactory. For the same peer P2, only 3 out
of 18 evaluated resources tagged by MyCartoons were positive.
Similarly all evaluated resources annotated with both Italian and
Western by P5, obtained negative feedbacks.

Each peer Pi can progressively update its observation database
Oi, as new answers are evaluated, and refine the trust it has towards
answers justified by the different observed labels. The level of trust
can vary according to the justification.

2 Bayesian model and estimation of trust

Given a label L, let XiL be the binary random variable defined on
the set of resources annotated by L as follows:

XiL(r) =
n 1 if the resource r is satisfying for Pi

0 otherwise
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We define the trust of a peer Pi towards a label L as the probability
that the random variable XiL is equal to 1, given the observations
resulting from the past experiences of Pi.

Definition 2 (Trust of a peer towards a label L) Let Oi be the set
of observations of a peer Pi and L be a label, the trust T (Pi, L) of
Pi towards L is defined as follows:

T (Pi, L) = Pr(XiL = 1|Oi)

The following theorem provides a way to estimate the trust
T (Pi, L) of a peer Pi towards a label L, and the associated error
of estimation.

Theorem 1 Let Oi be the set of observations of a peer Pi and L be a
label. After O+

i (L) satisfying and O−
i (L) unsatisfying observations

relevant to L have been performed, T (Pi, L) can be estimated to

1 + O+
i (L)

2 + O+
i (L) + O−

i (L)

with a standard deviation ofs
(1 + O+

i (L)) × (1 + O−
i (L))

(2 + O+
i (L) + O−

i (L))2 × (3 + O+
i (L) + O−

i (L))

It follows from a well known result (e.g., [3],page 336) in proba-
bilities of the application of the Bayes rule to random variables fol-
lowing a Bernoulli distribution the parameter of which is unknown.

Table 2 summarizes the estimations with their associated standard
deviation obtained by applying Theorem 1 to the Peter’s observations
summarized in Table 1.

Label (L) Estimated trust of
P1 towards L

Standard deviation

P2:MyActionF ilms 0.815 0.062
P2:MyCartoons 0.2 0.087
P4:ScienceF iction 0.5 0.089
P5:Italian P5:Western 0.125 0.11
P6:AnimalsDocum 0.75 0.12
P7:JeanRenoir 0.657 0.079
P8:Bollywood 0.162 0.055

Table 2. Estimated trust of P1 towards the labels of Table 1

3 Propagation of trust

When the observation database does not contain enough observations
relevant to a label for computing trust with a good precision, we have
to use some propagation mechanism to compensate for the lack of
local relevant observations.

Instead of propagating trust between peers, our approach consists
in propagating the pairs of numbers used for computing trust. Prop-
agating two numbers instead of one does not represent a significant
overhead. Yet, it has the significant advantage of providing a well-
founded way to compute a joint trust using the same Bayesian model
as the one presented in section 2.

Instead of using an ad-hoc aggregation function for combining lo-
cal coefficients of trust, the numbers O+

i1(L) . . . O+
il (L) (respectively

O−
i1(L) . . . O−

il (L)) coming from solicited peers Pi1 . . . Pil are cu-
mulated to compute the joint trust of the subset Pi1 . . . Pil towards
L, by applying the formula of Theorem 1.

Different strategies are possible to gather on the querying peer the
relevant information from the solicited peer’s observations.

• The lazy strategy consists in waiting for getting some answer jus-
tified by a label L and then asking one or several trusted neighbors
for their direct feedbacks about the label L. Since it applies after
the obtention of answers, such a strategy can be used as a post-
precessing and does not require to change the query evaluation
mechanism itself. As a consequence it can be applied to different
kinds of semantic P2P systems, provided they are able to justify
answers by means of such labels (e.g. sets of independant seman-
tic annotations).

• The greedy strategy consists in collecting the direct feedbacks
likely to be relevant (i.e., concerning the classes in the anno-
tation being built) during the query processing. It thus requires
some adaptation of the query answering algorithm. In a system
like SOMEWHERE [1], the DECA algorithm [2] is first used to
infer, from the ontologies and mappings, all the possible refor-
mulations (i.e. rewritings) of the initial query into conjunctions
of extensional classes (i.e. containers of instances) C1, . . . , Cn.
Each instance in C1 � . . . � Cn is then produced as an an-
swer, C1 . . . Cn being the semantic annotation justifying it. The
DECA algorithm can be slightly modified in order to convey,
when transmitting back rewritings from a queried peer P to the
querying peer P ′, those feedbacks likely to be relevant. When a
rewriting Cj � . . . � Cm is transmitted from P to P ′ within a
message, P uses that message to convey its direct observations
(O+(L), O−(L)) for all labels L containing the classes of the
rewriting. By construction, those classes will be part of the an-
notation of an answer. Therefore, observations relevant to these
classes may be relevant for computing (if needed) the joint trust
towards the labels annotating answers returned to the peer the ini-
tial query is issued from. Note that this strategy leads to combining
feedbacks from the very peers that have contributed to obtain an
answer. Those peers may thus be considered as naturally relevant
for obtaining appropriate feedbacks. However, such sets of peers
are determined at query time and may vary according to the query
and the returned answer.

4 Perspectives

One of the objectives of reputation systems is the detection and han-
dling of malicious agents in an electronic environment. In a P2P
system, a peer can be malicious by providing to other peers virus-
affected resources, or by simply lying when reporting its feedbacks
about others. In our model, when a peer has enough direct experi-
ences, it does not have to rely on other peers and thus avoid mali-
cious peers. When it has to rely on observations of other peers for
estimating its trust towards a label, it is reasonable to assume that
the number of malicious peers is small. Therefore, it is possible to
either increase the number of peers to solicit to get observations (in
order to decrease the impact of wrong observations coming from few
peers) or to discard the peers the observations of which change a lot
the joint trust (they are likely to be malicious).
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